iSHELL

PDR - Findings (1 April 2013)

- Ambitious science goals have led to a complex instrument involving many sophisticated mechanisms, simplify
- Optics are ready to procure but recommend wider search for vendors for cost savings
- Risk from scattered light and light leaks is underestimated (baffling is incomplete)
- Optical alignment and assembly plan is incomplete
- Lack of systems engineer is a risk
- Significant budget and schedule risk

PDR - Major recommendations

- Identify core science instrument configuration that would, with reduced risk, accomplish a more limited science program within budget and schedule of NSF award (ends Sep 2014)
- PDR panel believe a de-scope strategy will result in a valuable instrument unique at *LM* and potentially unequalled at *JHK*. Allow for restoration of de-scoped capabilities
- Simplify mechanisms
- Investigate fixed filter slit viewer/guider

Key Science from Science Team

Key Science Case	Spectroscopy	A&G	Source size
Comets	LM'	K and L (daytime)	extended
Atmosphere of Mars	L	K	extended
Atmospheres of Jupiter and Saturn	LM'	M' acquisition	extended
Jupiter H3+ Juno mission support	L	nbL acquisition	extended
Atmospheres of hot giant planets	KL	K	point source
RV searches for young planets	K	K	point source
Young binaries and PMS calibration	HK	K	point source
Protostellar envelopes	M'	K	point source
Protostellar evolution	LM'	K	point source
Magnetic fields and rotation	НК	K	point source
Stellar library	JHKLM'	K	point source

Spectral Formats at PDR

Exp. name (Mode)	Wavelength coverage (µm)	Orders Covered	XD (line/mm)	Blaze wavel. (µm)	Blaze angle (deg.)	Order sorter (µm)	Slit length (arcsec)	XD tilt (degrees)	XD size (mm)	Custom grating?
J	1.15-1.35	279-237	800	1.25	29.9	1.05-1.45	5.0	39.4	40x40	Yes
Н	1.50-1.80	211-176	530	1.67	25.7	1.40-1.90	5.0	35.2	40x40	Yes
K	1.97-2.52	160-125	290	2.19	18.5	1.80-2.60	5.0	28.0	40x40	Yes
J1	1.15-1.26	280-255	1200	1.2	46.0	1.05-1.45	10.0	56.0	55x40	No
J2	1.25-1.35	255-236	1200	1.2	46.0	1.05-1.45	15.0	61.5	55x40	12
H1	1.50-1.66	211-191	847	1.67	45.0	1.40-1.90	10.0	51.6	50x40	Yes
H2	1.60-1.75	198-181	847	1.67	45.0	1.40-1.90	15.0	55.0	50x40	12
H3	1.68-1.83	188-173	847	1.67	45.0	1.40-1.90	15.0	57.1	50x40	
K1	1.84-2.03	171-156	720	1.90	43.1	1.80-2.60	15.0	54.1	50x40	No
K2	2.02-2.18	156-144	720	1.90	43.1	1.80-2.60	15.0	58.9	50x40	-
K3	2.12-2.34	148-135	600	2.16	40.4	1.80-2.60	15.0	51.6	50x40	No
K4	2.32-2.52	135-125	600	2.16	40.4	1.80-2.60	15.0	56.4	50x40	-
Ll	2.80-3.10	184-167	450	3.14	45.0	2.70-4.20	15.0	51.3	50x40	Yes
L2	3.02-3.30	171-157	450	3.14	45.0	2.70-4.20	15.0	55.0	50x40	-
L3	3.14-3.42	164-151	450	3.14	45.0	2.70-4.20	15.0	57.3	50x40	-
L4	3.28-3.67	157-141	360	3.70	42.0	2.70-4.20	15.0	48.5	50x40	No
L5	3.65-4.01	141-129	360	3.70	42.0	2.70-4.20	15.0	53.5	50x40	-
L6	3.84-4.18	134-124	360	3.70	42.0	2.70-4.20	25.0	56.2	50x40	-
M1	4.55-5.27 s	113-98	210	5.0	31.7	4.50-5.50	15.0	40.4	40x40	No
M2	4.55-5.271	113-98	210	5.0	31.7	4.50-5.50	15.0	40.4	40x40	No

