

bc635PCle

PCI Express Time & Frequency Processor

KEY FEATURES

- IRIG A, B, G, E, IEEE 1344, NASA 36, XR3 & 2137 Time Code Inputs and Outputs
- Simultaneous AM and DCLS Time Code Inputs and Outputs
- 100-Nanosecond Clock Resolution for Time Requests
- Programmable <<1 PPS to 100 MPPS DDS Rate Synthesizer Output/Interrupt
- 1, 5, or 10 MHz Rate Generator Output
- 1 PPS and 10 MHz Inputs
- Three (3) External Event Time Capture/Interrupts
- Programmable Time Compare
 Output/Interrupt
- · Zero Latency Time Reads
- Battery Backed Real Time Clock (RTC)
- Low Profile PCI Express Form Factor
- Linux, Solaris & Windows Software Drivers/SDKs Included
- Superior User Interface & Documentation
- Optional OCXO Upgrade

KEY BENEFITS

- Precise Sub-Microsecond Time Available to Host Computer Applications
- Easy Integration Facilitated with included Windows, Linux & Solaris SDKs & Drivers
- Extremely Fast Time Reads
- Programmable Time & Frequency Functions to Quickly Customize for Specific Applications
- Wide Variety of Time Codes Facilitate Easy Integration with Existing Systems
- Dedicated and Responsive Technical Support to Assist in PCIe Card Integration
- Very Well Documented for Easy & Fast System Integration

Symmetricom's bc635PCIe timing module provides unparalleled precise time and frequency functions to the host computer and peripheral data acquisition systems. Integration into a custom application is easy and very efficient through the use of the full-featured Windows, Linux and Solaris SDKs/drivers included standard with the module.

Time is typically acquired from time code signals such as IRIG B. Extensive time code generation and translation are both supported. The translator reads and disciplines the internal oscillator to either the amplitude modulated (AM) and DC level shift (DCLS) formats of IRIG A, B, G, E, IEEE 1344, NASA 36, XR3 or 2137 time codes. The generator outputs either IRIG A, B, G, E, IEEE 1344, NASA 36, XR3 or 2137 in both AM and/or DCLS formats.

Central to the operation of the module is a disciplined 10 MHz oscillator that is either a TCXO or optional OCXO that provides the timing module's 100-nanosecond clock. Current time (days to 100 nanoseconds) can be accessed across the PCIe bus with no PCIe bus wait states, which allows for very high speed, low latency time requests. The 10 MHz oscillator drives the module's frequency and time code generator circuitry. If

the input reference is lost, the module will continue to maintain time (flywheel) based on the 10 MHz oscillator's drift rate. The optional OCXO oscillator improves flywheel drift performance over the standard TCXO. If power is lost, a battery backed real time clock (RTC) maintains the time. The module has a state-of-the-art DDS rate synthesizer with a range from 0.0000001 PPS to 100 MPPS. The module may also be programmed to generate an interrupt at a precise predetermined time based on a time compare (Strobe). Three Event Time Capture inputs provide a means of latching time of different external events.

A key feature of the bc635PCIe is the ability to generate interrupts on the PCIe bus at programmable rates. These interrupts are useful to synchronize applications on the host computer as well as signal specific timing events over the bus.

The external frequency input is a unique feature allowing the time and frequency of the bc635PCIe to be derived from an external oscillator that may also be disciplined (DAC voltage controlled) based on the selected input reference. The module may be operated in generator (undisciplined) mode where an external 10 MHz from a Cesium or Rubidium standard is used as the frequency reference. This creates an extremely stable PCIe based clock for all bc635PCIe timing functions.

Integration of the module is easily facilitated with the included SDKs/drivers for 32/64 bit Windows and Linux, and 64 bit Solaris.

bc635PCIe Time & Frequency Processor & Included SDKs/Drivers

Precision Time & Frequency in the PCIe Form Factor

Inputs

- AM Time Codes

- 10 MHz
- 1PPS
- GPS (bc637PCle model)

Outputs

- Programmable Alarm
- <<1PPS to 100 MPPS rates</p>
- 1PPS
- 1.5.10 MHz
- Oscillator Control Voltage

Reading the Precise Time

The bc635PCIe provides precise time on request and extremely fast response to host applications. This request for time is simply and quickly done using the included SDK software functions. Time can be provided in binary or decimal form.

