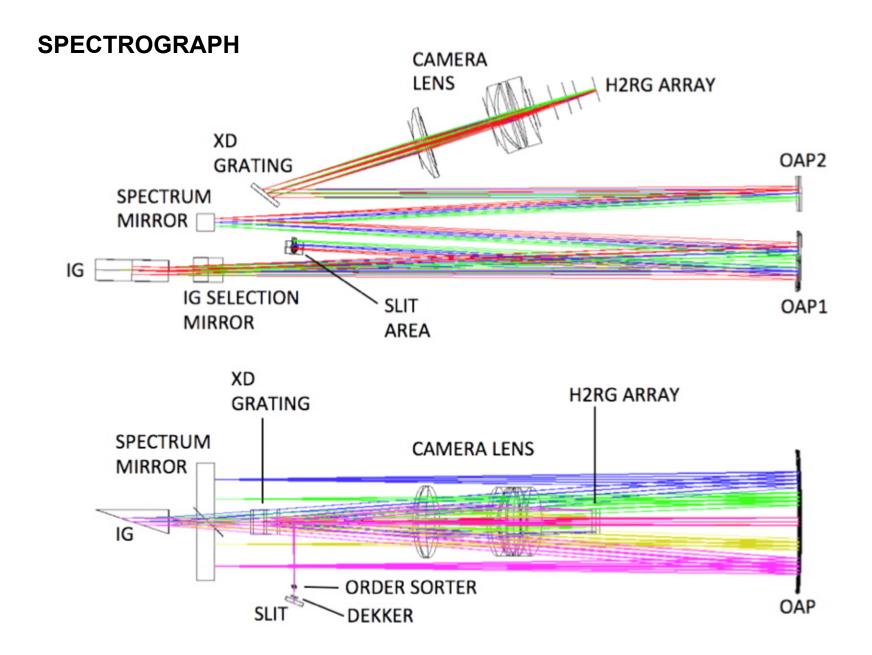

iSHELL STATUS



iSHELL status

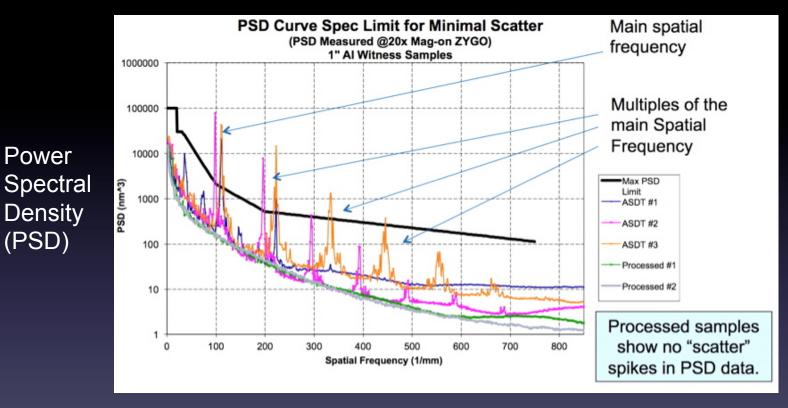
Progress since the Sep. MOWG meeting.

- Project manager from Oceanit hired (<u>Dan Kokubun</u>); started work Nov. 2012.
- Tolerance analysis completed.
- Preliminary alignment plan completed.
- Optical specifications completed. Selection of vendors nearly complete.
- Cryostat concept completed.
- Preliminary Design Review set for April 1 & 2. Optics will be at Critical Design Review stage (and ordering will proceed starting in May).