• Requires *LM* and *JHK* immersion gratings (i.e. two)

- 11 XD grating positions
- Five custom gratings at about \$25k each

Spectral Formats at PDR

Exp. name (Mode)	Wavelength coverage (µm)	Orders Covered	XD (line/mm)	Blaze wavel. (µm)	Blaze angle (deg.)	Order sorter (µm)	Slit length (arcsec)	XD tilt (degrees)	XD size (mm)	Custom grating?
;	1.15-1.35	279-237	800	1.25	29.9	1.05 1.45	5.0	39.4	40x40	Yes
H	1.50 1.80	211-176	530	1.67	25.7	1.40-1.90	5.0	35.2	40×40	Ves
K	1.97-2.52	160 125	290	2.19	18.5	1.80-2.60	5.0	28.0	40×40	Vec
J1	1.15-1.26	280-255	1200	1.2	46.0	1.05-1.45	10.0	56.0	55x40	No
J2	1.25-1.35	255-236	1200	1.2	46.0	1.05-1.45	15.0	61.5	55x40	-
H1	1.50-1.66	211-191	847	1.67	45.0	1.40-1.90	10.0	51.6	50x40	Ves
H2	1.60-1.75	198-181	847	1.67	45.0	1.40-1.90	5.0	55.0	50x40	
H3	1.68-1.83	188-173	847	1.67	45.0	1.40-1.90	15.0	57.1	50x40	-
K1	1.84-2.03	171-156	720	1.90	43.1	1.80-2.60	15.0	54.1	50x40	No
K1		17373222			5305 MES	1.80-2.60		7(550)	50x40	
K2	2.02-2.18	156-144	720	1.90	43.1		15.0	58.9	0.0000	
K3	2.12-2.34	148-135	600	2.16	40.4	1.80-2.60	15.0	51.6	50x40	No
K4	2.32-2.52	135-125	600	2.16	40.4	1.80-2.60	15.0	56.4	50x40	-
L1	2.80-3.10	184-167	450	3.14	45.0	2.70-4.20	15.0	51.3	50x40	Yes
L2	3.02-3.30	171-157	450	3.14	45.0	2.70-4.20	15.0	55.0	50x40	-
L3	3.14-3.42	164-151	450	3.14	45.0	2.70-4.20	15.0	57.3	50x40	-
L4	3.28-3.67	157-141	360	3.70	42.0	2.70-4.20	15.0	48.5	50x40	No
L5	3.65-4.01	141-129	360	3.70	42.0	2.70-4.20	15.0	53.5	50x40	-
L6	3.84-4.18	134-124	360	3.70	42.0	2.70-4.20	25.0	56.2	50x40	-
M1	4.55-5.27 s	113-98	210	5.0	31.7	4.50-5.50	15.0	40.4	40x40	No
M2	4.55-5.271	113-98	210	5.0	31.7	4.50-5.50	15.0	40.4	40x40	No

5" slit

- Requires one JHKLM immersion grating
- 7 XD grating positions
- No custom gratings, saving at about \$150k

