Optical Design

- Instrument concept
- Foreoptics and slit viewer
- Spectrograph
- Alignment plan

iSHELL Design Summary

Slit width	0.375", 0.75", 1.5", 4.0"
Slit length	5", 10",15", 25"
Silicon immersion gratings	13.2 lines/mm, R3 (71.6°) for <i>LL ′M</i> 22.2 lines/mm, R3 (71.6°) for <i>JHK</i>
XD gratings	11 first-order tilt-table gratings (<i>JHKLL'M</i> bands)
Collimated beam	22 mm diameter
Spectrograph coll. focal length	838 mm (diamond-turned OAP)
Spectrograph cam. focal length	212 mm (BaF ₂ -ZnS-LiF)
Spectrograph detector	Teledyne H2RG, 2Kx2K, 18 μm pixel, 0.8-5.3 μm
Slit viewer detector	Aladdin 2 InSb, 512x 512, 27 μm pixel, 0.8-5.5 μm
Slit viewer field of view	42" diameter, 0.10"/pixel
Optics temperature	76 K
Cold mechanisms (9)	K mirror, slit wheel, slit dekker, order sorter wheel, XD mechanism (2), slit viewer filter wheel, grating selection mirror, spectrograph focus
Calibration unit	Illumination optics, integrating sphere, arc lamps, flat- field lamps, ¹³ CH ₄ gas cell

List of cross dispersers and spectral formats

Exp. name (Mode)	Wavelength coverage (μm)	Orders Covered	XD (line/mm)	Blaze wavel. (µm)	Blaze angle (deg.)	Order sorter (μm)	Slit length (arcsec)	XD tilt (degrees)	XD size (mm)	Custom grating?
J	1.15-1.35	279-237	800	1.25	29.9	1.05-1.45	5.0	39.4	40x40	Yes
Н	1.50-1.80	211-176	530	1.67	25.7	1.40-1.90	5.0	35.2	40x40	Yes
к	1.97-2.52	160-125	290	2.19	18.5	1.80-2.60	5.0	28.0	40x40	Yes
J1	1.15-1.26	280-255	1200	1.2	46.0	1.05-1.45	10.0	56.0	55x40	No
J2	1.25-1.35	255-236	1200	1.2	46.0	1.05-1.45	15.0	61.5	55x40	-
H1	1.50-1.66	211-191	847	1.67	45.0	1.40-1.90	10.0	51.6	50x40	Yes
H2	1.60-1.75	198-181	847	1.67	45.0	1.40-1.90	15.0	55.0	50x40	-
H3	1.68-1.83	188-173	847	1.67	45.0	1.40-1.90	15.0	57.1	50x40	-
K1	1.84-2.03	171-156	720	1.90	43.1	1.80-2.60	15.0	54.1	50x40	No
K2	2.02-2.18	156-144	720	1.90	43.1	1.80-2.60	15.0	58.9	50x40	-
K3	2.12-2.34	148-135	600	2.16	40.4	1.80-2.60	15.0	51.6	50x40	No
K4	2.32-2.52	135-125	600	2.16	40.4	1.80-2.60	15.0	56.4	50x40	-
L1	2.80-3.10	184-167	450	3.14	45.0	2.70-4.20	15.0	51.3	50x40	Yes
L2	3.02-3.30	171-157	450	3.14	45.0	2.70-4.20	15.0	55.0	50x40	-
L3	3.14-3.42	164-151	450	3.14	45.0	2.70-4.20	15.0	57.3	50x40	-
L4	3.28-3.67	157-141	360	3.70	42.0	2.70-4.20	15.0	48.5	50x40	No
L5	3.65-4.01	141-129	360	3.70	42.0	2.70-4.20	15.0	53.5	50x40	-
L6	3.84-4.18	134-124	360	3.70	42.0	2.70-4.20	25.0	56.2	50x40	-
									2	
M1	4.55-5.27 s	113-98	210	5.0	31.7	4.50-5.50	15.0	40.4	40x40	No
M2	4.55-5.27	113-98	210	5.0	31.7	4.50-5.50	15.0	40.4	40x40	No