Remaining optical design tasks to CDR

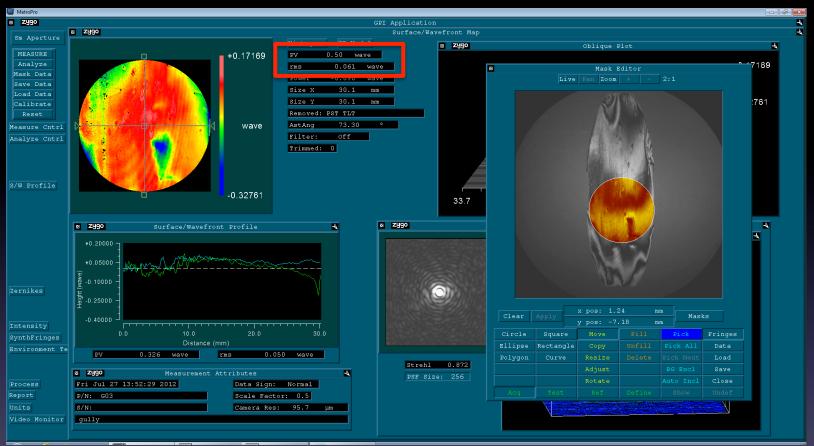
- Immersion grating specs
- Refractive camera versus TMA/FMA
- Opto-mechanical tolerancing # (80%)
- Optical element mount designs #
- Negotiate irregularity specs with vendors
- Final ghost image analysis
- Integrate baffling into cryostat layout # (50%)
- Final XD grating specs
- Final order sorting filter specs
- Final calibration system design and layout
- Optical alignment plan # (50%)
- Documentation # (50%)

Remaining optical design tasks to CDR


- Immersion grating specs
- Refractive camera versus TMA/FMA
- Opto-mechanical tolerancing
- Optical element mount designs
- Negotiate irregularity specs with vendors
- Final ghost image analysis
- Integrate baffling into cryostat layout # (50%)
- Final XD grating specs
- Final order sorting filter specs
- Final calibration system design and layout
- Optical alignment plan
- Documentation

Diamond-machined aluminum off-axis parabolas (OAPs)

Three options for OAP fabrication

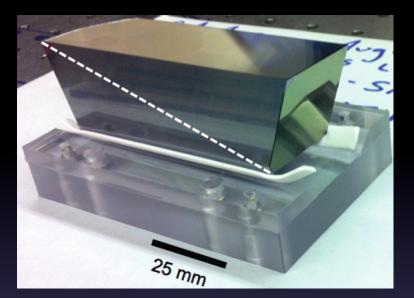

- Corning NetOptix about \$200 K using LEC technique to minimize diamond turning 'grooves'
- 2. Use standard diamond-turning procedure on RSP aluminum material to minimize grooves. Risky?
- Use standard diamond-turning procedure on standard material and since grooves have minimal effect on scattered light (e.g. Durham Precision Optics about \$30 K)

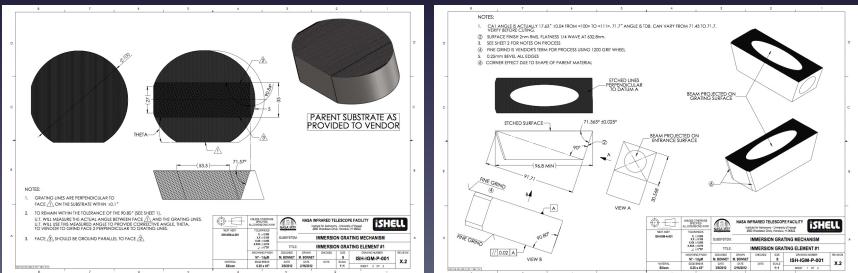
Diamond-machined AI OAPs

- Typical PSD from diamond-machined mirror from Corning standard and LEC process
- Amount of scatter is proportional to area under curve
- Scatter due to periodicity is therefore small