Spectral Formats after De-scope

Exp. name (Mode)	Wavelength coverage (µm)	Orders Covered	XD (line/mm)	Blaze wavel. (µm)	Blaze angle (deg.)	Order sorter (µm)	Slit length (arcsec)	XD tilt (degrees)	XD size (mm)	Custom grating?
Spare 1				-						
Л	1.15-1.26	462-420	1200	1.10	41.3	1.05-1.45	5.0	56.0	50x40	No
J2	1.13-1.20	402-420	1200	1.10	41.3	1.05-1.45	5.0	61.3	50x40	-
H1	1.50-1.69	350-308	720	1.90	43.1	1.40-1.90	5.0	44.6	50x40	No
H2	1.61-1.82	323-289	720	1.90	43.1	1.40-1.90	5.0	47.6	50x40	-
K1	1.95-2.26	265-229	497	2.25	34.0	1.80-2.60	5.0	41.0	50x40	No
K2	2.24-2.53	231-205	497	2.25	34.0	1.80-2.60	5.0	45.8	50x40	72
L1	2.80-3.10	184-167	450	3.10	45.0	2.70-4.20	15.0	51.3	50x40	No
L2	3.02-3.30	171-157	450	3.10	45.0	2.70-4.20	15.0	55.0	50x40	34
L3	3.14-3.42	164-151	450	3.10	45.0	2.70-4.20	15.0	57.3	50x40	
L4	3.28-3.67	157-141	360	3.70	42.0	2.70-4.20	15.0	48.5	50x40	No
L5	3.65-4.01	141-129	360	3.70	42.0	2.70-4.20	15.0	53.5	50x40	12
L6	3.84-4.18	134-124	360	3.70	42.0	2.70-4.20	25.0	56.2	50x40	
M1	4.55-5.27 s	113-98	210	5.0	31.7	4.50-5.50	15.0	40.4	40x40	No
M2	4.55-5.271	113-98	210	5.0	31.7	4.50-5.50	15.0	40.4	40x40	No

 Trade off shorter slit length and reduced wavelength range at JHK against need for against custom XD gratings and need for JHK immersion grating

De-scope Summary

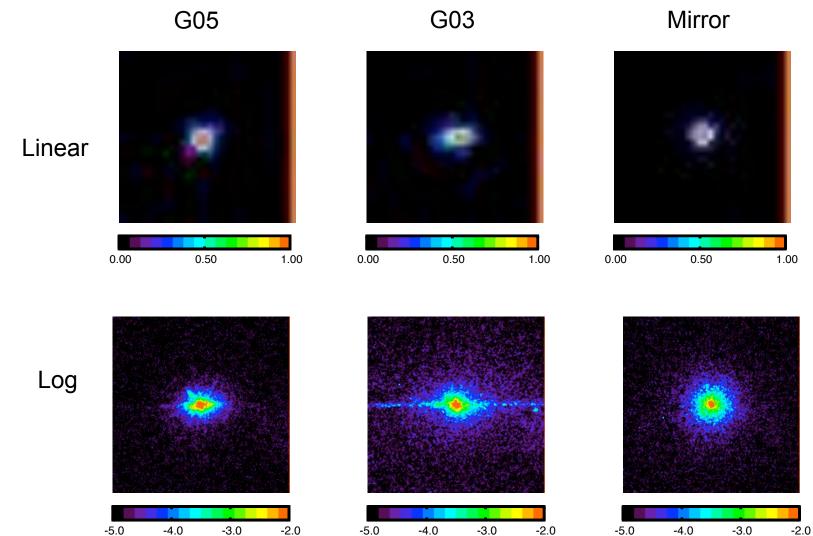
- Only one immersion grating (JHKLM)
- No custom XD gratings, all replicas
- Simplified XD mechanism
 - Fewer positions $(12 \rightarrow 8)$
 - Simplified position sensing (no Kaman sensor)
- Reduce number of filters to only those needed for order sorting and A&G
 - No imaging-only filters
 - Use same 8-position wheels for order sorter and slit viewer filter wheels
- Simplified bearings in mechanisms
- Allow for upgrade
 - JHK immersion grating
 - Custom XD gratings
 - More filters
- This meets all of the PDR recommendations

Cold Optics Procurement – PDR estimate

ltem	Vendor	ROM
OAPs	Corning/OFC	\$200 k
Custom lenses and mirrors	Optical Solutions, Inc.	\$178 k (formal)
Fold mirrors	Advanced Optics	\$2 k
Slit mirrors	Max Levy Autograph	\$29 k
XD gratings (custom)	Bach Research	\$125 k (5)
XD gratings (replicas)	Newport (Richardson)	\$6 k (6)
Filters	Past projects	\$100 k (\$5 k each)
	Total ROM	\$640 k

