Science Case and Science Requirements

- Science Case developed by Science Team
- Key science cases used to develop instrument design drivers
- Individual cases are in the form of an observing proposal with science and technical cases using conceptual instrument design and estimated sensitivity
- Science requirements flow down from science cases

Key Science Cases

- Composition of comets (L)
- Minor constituents in the atmosphere of Mars (L)
- Ion winds in Jupiter's upper atmosphere (H_3^+ and Juno support) (L)
- The atmospheres of Jupiter and Saturn (LM')
- Probing the atmospheres of hot giant planets (KL)
- Finding the youngest planets with iSHELL (precision RV) (K)
- Young binaries of PMS calibration (HK)
- Structure and kinematics of protostellar envelopes (M')
- Protostellar evolution (LM')
- Magnetic fields and rotation understanding accretion (HK)
- Preplanetary disks and astrobiology (L)
- Stellar library (JHKLM')

Developing requirements: Sensitivity

Derived from a model of the instrument and atmosphere (ATRAN)

Parameter	iSHELL
Resolving power (R)	70,000
Spectral sampling	3 pixels per slit width
Wavelength coverage	1.15-5.3 μm
Spatial sampling	0.125" per pixel
Slit width	0.375"
Detector	2040x2040 H2RG
Read noise (multiple reads)	5 e RMS
Dark current	0.1 e/s
Throughput	0.10 (see Table 9)

Developing requirements: Sensitivity

Effect of detector performance on point source one-hour 100 σ , R=70,000, seeing 0.7", throughput 0.10

Read noise (e RMS)	Dark (e/s)	J	H	K	L	М
20	1.00	9.33	8.84	8.44	7.01	5.03
10	0.10	10.18	9.68	9.28	7.36	5.03
10	0.01	10.34	9.85	9.45	7.40	5.03
5	0.10	10.43	9.94	9.53	7.41	5.03
5	0.01	10.77	10.28	9.87	7.45	5.03

Developing requirements: Protostellar envelopes

Observe CO fundamental band absorption features (*M'*) to derive temperature, density and velocity structure of optically opaque in-falling protostellar core to derive mass inflow rate

Developing requirements: Protostellar envelopes

Parameter	Requirement		
	Essential	Optimum	
Resolving power?	R=35,000 (8 km s ⁻¹)	R=70,000 (4 km s ⁻¹)	
Wavelength coverage?	M'-band, ~λ/10		
Target brightness, number of targets?	3-hour M'=6.3, ~10 Class I in Ophiuchus,		
Required S/N?	30	100	
Spatial resolution?'	Point source		
Slit length?	15″		
Rotate slit?	No		
Sky subtraction?	Nod in slit		
Standard star?	Yes		
Wavelength calibration?	Arcs or telluric features		
Acquisition?	KL'M' imaging		
Guiding?	K-band on source or offset		
Imaging?	KL'M' photometry		

Facility Requirements

Strategic and practical considerations. Not derived from Science Case

- ♦ FR_1 High resolution 1-5 μ m spectroscopy Replace CSHELL, use immersion grating
- FR_2 Use one Teledyne H2RG array
 For cost reasons
- FR_3 Provide data reduction tool Critical for IRTF that observers reduce data fast and efficiently (like SpeX)

Science Derived Requirements

- \diamond SR 2 Sensitivity ♦ SR 3 Continuous wavelength range ♦ SR 4 Simultaneous wavelength range ♦ SR 6 Sampling \diamond SR 7 Slit length ♦ SR 8 Slit orientation ♦ SR 9 S/N limit ♦ SR 10 Wavelength measurement ♦ SR 11 Radial velocity precision ♦ SR 12 Spectral response function ♦ SR 13 Cadence ♦ SR 14 Observing efficiency ♦ SR 15 Instrument accessibility
- ♦ SR_16 Absolute flux

Top-Level Requirements

These flow down from science derived requirements

♦ TR_1 Throughput ♦ TR 2 Read noise ♦ TR 3 Dark current ♦ TR 4 Spectrograph detector cosmetics Spectrograph pixel-field-of-view Instrument background ♦ TR 6 ♦ TR 7 Image rotator ♦ TR 9 Slit viewer ♦ TR 10 Image quality at spectrograph detector ♦ TR 11 Image stability at spectrograph detector

Top-Level Requirements

♦ TR_14 Image quality at slit viewer detector
♦ TR_15 Image stability at slit viewer detector
♦ TR_16 Position of slit viewer detector
♦ TR_17 Position of spectrograph detector
♦ TR_18 Stray light at spectrograph detector
♦ TR_19 Calibration unit
♦ TR_20 Quick look data viewer

Parameter	CSHELL performance	iSHELL requirement	Notes
Туре	single order	cross dispersed	
R	40,000	70,000	
Slit width	0.50″	0.375″	match to seeing
Sampling	2.5 pixels 0.20″ pfov	3.0 pixels 0.125″ pfov	
Slit length	30″	5″, 10″, 15″, 25″	
One-shot δλ	≈ 0.006 μm	≈ 0.2 μm (15″ slit)	at 2.2 μm
S/N limit	< 100	> 1000	systematic
RV precision	≈ 50 m/s	< 10 m/s	
Slit viewer	no	yes, 1-5 μm	A&G (night and day), imaging
Image rotator	on telescope	internal	12