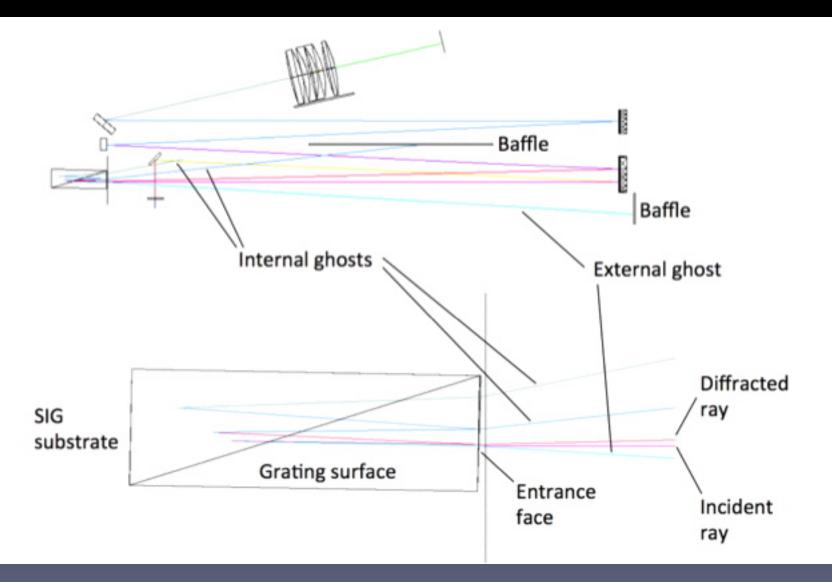
LM grating successfully fabricated

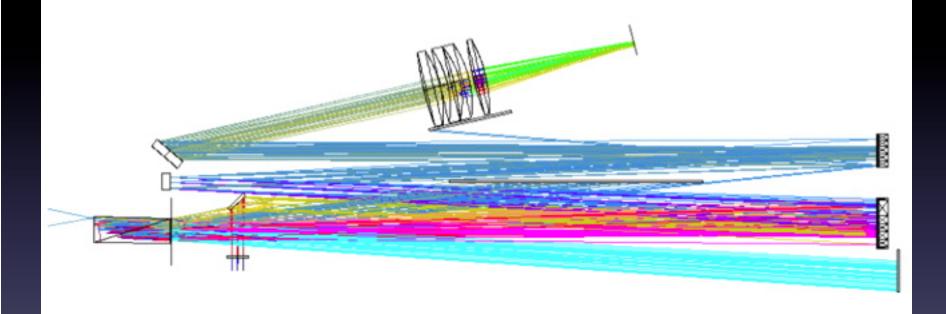
- Fabricated by contact lithography process at UT
- Meets spec., surface 0.061 waves RMS at 2.1 μ m
- Grating will serve as backup since UT 'can do better'


Immersion grating update


Schedule has slipped in an effort to better understand the sources of the dominant errors:

- Using new light meter to improve UV beam uniformity (contact lithography)
- Purchased own Zygo
- Plasma etch specialist now employed (Cindy Brooks)
- Plan to pattern *LM* grating (contact lithography) and *JHK* grating (ebeam lithography) in March 2013

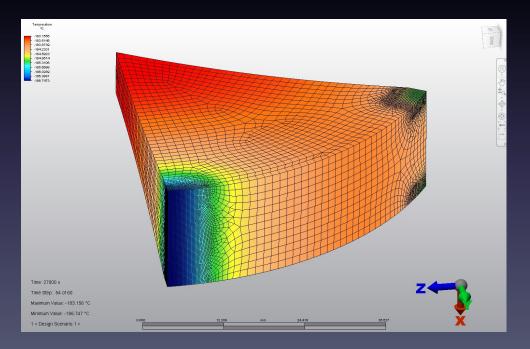

Next step: cut substrate to shape



Immersion grating: stray light

Immersion grating: stray light

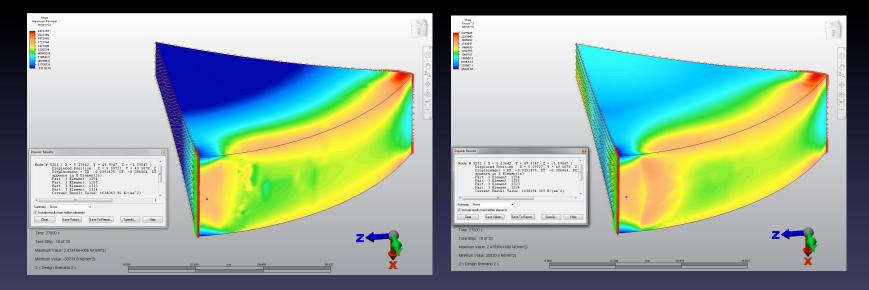
Summary of high-level thermal design requirements


