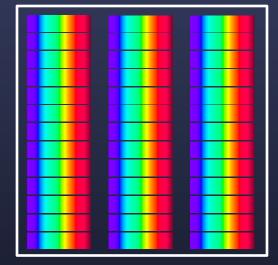
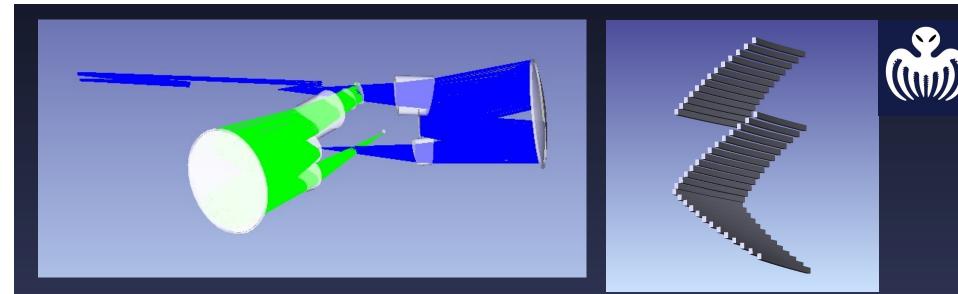
SPECTRE: A Wide Bandwidth High Throughput Spectrograph Concept

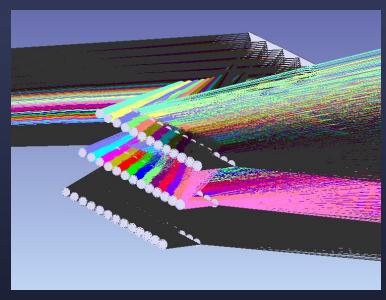
Mike Connelley Feb 13, 2018


Challenge: Better than SpeX

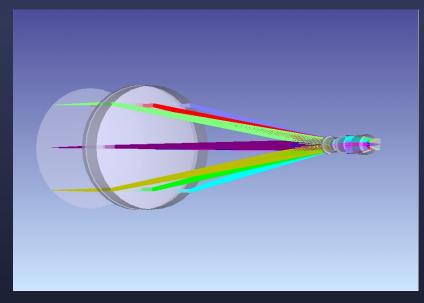
- What is the best thing we could build to characterize asteroids?
- Can something be sufficiently better than SpeX to be worth building?
- Magic SpeX/prism: $\Delta J=1.6$, $\Delta H=0.7$, $\Delta K=0.6$
- Need to optimize:
 - Throughput
 - Read noise
 - Bandwidth
 - Field of view


SPECTRE Design Study

- Science goals: Quickly characterize asteroids (especially NEAs) and astrophysical transients
- Low resolution prism spectrograph: R~100
- High throughput: ~70%
- Wide bandwidth: 0.36 μm to 4 μm simultaneous
- Uses one image slicer IFU with $7'' \times 7''$ FOV
 - No slit losses
 - No image rotator
- Dichroic splits the optical (0.36 to 0.85 $\mu m)$ and IR channels (0.85 to 4 $\mu m)$
 - May need to split between near-IR and thermal-IR to mitigate scattered light
- Each detector will have a 3x13 grid of spectra
- 1 K detectors (SAPHIRA for near-IR)



Grid of spectra on the detector 3



The two channels together

39 image slicer mirrors

Three tiers of sub-pupil mirrors

Refractive 3' FOV acquisition camera

SPECTRE: How Will It Work?

- No moving optics. Compact and rigid.
 - No flats or arcs during the night \implies more time on science target .
- Detectors: 1K CCD and 1K HAWAII/SAPHIRA array
 - 1K arrays reduce cost

• 1K SAPHIRA: No read noise, can bin down spectra without losses

•7″ IFU

- No slit losses
- Enables 'point-and-shoot' observing
- Map a planet much faster than slit scanning

• 3' FOV visible light acquisition and guide camera

- Rapid target acquisition: enough stars to platesolve
- Guiding on field stars for moving or static targets
- Similar to MORIS, w/ 1K CCD

SPECTRE: How Will It Work?

- High dynamic range in the IR
 - IR Array gets reset more frequently in the thermal region while allowed to integrate in the read noise limited region
- On target guiding for fast moving targets
 - Real-time image cube reconstruction in a moving window on the data stream from the IR detector to allow on-target guiding for rapidly moving targets

Software

• <u>Need</u> real time data reduction pipeline for first light, and for on-target guiding. Probably hardest part of project.

Comparison with SpeX

- Coverage in the optical
- 0.5 magnitudes at JHK
- 0.8 magnitudes at L
- Higher observing efficiency
 Open shutter time on SpeX: 60%

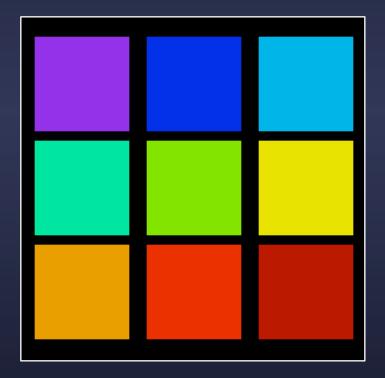
Band	SpeX	Spectre
U		18.7
В		20.5
V		20.1
R		19.8
Ι	18.0	19.0
J	17.0	17.5
н	15.7	16.3
К	15.6	16.0
L	11.0	11.8

Magnitudes for S/N=100 in 1 hr

7

What Would You Use It For?

- Rapid characterization of survey targets
 - Asteroids
 - Kuiper Belt Objects
 - Brown Dwarfs
 - Transients
 - SN type characterization
- Survey of hydrated minerals in asteroids
- Spectroscopic variability of young stars or AGN


Conclusion

- Resolution R~100
- Simultaneous coverage from 0.36 to 4 μ m
- Throughput ~70 %
- Low (zero) noise detectors
- 7" x 7" Field of View
- 3' acquisition/guide field
- Guiding for fast moving targets
- No moving optics

Multi-color Imager

- Lower resolution, wider field of view
- Project many images onto one detector
- No dichroics, higher throughput
- 3 detectors, 9 or 16 channels each
- R~10-15