A Multitude of Time Codes

The bc635PCIe has the widest time code input and output support available in any bus level timing card. Over 30 different time codes including IRIG A, B, G, E, IEEE 1344, NASA 36, XR3, 2137 in AM and DCLS formats.

Measure Events - External or Internal

Measure the exact time up to three independent external events occur. Bus interrupts instantly notify the CPU the measurements are made and waiting. Similarly, host application generated interrupts to the bc635PCIe card over the bus can be precisely time stamped for precise host application based processes.

Flexible Rate Generation

The Direct Digital Synthesizer on board the bc635PCle can be programmed to generate rates up to 100 MPPS or as

little as once every 115 days. These rates are available as timing signal outputs or as interrupts on the bus. The rate adjustment resolution is as small as 1/32 of a hertz.

Frequency Outputs

Precise clocks are excellent sources of frequency outputs. The bc635PCIe offers 1, 5 or 10 MHz outputs directly from the steered internal oscillator of the clock.

External Frequency Inputs and DAC Control

The external frequency input is a unique feature allowing the time and frequency of the bc635PCle to be derived from an external oscillator such as a 10 MHz from a Cesium or Rubidium standard. This creates an extremely stable PCIe based clock for all bc635PCIe timing functions. For closed loop control, an external oscillator may be disciplined via DAC voltage control output from the bc635PCIe.

Time Compare/Strobe/Alarm

A useful feature of any precise clock is the ability to be notified when a particular time is reached (like an alarm

clock). When the preset time matches precisely matches the actual time an external signal is instantly generated as well as an interrupt to the bus signaling an application that point in time has just occurred.

Over the Bus Features

Aside from precise time stamps, the bc635PCIe can provide very precisely timed interrupts on the bus at fixed rates, predetermined times, or to signal an event has occurred on the card. These interrupts can be integrated into user applications requiring more deterministic behavior or application synchronization with other computers. Similarly, user applications can use interrupts as markers in time and later retrieve exactly when the interrupt occurred.

Configuration and Control

The bc635PCIe includes easy-to-use programs to easily configure the card and validate operations. This software is also included with the SDKs and driver software.

3

solaris

PCIe CARD INTEGRATION MADE **EASY WITH INCLUDED SDKs &** DRIVERS

Windows, Linux and Solaris Software **Development Kits Speed PCIe** Integration

These full-featured software development kits, included standard with the PCIe card, speed the integration of Symmetricom PCIe cards into any application.

Using an SDK is an easy-to-integrate and highly reliable alternative to writing lower-level code to address a card's memory registers directly with just a driver. The function calls and device drivers in the SDKs make inter-

Windows SDK and Driver

- Windows XP/Vista/7
- Windows Server 2003/2008
- 32 & 64 bit support
- Kernel Mode Driver
- Code Examples
- Test Application Program
- Complete Documentation
- Time Keeping Utility Program

The Windows SDK for bc635PCle cards includes a Windows XP/Vista/Server/7 kernel mode device driver for the 32 and 64 bit PCIe interface. The SDK includes .h, .lib, and DLL files to support both 32 and 64 bit applications development.

The target programming environment is Microsoft® Visual Studio (Microsoft Visual C++ V6.0 or higher). Both Visual C++ 6.0 and Visual Studio 2008 project files are supplied with the source code.

Also included is Symmetricom's bc637PCIcfq application program, which can be used to ensure proper operation of the PCIe card, as well as the TrayTime application allowing the user to update the system clock in which the card is installed. Source code for these programs as well as smaller example programs are included.

MINIMUM SYSTEM REQUIREMENTS **Operating System:**

Windows XP/Vista/7 Windows Server 2003/2008

Hardware:

PC-compatible system with a Pentium or faster processor.