Cold Optics Procurement – Final

ltem	Vendor	РО
OAPs	Durham Precision Optics	\$28.0 k
Custom lenses and mirrors	ISP Optics	\$40.0 k
Fold mirrors	Advanced Optics	\$1.8 k
Slit mirrors	Max Levy Autograph	\$29.7 k
XD gratings (replicas)	Newport (Richardson)	\$5.4 k (5)
XD grating (replica)	Thor Labs	0.8 k (1)
Filters (custom)	Materion (formerly Barr)	\$86.o k (9)
Filters (COTS)	Andover Corp.	\$1.3 k (3)
	Total PO	\$192.2 k

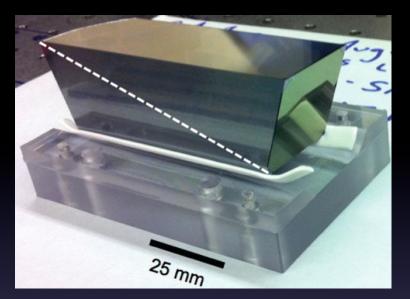

Calibration System - Estimate

ltem	Vendor	ROM
Th-Ar lamp + power supply	PHOTRON	\$2 k
QTH lamp (10W)	Oriel	\$0.04 k (2)
IR source	Oriel	\$0.6 k (2)
Lamp power supply	Oriel	\$4 k (2)
Ellipsoidal reflectors	Edmund Optics	\$0.2 k
Integrating sphere	Labsphere, Inc.	\$3 k
Pupil lens	ISP Optics	\$2 k
Spherical mirror	ISP Optics	\$2 k
Fold mirrors	Advanced Optics	\$1.5k
Translation stages	Micos	\$6 k (2)
	Total ROM	\$22 k

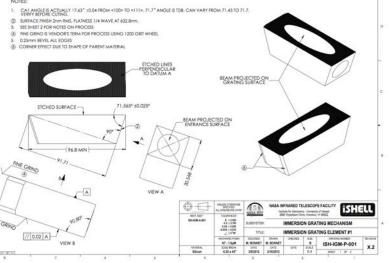
Immersion Grating Update

- New grating, G05, fabricated by contact lithography
- Best performing R3 grating produced by UT in last three years
- Out performs G03 in terms of high frequency periodic errors and isotropic scattered light but has some low frequency periodic errors
- Grating is acceptable for iSHELL but UT will try to produce better gratings (*JHKLM* and *JHK*)