List of cross dispersers and spectral formats

Exp. name (Mode)	Wavelength coverage (μm)	Orders Covered	XD (line/mm)	Blaze wavel. (µm)	Blaze angle (deg.)	Order sorter (μm)	Slit length (arcsec)	XD tilt (degrees)	XD size (mm)	Custom grating?
J	1.15-1.35	279-237	800	1.25	29.9	1.05-1.45	5.0	39.4	40x40	Yes
Н	1.50-1.80	211-176	530	1.67	25.7	1.40-1.90	5.0	35.2	40x40	Yes
к	1.97-2.52	160-125	290	2.19	18.5	1.80-2.60	5.0	28.0	40x40	Yes
J1	1.15-1.26	280-255	1200	1.2	46.0	1.05-1.45	10.0	56.0	55x40	No
J2	1.25-1.35	255-236	1200	1.2	46.0	1.05-1.45	15.0	61.5	55x40	-
H1	1.50-1.66	211-191	847	1.67	45.0	1.40-1.90	10.0	51.6	50x40	Yes
H2	1.60-1.75	198-181	847	1.67	45.0	1.40-1.90	15.0	55.0	50x40	-
H3	1.68-1.83	188-173	847	1.67	45.0	1.40-1.90	15.0	57.1	50x40	-
K1	1.84-2.03	171-156	720	1.90	43.1	1.80-2.60	15.0	54.1	50x40	No
K2	2.02-2.18	156-144	720	1.90	43.1	1.80-2.60	15.0	58.9	50x40	
K3	2.12-2.34	148-135	600	2.16	40.4	1.80-2.60	15.0	51.6	50x40	No
K4	2.32-2.52	135-125	600	2.16	40.4	1.80-2.60	15.0	56.4	50x40	-
L1	2.80-3.10	184-167	450	3.14	45.0	2.70-4.20	15.0	51.3	50x40	Yes
L2	3.02-3.30	171-157	450	3.14	45.0	2.70-4.20	15.0	55.0	50x40	-
L3	3.14-3.42	164-151	450	3.14	45.0	2.70-4.20	15.0	57.3	50x40	-
L4	3.28-3.67	157-141	360	3.70	42.0	2.70-4.20	15.0	48.5	50x40	No
L5	3.65-4.01	141-129	360	3.70	42.0	2.70-4.20	15.0	53.5	50x40	
L6	3.84-4.18	134-124	360	3.70	42.0	2.70-4.20	25.0	56.2	50x40	-
M1	4.55-5.27 s	113-98	210	5.0	31.7	4.50-5.50	15.0	40.4	40x40	No
M2	4.55-5.27 1	113-98	210	5.0	31.7	4.50-5.50	15.0	40.4	40x40	No

Example spectral formats

1.98590	150	3.77830		
1.99850	150 2 00270	3.80630	136	3 81110
2.01140	157 2.00210	3 83470	135	3.01110
2.02430	150 2.01000	3,96350	134	3.83930
2.03750	155 2.02040	3.86350	133	3.86800
2 05080	154 2.04150	3.89280	132	3.89710
2.06430	153 2.05470	3.92250	131	3.92660
2.00430	152 2.06820	3.95270	101	3,95660
2.07800	151 2.08180	3,98330	130	2 09700
2.09180	150 2.09560	1.00000	129	3.90700
2.10580	2 10050	4.01440	128	4.01790
2 12010	149 2.10000	4.04610	107	4.04930
0.40450	148 2.12370	4.07820	121	4.08120
2.13450	147 2.13800	4 4 4 0 0 0	126	4.00120
2.14910	2.15260	4.11080	125	4.11360
2.16390	140 0 16720	4.14390	101	4.14650
0.47000	145 2.10730	4 17760	124	4.47000
2.17900	144 2.18230	4.17700	123	4.17990
2.19420	2 19740	4.21190		4.21390
	143		122	4 04050
	2.21280			4.24850
	$K^{2} - 15^{"}$ slit		1.6 - 25" slit	