Memory: 24 Mb

Development environment: Microsoft Visual Studio (Visual C++) 6 or higher. facing to a Symmetricom PCIe card straightforward and help keep your software development focused on the end application.

SDKs Save Time and Money

Programmers will find the SDK an invaluable resource in accelerating the integration of Symmetricom PCI cards into applications, saving both time and money. The SDK functions address each Symmetricom PCIe timing card feature, and the function names and parameters provide insight into the capability of each function.

By using the SDK, you can leverage Symmetricom's timing expertise and confidently integrate a Symmetricom

Linux SDK and Driver

- Linux 2.4 & 2.6 Kernel
- 32 & 64 bit kernel support
- Code Examples
- Test Application Program
- Complete Documentation

The Linux® SDK for bc635PCIe cards includes PCIe kernel mode device drivers for both 32bit and 64- bit kernels, an interface library accessing all bc635PCIe features, and example programs with source code.

The target programming environment is the GNU Compiler Collection (GCC) and the C/C++ programming languages.

Also included is Symmetricom's bc63xPCIcfg application program to ensure proper operation of the PCIe card in the host computer. The example program includes sample code, exercising the interface library, and conversion examples of the ASCII format data objects passed to and from the device into a binary format suitable for operation and conversion. The example program was developed using discrete functions for each operation, allowing the developer to copy any useful code and use it in their own applications.

MINIMUM SYSTEM REQUIREMENTS **Operating System:**

Linux Kernels 2.4, 2.6.

Hardware: x86 processor.

Memory: 32 MB

Development environment: GNU GCC recommended.

PCI card into your application.

License Free

Distribution of embedded Symmetricom software in customer applications is royalty free.

Solaris SDK and Driver

- Solaris Kernel Mode Driver
- 64-bit Solaris 8-10
- Code Examples
- Test Application Program
- Complete Documentation

Symmetricom's Solaris SDK includes bc63xPCIcfg, an application program to ensure proper operation of the PCI card in the host computer. The example program includes sample code and conversion examples of the ASCII format data objects passed to and from the device into a binary format suitable for operation and conversion.

The target programming environment is the Solaris application development tool chain and the C/C++ programming languages.

The Solaris SDK includes the Solaris device driver source code. Applications access the features of the hardware through the standard 'ioctl' Solaris system function. The IOCTL codes are defined for all the features of the card. The bc63xPClcfg program shows how to use most IOCTL codes. Developers can copy any useful code from the bc63xPClcfg source code and use it in their own applications.

MINIMUM SYSTEM REQUIREMENTS Operating System:

Solaris versions 8, 9 and 10.

Hardware: SPARC & x86_64.

Memory: 32 MB

Development environment: Solaris compilers.

SDK FUNCTION REFERENCE LIST

Windows and Linux SDK Function Reference List (Partial)* Basic Time And Frequency Processor (TFP) Functions bcStartPCI/ bcStopPCI Opens/Closes underlying device layer.

interrupts

contents.

decimal

UTC

modes).

mode.

mode

mode

the board.

bcStartInt/ bcStopInt

- bcSetInt/ bcReqInt
- bcShowInt
- bcReadReg/ bcWriteReg
- bcReadDPReg/ bcWriteDPReg
- bcCommand
- bcReadBinTime/ **bcSetBinTime**
- bcReadDecTime/ bcSetDecTime
- bcRegTimeFormat
- bcSetTimeFormat
- bcRegYear/ bcSetYear
- bcSetYearAutoIncFlag
- bcSetLocalOffsetFlag
- bcSetLocOff
- bcSetLeapEvent
- bcSetMode
- bcSetTcIn
- bcSetTcInEx
- bcSetTcInMod
- bcRegTimeData
- bcReqTimeCodeData
- bcRegTimeCodeDataEx
- bcReqOtherData
- bcRegVerData
- bcRegSerialNumber
- bcReqHardwareFab
- bcReqAssembly
- bcRegModel
- bcRegTimeFormat
- bcRegRevisionID

Event Functions

- bcReadEventTime
- bcReadEventTimeEx
- bcSetHbt
- bcSetPropDelay
- bcSetStrobeTime
- bcSetDDSFrequency
- bcSetPeriodicDDSSelect bcSetPeriodicDDSEnable
- bcSetDDSDivider
- bcSetDDSDividerSource
- bcSetDDSSvncMode
- bcSetDDSMultiplier
- bcSetDDSPeriodValue
- bcSetDDSTuningWord
 - Sets DDS turning word value.