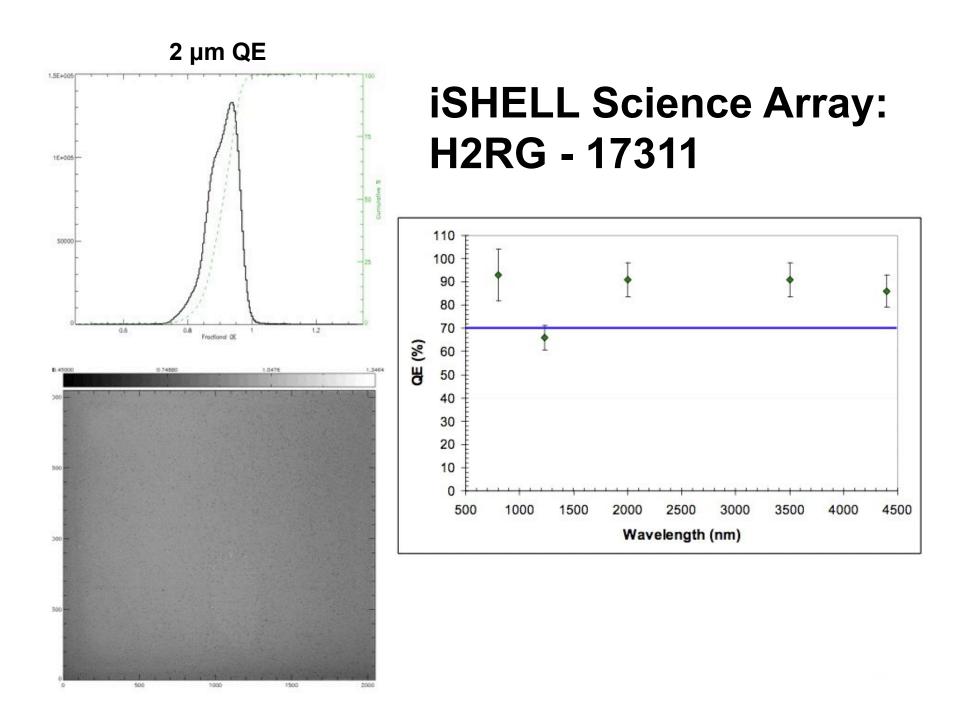
Immersion Grating PSF

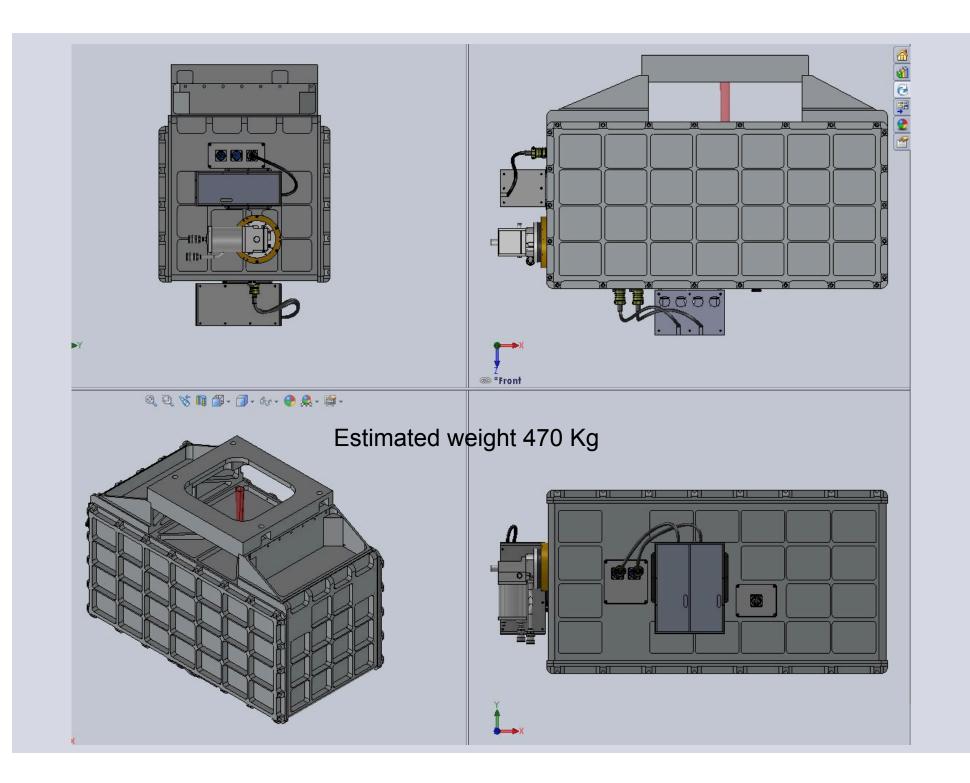


G05 Spectral Purity Plot 10۲ G05 Spectral Airy 25 mm G03 Spectral 10^{-1} Mirror 10⁻² Flux 10⁻³ 10-4 = 10⁻⁵ 10⁻⁶ $^{O}_{x (\lambda/D)}$ -100-50 50 100