- 1. Optical enclosure temperature < 78 K, stability < 1 K
- 2. Detector array cooling/warming rate < 0.5 K/min
- Lens element cooling/warming rate < 0.5 K/min (rate measured for the SpeX optical mounts)
- 4. Spectrograph array temperature 38 K, stability < 0.1 K
- 5. Guider array temperature 30 K, stability < 0.1 K
- 6. Immersion grating temperature 80 K, stability < 0.1 K
- 7. If used, liquid nitrogen hold-time must be longer than about two days
- 8. Cooling/warming times must be no longer than three days with a goal of two days

iSHELL opto-mechanical progress

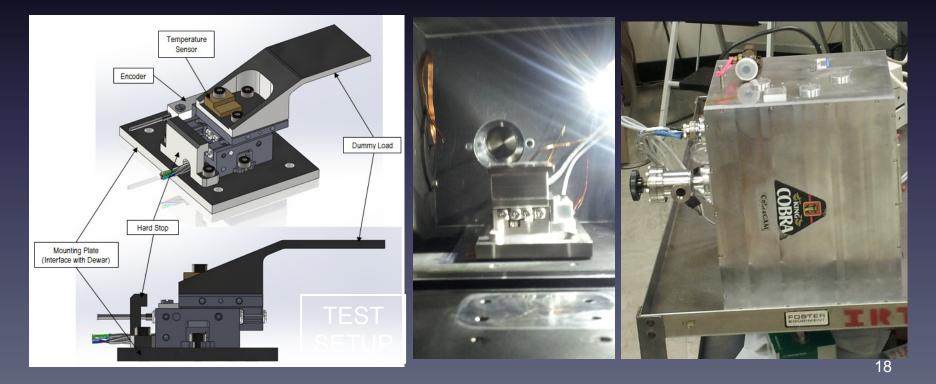
- Lens mount design is based on SpeX and NSFCAM designs (up to 80 mm diameter)
- Since some iSHELL lenses are bigger (100 mm diameter and twice the mass) we are conducting a thermal analysis to assess the risk of breaking the lenses on cooling
- iSHELL design includes one sensitive LiF₂ lens
- FEA modeling of transient thermal analysis
- FEA modeling of internal stress distributions
- We are confirming results with a similar analysis of the existing SpeX LiF₂ lens
- Models are showing that stresses are high but within limits.
 Contact resistance of the mounting points is significant

iSHELL opto-mechanical progress

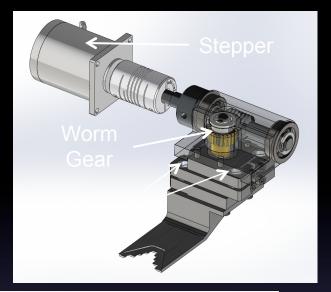

- Transient cooling at 0.5 K/min down to 80 K
- Individual lenses held with 5 hard points and 4 springs
- Analysis includes conduction and radiation
- Contact resistance is modeled

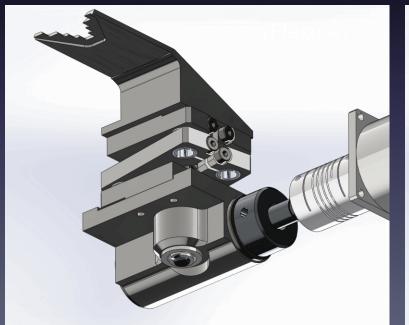
• Maximum temperature gradient is 3.6 K

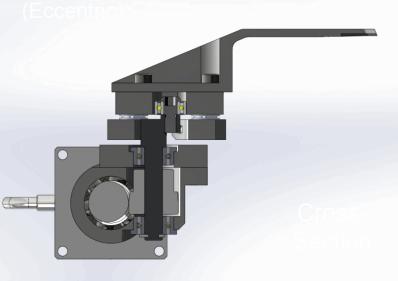
iSHELL opto-mechanical progress


- Coupled transient thermal analysis to stress analysis
- Thermal gradients cause internal stresses
- Effects most pronounced at the mounting points