Foreoptics and Slit Viewer

Foreoptics and slit viewer optical design requirements

Requirement Number	Requirement Name
SR_2	Sensitivity
SR_8	Slit orientation
SR_14	Observing efficiency
SR_16	Absolute flux
TR_1	Throughput
TR_7	Image rotator
TR_8	Cold Stop and Pupil Viewer
TR_12	Image Quality at the Slit
TR_14	Image Quality at the Slit Viewer Detector
TR_16	Position at the Slit Viewer Detector

Image quality analysis

- Low-frequency spatial errors affecting the core of the image profile are analyzed using Zemax encircled energy diameter (EED)
- Mid-frequency and high-frequency (roughness) spatial errors affecting the wider wings of the image profile are analyzed using a wavefront error method (surface irregularity)

Cold stop

- Essential/optimal requirement is for 2%/1% photometry (SR_16)
- Pupil 10.1 mm diameter formed by tilted (5 degree) spherical mirror
- Cold stop mask is undersized to mask telescope for 0.95 throughput (9.9 mm diameter)

Image quality at cold stop

• Tolerancing adds a few percent to the EED

Cold stop: flexure analysis

- Monte Carlo analysis includes instrument and telescope secondary (entrance pupil)
- Tolerances based on semi-precision fabrication and flexure requirements
- Align stop at zenith using pupil viewer and then move

- Predicted decentration is 0.42 mm and throughput change of 2% (1 σ)
- Analysis implies that for good photometry stop should be recentered following repointing of telescope
- Plan is to use hexapod and lookup table
- Further analysis is needed to establish accuracy of photometry once pupil is recentered and over typical movements between object and standard stars

Pupil viewer

- Used to align cryostat on MIM by imaging secondary (conjugated with cold stop) at about 3.6 μ m (thermal)
- Diameter of re-imaged pupil is 325 pixels with a spatial resolution 3.6 pixels (1% of pupil)
- Resolution is diffraction limited by diameter of foreoptics

Image quality at slit

Geometric EED

Alignment and fabrication tolerances add about 5-10 μ m to EED

Image quality at slit

Diffraction EED

Geometric aberrations do not add significantly to EED

Image quality at slit viewer

Geometric EED

Alignment and fabrication tolerances add about 5-10 μ m to EED

Image quality at slit viewer

Diffraction EED

Geometric aberrations do not add significantly to EED

Surface irregularity (Ftaclas)

The total WFE due to irregularity, σ_{T} , is given by

$$\sigma_T^2 = \sum_{1}^{l} \left[\sigma_l \left(\frac{FP_l}{D_l} \right)^{\frac{1}{2}} \frac{\lambda_t}{\lambda_u} (n-1)_l \right]^2 + \sum_{1}^{m} \left[2\sigma_m \left(\frac{FP_m}{D_m} \right)^{\frac{1}{2}} \frac{\lambda_t}{\lambda_u} \right]^2$$

lens mirror

Where σ is the RMS WFE in waves over diameter *D* and FP is the size of the beam footprint; λ_t and λ_u are the test and used wavelengths respectively

From Power Spectral Density (PSD) for typical materials $WFE \propto (scale)^{-1/2}$

Surface irregularity

Total WFE for foreoptics

UNIT	RMS WFE σ	Note
	@ 1.65µm (waves)	
Flat mirrors	0.084	λ /10 at 0.63 μ m, typical off-the-shelf
Flat mirrors	0.059	λ/20 at 0.63 μm
Lenses and window	0.039	Custom OSI
Collimating mirror	0.027	Custom OSI
Total foreoptics	0.097	Strehl=0.69 at 1.65 μ m, λ /10 flats at 0.63 μ m
	0.076	Strehl=0.80 at 1.65 μ m, λ /20 flats at 0.63 μ m