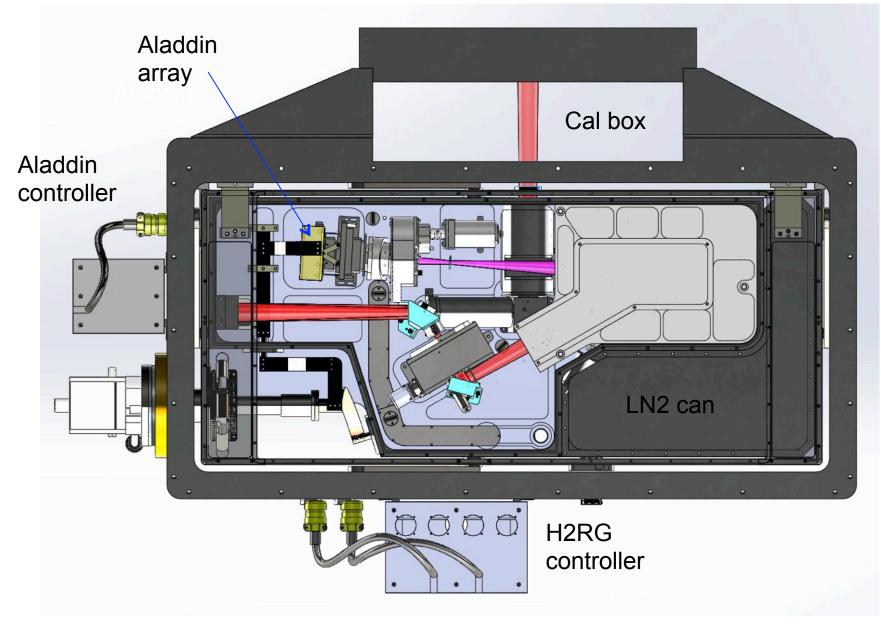

11/5/13

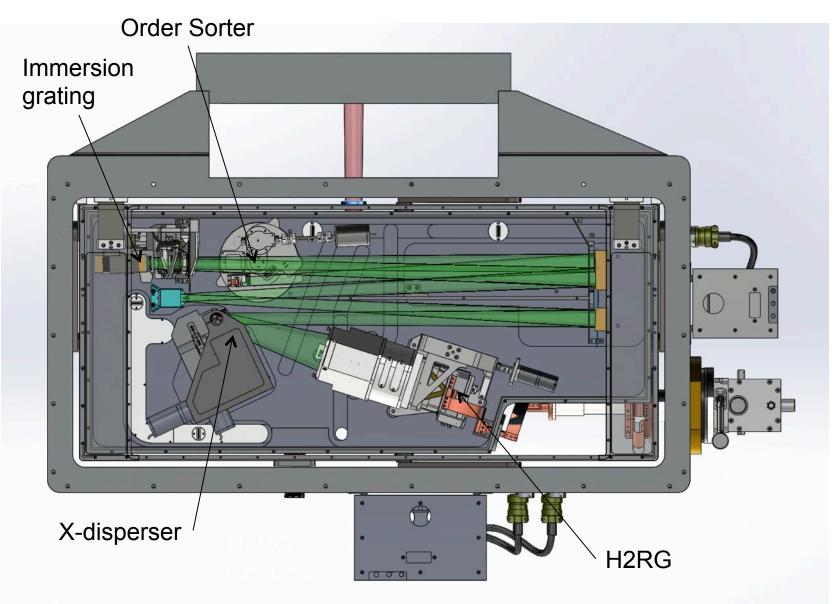
Next step: cut substrate to shape




11/5/13

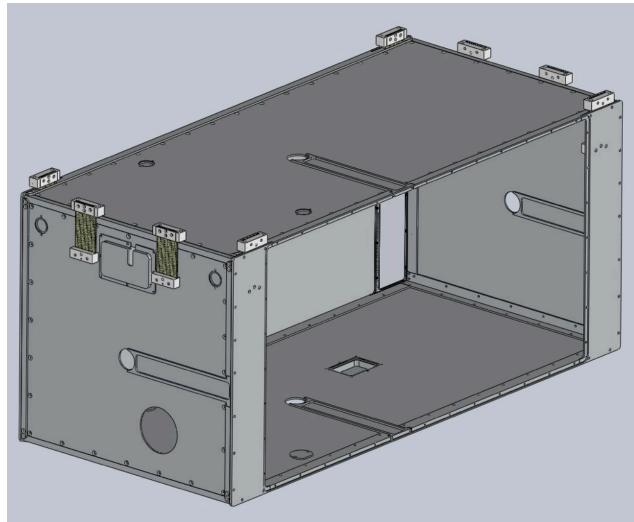
iSHELL Hawaii 2RG Array Update


- New science grade array delivered
 9/11/13
- Replacement for original science grade array that had the design flaw in the pixel interconnect structure