Starts/stops the interrupt thread to signal

Returns/Sets requested register contents.

Returns/Sets requested Dual Port RAM register

Reads/ sets TFP major time in binary format.

Reads/ sets TFP major time in BCD format.

Included for backward compatibility to the

Sets the major time format to binary or grouped

Enables or disables local time offset in conjunction

Sets board to report time at an offset relative to

Inserts or deletes leap second data (in non-GPS

Sets time code format for time code decoding

Sets time code and subtype for time code decoding

Sets time code modulation for time code decoding

Returns selected time code data from the board.

Returns firmware version data from the board.

Latches and returns TFP time caused by an

Latches and returns TFP time caused by an external event with 100 nanosecond resolution.

Sets a user programmable periodic output.

Enables or disables periodic or DDS output

Sets propagation delay compensation.

Returns selected time code and subtype data from

Returns selected time data from the board.

Returns selected data from the board.

Returns hardware fab part number.

Returns board serial number.

Returns assembly part number.

Returns selected time format.

Returns board revision.

Sets strobe function time.

Sets DDS divider value.

Sets DDS divider source.

Sets DDS multiplier value.

Sets DDS period value.

Sets DDS output frequency.

Selects periodic or DDS output.

Sets DDS synchronization mode.

external event

Returns TFP model identification.

Enables/ Returns enabled interrupt.

Sends SW reset command to board.

Returns selected time format.

Returns/ sets year value.

Sets TFP operating mode.

bc635/637PCI-U card.

with bcSetLocOff.

Interrupt service routine

- **Oscillator Functions** bcSetClkSrc
- bcSetDac
- bcSetGain
- bcReqOscData

Generator Mode Functions bcSetGenCode

- Sets time code generator format. bcSetGenCodeEx Sets time code and subtype generator format.
- bcSetGenOff Sets an offset to the on-board timecode generation

GPS Mode Functions

- bcGPSReq/ bcGPSSnd bcGPSMan
- bcSetGPSOperMode
 - dvnamic mode Sets TFP to use GPS or UTC time base. bcSetGPSTmFmt

Real Time Clock (RTC) Functions

Synchronizes RTC to current TFP time. bcSyncRtc bcDisRtcBatt Sets RTC circuit and battery to disconnect after power is turned off.

Enables or disables on-board oscillator.

Modifies on-board oscillator frequency control

Returns/Sends a GPS receiver data packet.

Sets the GPS receiver to function in static or

Manually sends and retrieves GPS receiver data

Sets oscillator DAC value.

Returns TFP oscillator data.

algorithm.

function

packets

* See manual for complete listing

Solaris SDK Function Reference List

The Solaris SDK uses custom IOCTL commands to facilitate easy communication and control of the bc635PCIe card. The commands cover basic operational functions, event management, oscillator controls, and mode related functions.

An over view of the IOCTL functions include

- Interrupt Management
- Read/write Dual Port RAM. Send command to timing engine for processing
- · Read and write time
- Timing mode and time format
- Read and write the card control register
- Input time code format and modulation selection
- Set local time
- Leap seconds control
 - Read various version information and miscellaneous data
 - Reset the board
 - Clock source, jamsync management
 - DAC control
- On-board oscillator frequency control
- Advance or retard the internal clock
- · Read event time latched by external event
- Read event time latched by software event
- Event source/ sense control
- Set propagation delay
- Periodic output and output frequency control
- Strobe control
- DDS frequency output control
- · Set output time code format
- · Set offset for output time code generation
- GPS control
- Sync Real Time Clock
- Disconnect between RTC and battery after power off