Total WFE for slit viewer

UNIT	RMS WFE σ	Note
	@ 1.65µm (waves)	
Flat mirrors	0.014	λ /10 at 0.63 μ m, typical off-the-shelf
Flat mirrors	0.010	λ/20 at 0.63 μm
Lenses	0.034	Custom OSI
Filter	0.061	Custom
Total slit viewer	0.0710	Strehl=0.82 at 1.65 μ m, λ /10 flats at 0.63 μ m
	0.0705	Strehl=0.82 at 1.65 μ m, λ /20 flats at 0.63 μ m

Requirements TR_12 and TR_14: diffraction-limited optics Stehl ≥ 0.8

- Off-axis stray light from telescope and sky
 cold stop and baffle tubes
- 2. Ghost reflections from lenses and filters
 tilt filters, BBAR coat lenses, 'optimize' lens radii (non-sequential analysis in Zemax)
- General surface scatter
 minimize mid-scale errors and roughness (WFE analysis)

Foreoptics baffle tubes

Ghosts at slit plane – max ghost intensity 10⁻⁴

Ghosts at slit viewer array – max ghost intensity 10⁻⁵

Throughput of the foreoptics and slit viewer

Element	Transmission	Notes
Foreoptics		
CaF ₂ window	0.98 ²	BBAR coat est.
Fold mirror 1	0.98	Fused silica substrate, protected-silver
Collimating mirror	0.98	Fused silica substrate, protected-silver
Fold mirror 2	0.98	Fused silica substrate, protected-silver
Cold stop	0.95	Undersized to mask telescope
Rotator mirror 1	0.98	Fused silica substrate, protected-silver
Rotator mirror 1	0.98	Fused silica substrate, protected-silver
Rotator mirror 1	0.98	Fused silica substrate, protected-silver
Fold mirror 3	0.98	Fused silica substrate, protected-silver
Lens 1 (BaF ₂)	0.98 ²	BBAR coat est.
Lens 2 (LiF)	0.98 ²	BBAR coat est.
Fold mirror 4	0.98	Fused silica substrate, protected-silver
Total Foreoptics	0.71	@~1.65 μm
Slit viewer		
Slit mirror	0.98	Gold-coated CaF ₂ (same SpeX)
Fold mirror 5	0.98	Fused silica substrate, protected-silver
Lens 3 (BaF ₂)	0.98 ²	BBAR coat est.
Lens 4 (LiF)	0.98 ²	BBAR coat est.
Cold stop	1.00	Oversized
Filter	0.80	Typical
Lens 5 (LiF)	0.98 ²	BBAR coat est.
Lens 6 (BaF ₂)	0.98 ²	BBAR coat est.
Aladdin 2 array	0.75	Eng. array from SpeX est.
Total Slit Viewer	0.49	@~1.65 μm
Total FO+SV	0.35	@~1.65 µm (cf. SpeX about 0.25)

Example optical specification: foreoptics camera lens

Parameter	1	lens	Tolerance/note
LENS#	1	2	
WORKING TEMP	77K	77K	±2 K
MATERIAL	BaF ₂	LiF	
R_1 /mm (3 fringe fit to test plate)	296.19 CX	128.62 CX	±0.1%
R ₂ /mm	245.04 CX	96.40 CC	±0.1%
IRREG: >1.0 line/mm (figure)	<0.50 fr. RMS	<1.00 fr. RMS	At 0.63 µm, over CA.
IRREG: ~0.1 line/mm	<0.16 fr. RMS	<0.33 fr. RMS	At 0.63 µm, over CA.
IRREG: roughness	<16 nm RMS	<16 nm RMS	Assumes irreg. \propto scale ^{-0.5}
CENTER THICKNESS/mm	10.03	8.04	±0.05mm
RUNOUT/mm	0.00	0.00	±0.03mm
DIAMETER/mm	40.12	40.19	+0.00/-0.02mm
CLEAR APER (CA.)/mm	31	31	
SURFACE (scratch/dig)	60/40	60/40	
BEVEL	See drawing	See drawing	On drawing
COATING (1.1-5.4 μm)	BBAR < 2%	BBAR < 2%	Reflection per surface
QUANTITY	1	1	