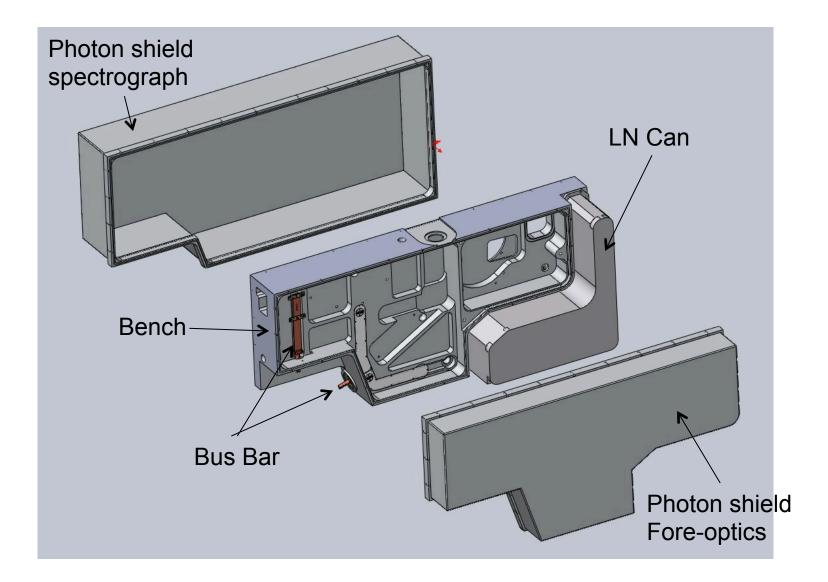


Fore-optics

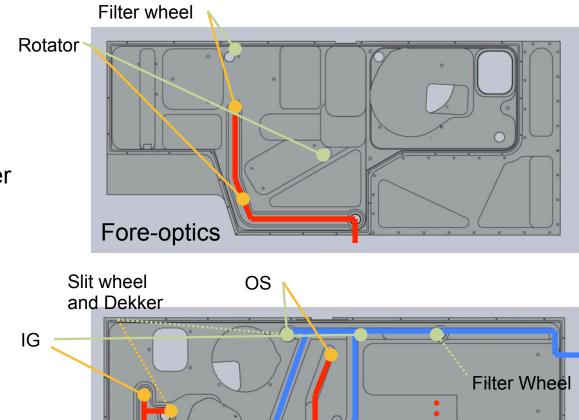
Spectrograph



Cryostat vacuum jacket


Welded Structure • Parts milled from billet ٠

Cryostat radiation shield

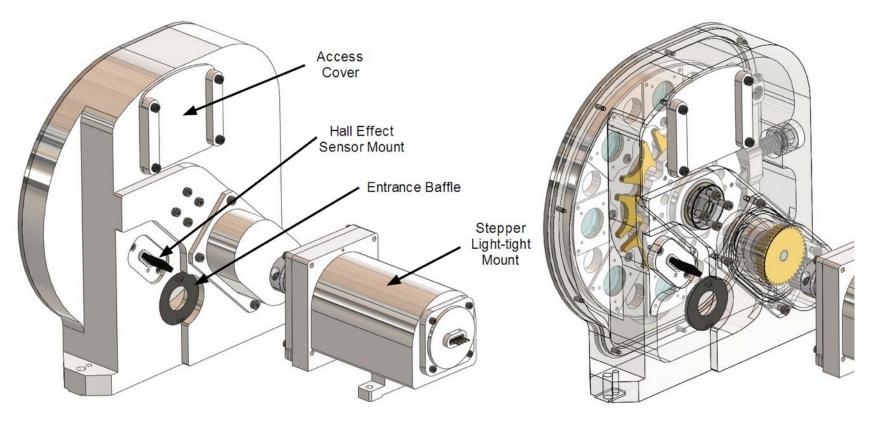

- Eight G-10 Mount tabs (1.9W heat load)
- Pre-polished panels
- Access panels for wire harness installation
- Slots for truss clearance during installation
- Covers for access to truss mount bolts