- Maximum principle stresses are at a level of 2.5 MPa
- Maximum shear stress tolerated is at a level of 1.25 Mpa
- JWST NIRCAM criteria "resolved stress" < 2.0 Mpa for a similar LiF lens


Dekker piezo-stage testing (Bonnet)


- Refurbished an old instrument into a test dewar.
- Test plan includes cryo & vacuum test, position hold test, reinitialization test, hard-stop test and lifecycles.
- First test unsuccessful. No movement at 77K. Stage was sent back to vendor. Second test on the way. Alternative design is being considered

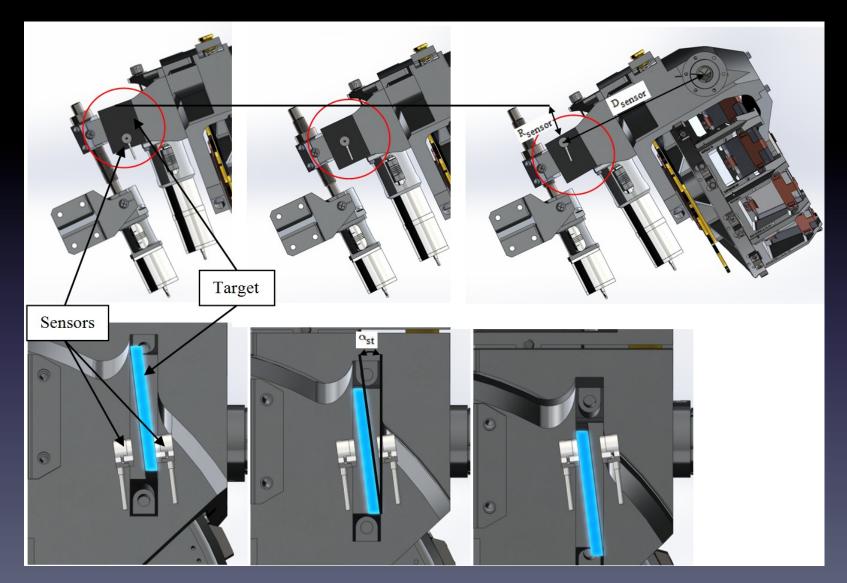


iSHELL Dekker Piezo-Stage: Alternative Concept

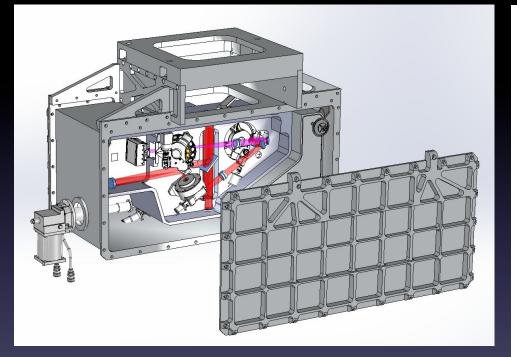
- Flexure Stage designed using Flex-Pivots.
- Powered using a Stepper + Worm Gear + Eccentric Cam.

Cross-disperser tilt control

Choice of position sensor:


1. Hall effect sensor (F.W. Bell FH-301-040)

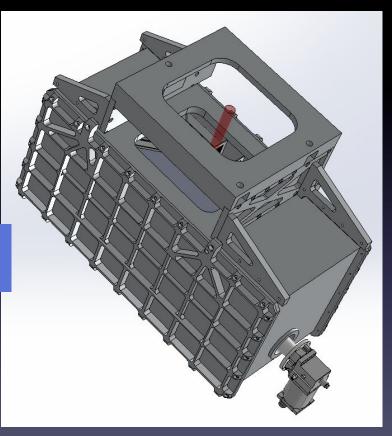
Pros		Cons	
-	Price Already implemented in SpeX	- ₽	Unknown Accuracy Too much effort needed to quantify at the level of accuracy required.
-	Passive Sensing. Can be used simultaneously with Detector Readout.	-	Range is limited. "Physical range reduction trick" (*) isn't applicable. No package or mount included. Potential irregular magnetization