Spectrograph optical design requirements

Requirement	Requirement Name			
Number				
SR_1	Resolving power			
SR_2	Sensitivity			
SR_3	Continuous wavelength range			
SR_4	Simultaneous wavelength range			
SR_5	Slit width			
SR_6	Sampling			
SR_7	Slit length			
SR_9	S/N limit (includes stray light)			
SR_10	Wavelength measurement			
SR_11	Radial velocity precision			
SR_12	Spectral response function			
TR_1	Throughput			
TR_5	Pixel-field-of-view			
TR_10	Image quality at the spectrograph detector			
TR_11	Image stability at the spectrograph detector			
TR_17	Position of the spectrograph detector			
TR_18	Stray light at the spectrograph detector			

Spectrograph design features

- White pupil layout, disperser at first pupil, cross cross disperser at second pupil
- Pseudo-Littrow orientation ($\gamma = 1.028$ degrees)
 - tilts slit image for better sampling along slit
 - avoids potential 'picket fence' narcissus ghost
- Use silicon immersion gratings (SIGs) to minimize collimated beam diameter (22 mm) and iSHELL size
- Use two SIGs for more efficient use of array format
 - long λ SIG FSR matched to array span at 4.15 μ m (optimum for Science Case)
 - short λ SIG FSR matched to array span at 2.50 μ m
 - but overfills the array at 5 μ m
- Use slow (f/38.3) OAPs with small off-axis angles (3 degrees) to minimize aberrations in the spectrograph

3/29/13

Optimization of OAPs

Two options for OAP design

- Use two OAPs optimization decenters optical axes by 26.4 mm to minimize astigmatism
- Use single asphere to simplify mount but requires more specialized testing since more than one wave departure from a parabola (computer generated hologram)

Corning NetOptix recommends option 1 (cheaper)

Diamond-machined AI OAPs

Three options for OAP fabrication

- Corning NetOptix about \$200k using LEC technique to minimize diamond turning 'grooves'
- 2. Use standard diamond-turning procedure on RSP aluminum material to minimize grooves. Risky?
- Use standard diamond-turning procedure on standard material and since grooves have minimal effect on scattered light (e.g. Durham Precision Optics about \$30k)

OAPs to be co-aligned and co-mounted by vendor

Diamond-machined AI OAPs

- Typical PSD from diamond-machined mirror from Corning standard and LEC process
- Amount of scatter is proportional to area under curve
- Scatter due to periodicity is therefore small

LM grating successfully fabricated

- Fabricated by contact lithography process at UT
- Meets spec., surface 0.061 waves RMS at 2.1 μ m
- Grating will serve as backup since UT 'can do better'

3/29/13

Immersion Grating Update

Schedule has slipped in an effort to better understand the sources of the dominant errors:

- Using new light meter to improve UV beam uniformity (contact lithography)
- Purchased own Zygo
- Plasma etch specialist now employed (Cindy Brooks)
- Plan to pattern *LM* grating (contact lithography) and *JHK* grating (ebeam lithography) by mid-2013

Next step: cut substrate to shape

3/29/13

Spectrograph Camera

Two options for camera design

- 1. Three-mirror anastigmat preliminary design from SSG (\$500k)
 - high transmission and achromatic
 - no ghosting and minimal scatter
 - some distortion
- 2. Optimized BaF₂-ZnS-LiF lens meets requirements (\$80k OSI)
 - all spherical surfaces
 - BBAR coats to minimize ghosting
 - slightly chromatic requiring focus stage (about 2 mm)