BACKWARDS COMPATIBILITY PROVIDES SEAMLESS MIGRATION PATHS

bc635PCI Mid-1990's 1st PCI timing card Introduced

bc635PCI-U 2003 3.3V & 5.0V Universal Signaling backward compatibility retained

The PCI based bc635 cards have long product lifecycles since the first introduction of PCI timing cards in the mid 1990's. To preserve the customer investment of time and money to integrate bc635PCI cards into their systems, Symmetricom has maintained the features and software interface to the bc635PCI cards while keeping them current with respect to changing bus signaling, form factors, and new features.

bc635PCI-V2 2008 Electronics updated backward compatibility retained

bc635PCle 2009 PCle supported backward compatibility retained

This commitment to backwards compatibility and current bus architectures assures the bc635PCI cards integrate smoothly in the latest workstations available in the market with little to no impact on customer application software.

OPTIONAL ACCESSORIES SPEED TEST AND SIMPLIFY INTEGRATION

Breakout cables with BNC connectors simplify access to the in and out timing signals of the PCIe card. These labeled cables mitigate the need to create special cables during project development and assure the correct timing signals are being accessed. For more integrated rack mount systems needing easy access to timing signals, the 1U patch panel and high frequency signal breakout exposes all available signals. The panel provides an organized and professional appearance to the external timing I/O of the PCIe card functions. The 1U panel fits with standard or half rack size chassis. The high frequency breakout adapter exposes the high frequency signal as well as the external DC DAC control signal and ground.

Timing Input/Output Breakout Cable and Patch Panel BNC Map	"D" to 5-BNC	"D" to 6-BNC	Patch/Breakout
Outputs			
Time Code (AM)	√	√	√
Time Code (DCLS)		√	v
1, 5, 10 MHz			1
Heartbeat/DDS			\
Strobe	v		1
1 PPS	√	\	\
Oscillator Control Voltage			√
Inputs			
Time Code (AM)	√	\	\
Time Code (DCLS); Event2			1
External Event1	√	√	v
External 1 PPS; Event3		v	V
External 10 MHz			./

Symmetricom

Input/Output signals "D" to BNC connector breakout cables

1U patch panel of Input/Output and high frequency signals for standard rack mount size chassis

bc635PCIe SPECIFICATIONS

		IC .			
•	Real Time Clock	.5			
	Bus request resolution:	100 nanoseconds			
	Latency:	Zero Risser as DOD			
	Minor time format:	Binary			
•	Synchronization sources:	Time code, 1 PPS			
_	Timo codo translator (inputs)				
•	Time code formats: Time accuracy:	IRIG A, B, G, E, IEEE 1344, NASA 36, XR3, 2137 $<5 \mu$ S (AM carrier frequencies 1 kHz or greater) $<1 \mu$ S (DCLS)			
	AM ratio range:	2:1 to 4:1			
	AM Input amplitude:	1 to 8V p-p			
	DCLS Input. Event2:	>>κΩ 5V HCMOS >2V high. <0.8V low			
	Boto input, croinci	er nen de 21 mgn, elet ten			
•	Time code generator (outputs)				
	AM ratio:	IRIG A, B, G, E, IEEE 1344, NASA 36, XR3, 2137 3·1 +/- 10%			
	AM amplitude:	3.5 +/- 0.5Vpp into 50 Ω			
	DCLS amplitude:	5V HCMOS, >2V high, < 0.8V low into 50 Ω			
•	Timing functions (outputs are rising edge on time)				
	DDS rate synthesizer				
	Frequency range:	0.0000001 PPS to 100 MPPS			
	Output amplitude:	square wave			
	Jitter:	<2 nS p-p			
	Legacy pulse rate synthesizer	(Heartbeat, aka Periodic)			
	Frequency range:	<1 Hz to 250 kHz			
	Output amplitude:	5V HCMOS, >2V high, < 0.8V low into 50Ω, square wave			
	Time compare (Strobe)	'			
	Compare range:	1 µS through days			
	Output amplitude:	5V HUMUS, >2V high, < 0.8V low into 50 Ω , 1 µS pulse			
	1 PPS Output:	5V HCMOS, >2V high, < 0.8V low into 50 Ω , 60 μ S pulse			
	1 PPS Input, Event3:	5V HCMOS, >2V high, < 0.8V low			
	External Event Input:	5V HCMOS, >2V high, < 0.8V low, zero latency			
	EXTERINAL TO MINZ OSCILLATOR:	>10k Ω			
	Oscillator Control Voltage:	Jumper selectable 0-5VDC or 0-10VDC			
•	On-board disciplined oscillator				
	Frequency:	10 MHz			
	1, 5, or 10 MHz output: Stability:	5V HCMUS, >2V high, < 0.8V low into 50 Ω			
	Standard TCXO:	5.0E-8 short term 'tracking'			
		5.0E-7/day long term 'flywheeling'			
	υριιοπαί υυχυ:	2.ue-7 snort term tracking 5.0E-8 /day long term 'flywheeling'			
•	Real-time clock (RTC)	Battery backed time and year information			
•	Pule specification:	Single lane PULEXpress (PUIe) Interface, r1.0a			