2. Eddy current sensor (Kaman DIT-5200L / 20N)

 Known accuracy. Comes as a set: Sensors + Electronics. Extremely Linear. Range can be tuned using a "Physical range reduction trick". (*) Easier to implement Price. Needs Coax cables. Active sensor: can perturb detector readout. Needs 10/15 minutes to warm up and give reliable data after turning it on => RF switch needed. 	Pros		Cons
		Comes as a set: Sensors + Electronics. Extremely Linear. Range can be tuned using a "Physical range	 Price. Needs Coax cables. Active sensor: can perturb detector readout. Needs 10/15 minutes to warm up and give

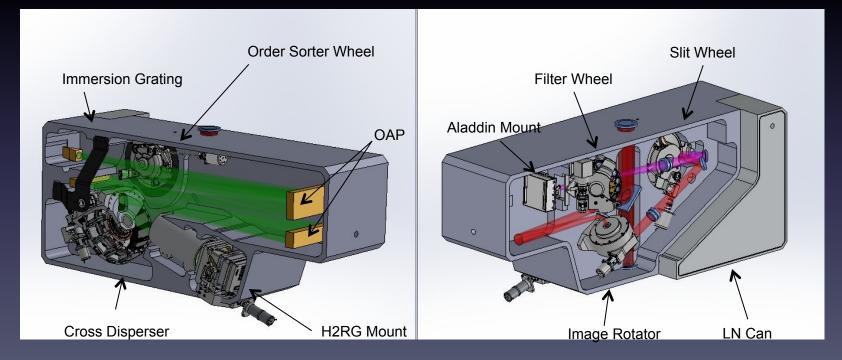
Cross-disperser tilt control

Mechanical Layout (Kokubun)


- Estimated weight: 751 lbs
- Estimated Hold time at zenith: 2.2 days

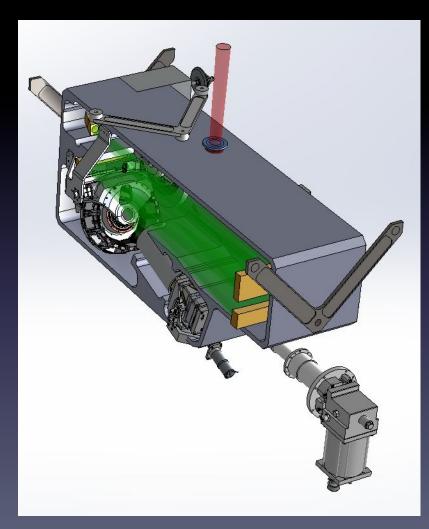
	item	mass (lb)	
<u> </u>			
	Optical Bench	193	.
	Image Rotator Mechanism	4.7	.
plγ	Cross Disperser Mechanism	19.4	.
E	Radiation Shield	8.2	
Asse	Slit Mechanism	5.2	
ch /	Order Sorting Mechanism	5.2	
ene	Immersion Grating Mechanism	5.2	
al B	Filter Wheel Mechanism	5.6	
Optical Bench Assembly	Detector, H2RG	6.6	
οř	Detector, Alladin	1.2	
	LN Can w/12L LN	40	
	Optics + Mounts	20	
			314.3
~	Cryostat	230	
Cryostat Assembly	Trusses	8.9	
sser	Cryo Cooler	30	
t As	He Lines	20	
sta	Copper Flanges	5	
2	Aladdin Controller	13.6	
Ū	H2RG Controller	21.4	
J	1		328.9
	Telescope Interface	108	108
		Total Est	751.2

Telescope interface


- Three point interface to the Multiple Instrument Mount (MIM cart) to facilitate initial alignment
- Gussets provide open access to the calibration optics and cryostat window

Optical Bench

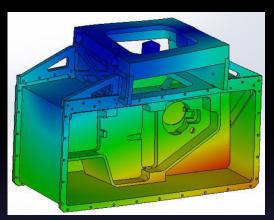
- Two sided bench
- Milled from a single billet
- Pocketed for weight reduction