Choose option 2 (cheaper)

Optimize lens design for x-EED (dispersion direction) making use of slight astigmatism in collimator

Toleranced lens design meets the image quality requirement (TR_10)

Mode/	Position	Focus		50% x-EE (micro	ns)	80% x-EE (microns)			
Config.		(mm)	FSR	FSR	FSR	FSR	FSR	FSR	
			short	center	long	short	center	long	
Req.			<24.7	<24.7	<24.7	<49.3	<49.3	<49.3	
J1/1	Тор	-1.677	10.1 9.1	10.8 11.8	6.6 9.3	19.0 17.3	20.0 21.4	13.0 17.8	
J1/3	Center	-1.677	10.0 10.0	7.0 7.0	8.8 7.2	14.1 16.9	12.3 12.0	15.5 12.6	
J1/5	Bottom	-1.677	7.4 11.3	4.8 5.8	7.6 6.9	12.1 17.3	8.2 9.6	12.0 10.5	
J2/6	Тор	-1.322	8.1 7.0	9.0 10.0	4.6 7.2	16.0 13.7	17.1 18.6	9.4 14.3	
J2/7	Center	-1.322	6.0 8.0	4.8 4.5	6.8 5.8	10.8 14.0	9.2 8.8	12.6 10.0	
J2/8	Bottom	-1.322	6.0 10.1	2.8 3.6	6.6 5.8	9.4 15.0	5.0 6.4	9.1 8.3	
H1/9	Тор	-0.727	7.2 5.8	8.8 9.7	4.6 6.6	14.1 11.6	16.5 18.0	7.7 12.7	
H1/10	Center	-0.727	6.0 8.5	4.3 4.1	7.6 6.0	10.1 13.8	7.8 7.2	12.8 9.5	
H1/11	Bottom	-0.737	6.0 10.0	2.2 2.9	6.6 5.8	9.2 15.3	4.0 5.0	9.2 8.2	
H2/12	Ton	-0.646	58 46	60.85	24 47	12.0 9.8	152 161	52 98	
H2/15	Center	-0.646	7.8 10.6	6.0 5.8	8.8 7.2	13.2 18.0	12.0 10.3	15.8 12.2	
H2/16	Bottom	-0.646	7.0 11.6	1.9 3.6	7.6 6.8	10.0 16.2	3.5 5.0	10.0 10.8	
H3/17	Ton	-0.512	43 34	63 73	16 41	96 66	127 140	31.88	
H3/18	Center	-0.512	54 81	34 32	68 62	94 138	68 61	12.0 8.9	
H3/19	Bottom	-0.512	5.8 10.3	1.4 2.1	6.4 5.8	8.1 14.3	2.6 3.3	9.6 10.1	
K1/20	Тор	-0.311	4.3 3.5	7.0 8.1	1.6 4.2	9.5 6.6	13.8 15.4	3.1 8.8	
K1/21	Center	-0.311	6.6 9.8	3.9 3.6	7.9 6.8	4.1 16.1	7.2 6.8	13.4 8.9	
K1/22	Bottom	-0.311	6.0 10.6	1.2 1.7	7.2 6.5	8.3 15.1	2.5 2.9	10.7 10.8	

Table 2.6 Encircled energy widths in each of the spectral modes. Nominal design and 90th percentile Monte Carlo trial (see section 3)

Surface irregularity

Total WFE for spectrograph

UNIT	RMS WFE σ	Note
	@ 1.65µm (waves)	
SIG	0.100	Assume best expected performance
	(0.050)	
OAPs	0.035	Two OAPs and spectrum mirror
Lenses	0.061	Three lenses
XD grating	0.044	Assume $\lambda/10$ at 0.63 μ m
Fold mirror	0.020	Assume $\lambda/10$ at 0.63 μ m
(SIG selection mirror)	0.048	Assume $\lambda/10$ at 0.63 μ m
OS filters	0.020	Assume $\lambda/4$ at 0.63 μ m
Total spectrograph	0.141	λ/7.1 at 1.65 μm, Strehl=0.46
	(0.112)	(λ/8.9 at 1.65 µm, Strehl=0.61)