Size: Power: Single lane PCI Express (PCIe) Interface, r1.1 compatible Standard height Low Profile PCIe +3.3V @ 400 mA +12V @ 250 mA (TCXO), 350 mA (OCXO)

Symmetricom

SYMMETRICOM, INC. 2300 Orchard Parkway San Jose, California 95131-1017 tel: 408.433.0910 fax: 408.428.7896 info@symmetricom.com

www.symmetricom.com

- oonneetor					
Tin	ning I/O:	15-pin 'DS'			
$\bigcirc \bigcirc $					
Pin	Direction	Signal			
1	input	External 10 MHz			
2		Ground			
3	output	Strobe			
4	output	1 PPS			
5	output	Time Code (AM)			
6	input	External Event1			
7	input	Time Code (AM)			
8		Ground			
9	output	Oscillator Control Voltage			
10	input	Time Code (DCLS); Event2			
11	output	Time Code (DCLS)			
12		Ground			
13	output	1, 5, 10 MHz			
14	input	External 1 PPS; Event3			
15	output	Heartbeat/DDS			

Connector

bc635PCIe Low profile and standard cover panels

 Complete specifications can be found in the manual located at <u>http://www.symmetricom.com</u>

ENVIRONMENTAL SPECIFICATIONS

Environment	
Temperature:	
Operating:	0°C to 70°
Storage:	-30°C to 85°C
Humidity	
Operating:	5% to 95% non-condensing
Operating altitude:	Up to 18,000 meters MSL

Certifications: FCC, CE(RoHS)

SOFTWARE

- The bc635PCIe includes on CD the SDKs and drivers for the 32/64 bit versions of Windows and Linux, and 64 bit Solaris. Included are test application programs with source code so that you can review the bc635PCIe card status and adjust board configuration and output parameters. Each SDK includes an extensive list of function calls to quickly and easily speed integration of the bc635PCIe card into your target environment. For Windows, an additional clock utility program, TrayTime, is provided that can be used to automatically update the host computer's clock.
- The bc635PCIe firmware is easily field-upgradeable over the PCIe bus.

PRODUCT INCLUDES

 bc635PCIe Time & Frequency Processor board; Standard height and low-profile cover plates; one year warranty; PCIe User's Guide CD; Windows, Linux and Solaris SDK/Driver software CD.

OPTIONS

- GPS synchronization, see bc637PCle product
- OXCO (oven controlled crystal oscillator) for extended holdover
- 15-Pin 'D' connector (J1) to BNC adapter cables

©2009 Symmetricom. Symmetricom and the Symmetricom logo are registered trademarks of Symmetricom, Inc. All specifications subject to change without notice. DS/bc635pcie/1209/PDF