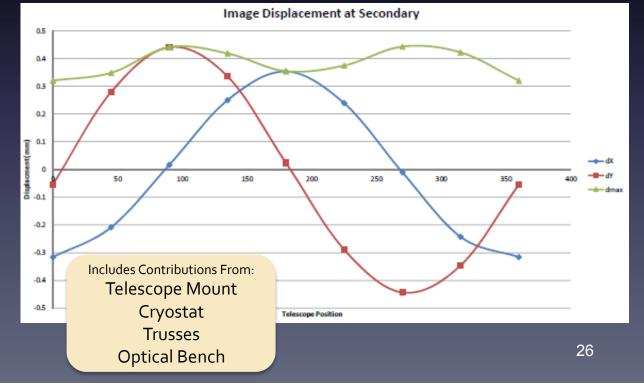

Spectrometer Side

Fore Optics Side

Trusses

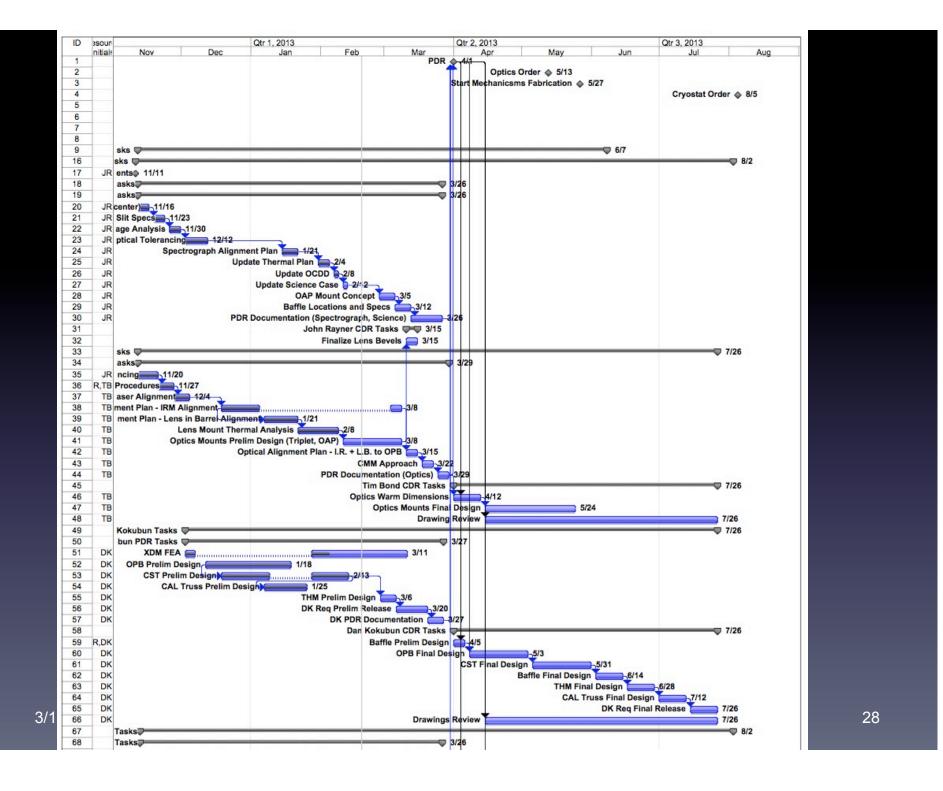
- Three truss configuration (Titanium)
- Truss cross section optimized for maximum strength and thermal resistance
- Approximately 5W combined thermal load conducting through the trusses