A Strehl of 0.5 results in a stray light background at the array of at most about 0.2% of the spectral continuum (order of magnitude less than lens ghosts)

- 1. Diffraction from apertures in spectrograph
 - slit aperture form cold stop in foreoptics
 - SIG entrance/exit aperture maximize aperture
- 2. Grating ghosts optimize fabrication
 - periodic grating errors
 - general scatter
- 3. Ghost reflections
 - Slit substrate backside slit
 - SIG wedge entrance/exit aperture
 - Lens surfaces BBAR coat, 'optimize' lens radii
- 4. General surface scatter
 - surface irregularity minimize mid-scale errors and roughness

Image of slit and point-source in slit at 4.8 μ m

No diffraction (large aperture)

Diffraction from SIG aperture

Reduction of contrast due to aperture of SIG

Ghosts from CaF₂ slit substrate

Ghosts from immersion grating

Ghosts from immersion grating

Ghosts from camera triplet lens

Point source average ghost 10⁻⁷

Flux along slit average ghost 10⁻⁶

Scaling for XD spectrum spread across array, estimated ghost is ~1%. Marginally meets scattered light requirement TR_18

Throughput of spectrograph

Element	Transmission	Notes
Slit substrate (CaF ₂)	0.98 ²	BBAR coat est.
Order sorting filter	0.80	Peak of profile
Fold mirror	0.98	Fused silica substrate, protected-silver
OAP 1	0.98	Gold-coated aluminum
SIG	0.75	Peak measured at H and K
OAP 1	0.98	Gold-coated aluminum
Spectrum mirror	0.98	Fused silica substrate, protected-silver
OAP 2	0.98	Gold-coated aluminum
XD grating	0.70	Mix of custom and off-the-shelf gratings
Lens 1 (BaF ₂)	0.98 ²	BBAR coat est.
Lens 2 (ZnS)	0.96 ²	BBAR coat est.
Lens 3 (LiF)	0.98 ²	BBAR coat est.
H2RG QE	0.80	Measured SpeX science grade device
Total	0.25	At blaze peak

System throughput (telescope x foreoptics x spectrograph)= $0.95 \times 0.71 \times 0.25=0.17$ (at blaze peak and not including seeing losses at slit)

Example optical specification: spectrograph camera lens

Parameter	Lens			Tolerance/note
LENS#	1	2	3	
WORKING TEMP	77K	77K	77K	±2 K
MATERIAL	BaF ₂	Cleartran (ZnS)	LiF	
R_1 /mm (3 fringe fit to test plate)	153.27 CX	215.52 CX	196.67 CC	±0.1%
R ₂ /mm	1610.74 CC	1868.88 CC	304.07 CC	±0.1%
IRREG: >1.0 line/mm (figure)	<0.50 fr. RMS	<0.50 fr. RMS	<1.00 fr. RMS	At 0.63 µm, over CA.
IRREG: ~0.1 line/mm	<0.16 fr. RMS	<0.16 fr. RMS	<0.33 fr. RMS	At 0.63 µm, over CA.
IRREG: roughness	<16 nm RMS	<16 nm RMS	<16 nm RMS	Assumes irreg. \propto scale ^{-0.5}
CENTER THICKNESS/mm	15.05	15.02	7.03	±0.05mm
RUNOUT/mm	0.00	0.00	0.00	±0.03mm
DIAMETER/mm	104.32	100.11	94.45	+0.00/-0.02mm
CLEAR APER (CA.)/mm	84	84	75	
SURFACE (scratch/dig)	60/40	60/40	60/40	
BEVEL	See drawing	See drawing	See drawing	On drawing
COATING (1.1-5.4 µm)	BBAR < 2%	BBAR < 4%	BBAR < 2%	Reflection per surface
QUANTITY	1	1	1	