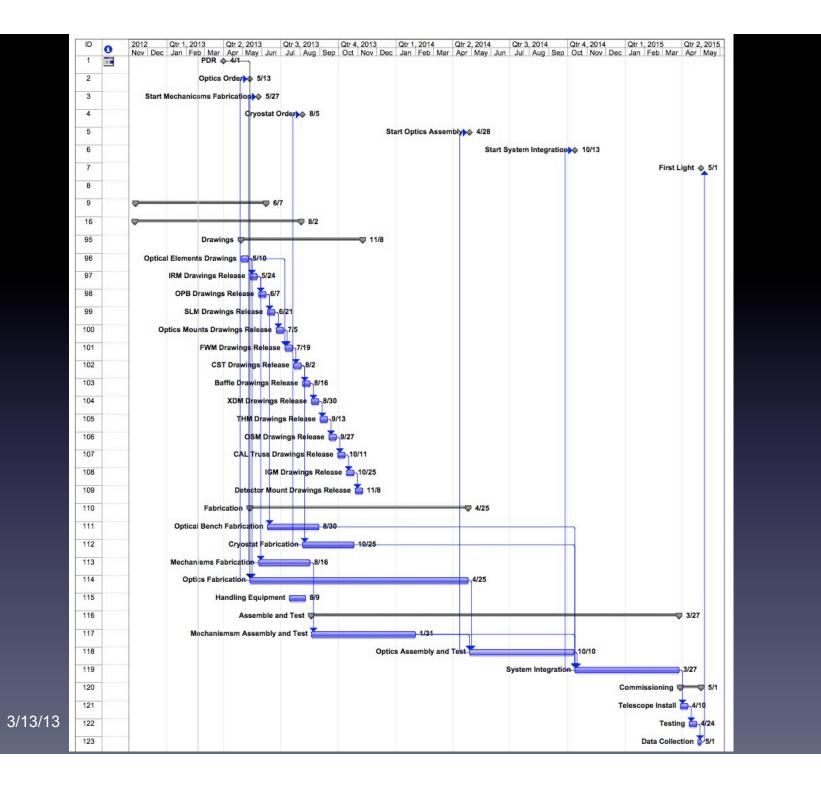



Flexure Study

Requirement: Co-alignment of the cold stop and telescope exit pupil to within 1% of their diameters...

This is equivalent to 2.4mm image displacement at the secondary




- Worst case gravity vectors used (60° from zenith)
- The resulting angular deflection of the optical axis is expressed as image displacement at the secondary
- Total contribution is
 0.45 mm at the most 20% of the allowable
 flexure

Schedule

In order to meet this aggressive schedule, we have two mechanical engineers at the IFA and in addition we will:

- Employ a junior ME to work closely with Kokubun to generate designs for the lens barrels, mirror mounts, cryostat subassemblies, and calibration optics.
- Employ two experienced drafters, who will convert CAD models into shop drawings.
- Work closely with the IFA machine shop head to send out work to outside machine shops as necessary to maintain schedule.

Array Controller Schedule

	Activity Name	2012													2013												2014												
		J	F	м	A	м	J	J	A	s	0	N	D	J	F	м	A	M J	IJ	A	s	0	N	D	J	F	м	A	м	J	J	A	s	0	N	D	J		
1																	1		1		1		1																
2	Array Controller Development						H2	RG							A	ladir	1																						
3	Controller Software														-						1						i Ci												
4			La	b Te	sts	ysten	n		,	NSF	CAN	4	Sp	eX									ishi	ELL															
5	Order Controller	(•				- 00				1			1	17						7		1		1								
6					1					1							1		1	1	1	-	1		1														
7	Lab Test system			1																-	10	-				1													
8	Multiplexer test			-							1			1			17			1	17		1		8-1	1													
9	Engineering array test			1							1			1			1		1		17		1		8-1	1			1		1					1			
10	Science array test																1		1		1		1				1												
11		1									1			1			1		1		10		10				1												
12	NSFCAM2 array upgrade										1									1							1												
13	Multiplexer testing														1					1	10		100		800				1										
14	Science grade array testing														1				1		1		1					1											
15	Down time	1													Ì		SFC/	AM2			1							1								1			
16															1													1											
17	SpeX array upgrade			1	-											1	18			1	17		1		1						1								
18	Multiplexer testing		1		1															1	Ĩ.	1					Ĩ		1		Ĩ,								
19	Science grade array testing		1															-		-	~								1										
20	Instrument control software																•								Į.				1										
21	Down time		1														1				1		1		-							Spe	Xd	ownti	ime				
22					1												1		1	1	Ĩ.									1									
23	ISHELL testing			1													1		T.	1	Ĩ.									1									
24	Multiplexer testing			1															1		Ű.,		1																
25	Science grade array testing																																						
26																																							
27																			12		12				800				8										

Break