Example optical specification: OAPs

	0.17.1	0 (D 0	
Parameter	OAP I	OAP 2	Tolerance/Note
WORKING TEMP	77K	77K	±2 K
SUBSTRATE	Al 6091	Al 6061	
CONIC SHAPE	Parabola	Parabola	
FOCAL LENGTH/mm	845.86 CC	845.86 CC	±0.1% (0.85 mm)
OFF-AXIS DISTANCE (x-axis)	3.000 degrees	3.000 degrees	±0.005 degrees
see drawing	44.33 mm	44.33 mm	±0.05 mm
OFF-AXIS DISTANCE (x-axis)	0.34 degrees	1.31 degrees	
inner edge	5.0 mm	19.3 mm	
OFF-AXIS DISTANCE (x-axis)	5.07 degrees	4.69 degrees	
outer edge	75.0 mm	69.3 mm	
IRREG: >1.0 line/mm (figure)	<0.06 waves RMS	<0.06 waves RMS	At 0.63 µm, over 22 mm
	<0.30 waves pk-valley	<0.03 waves pk-valley	diameter beam footprint
IRREG: ~0.1 line/mm	<0.02 waves RMS	<0.02 waves RMS	At 0.63 µm, over 22 mm
			diameter beam footprint
IRREG: roughness	<5 nm RMS	<5 nm RMS	Assumes irreg. ∝ scale ^{-0.5}
WIDTH/mm (x-axis)	80.0 mm	50.0 mm	See drawing
HEIGHT/mm (y-axis)	206.0 mm	206.0 mm	See drawing
CENTER THICKNESS/mm	34.3 mm	34.3 mm	See drawing (height/6)
CLEAR APER $(x \times y)/mm$	66 × 186 mm	34 × 157 mm	
COATING	Gold	Gold	
QUANTITY	1	1	

Optical Alignment Plan

General strategy:

- Alignment tolerances derived from Zemax tolerance analysis
- Fabrication of optical bench and mounting fixtures to basic precision machine shop tolerances
- Use CMM for accurate positioning of fiducials on optical mounts
- Setup laser to define optical axis
- Sequentially enter optical elements on laser beam
- Measure centrations using CCD mounted in a mounting blank referenced to the optical mount, shim to align
- Individual alignment of rotator, OAP unit, gratings, and lens barrels before assembly onto bench
- Use pupil viewer to align cold stop to secondary on telescope

FACE ON VIEW

Optical Alignment Plan

- 1. Mount laser to top of optical bench
- 2. Center beam on optical axis using fiducial masks at entrance and exit ports of optical bench
- 3. Align foreoptics mirrors
- 4. Mount and align rotator and camera lens
- 5. Align spectrograph mirrors
- 6. Mount and align gratings and camera lens
- 7. Mount optical bench into cryostat
- 8. Align cryostat on telescope using pupil viewer

For details see alignment documentation

Summary of high-level thermal design requirements

- 1. Optical enclosure temperature < 78 K, stability < 1 K
- 2. Detector array cooling/warming rate < 0.5 K/min
- Lens element cooling/warming rate < 0.5 K/min (see thermal FEA for spectrograph triplet lens)
- 4. Spectrograph array temperature 38 K, stability < 0.1 K
- 5. Guider array temperature 30 K, stability < 0.1 K
- 6. Immersion grating temperature 80 K, stability < 0.05 K for 0.3 pixels
- 7. If used, liquid nitrogen hold-time must be longer than two days
- 8. Cooling/warming times must be no longer than three days with goal of two days

MWIR PEC Spectral – Layer 3-2963-A3 at T = 40 K