Optics Bench

Internal wiring

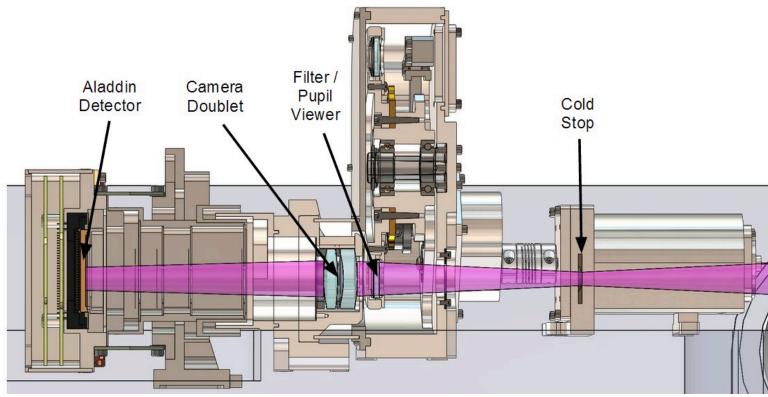
Rotator

Spectrograph

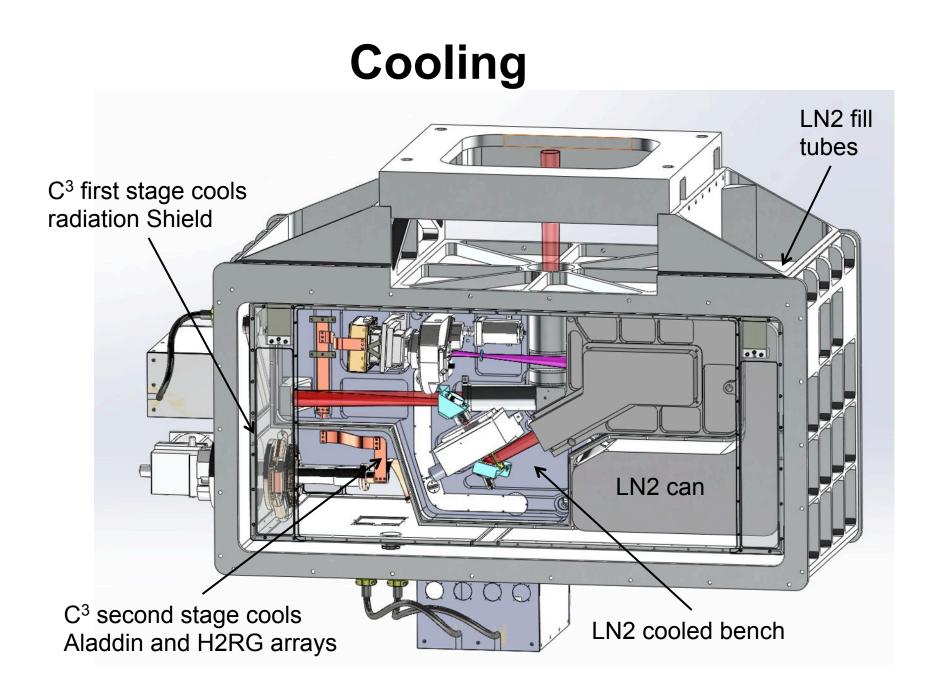

- All wires in covered channels
- Motor power and heater wires routed together
- Hall effect sensors and temperature sensors routed together
- Light tight bulkhead connectors

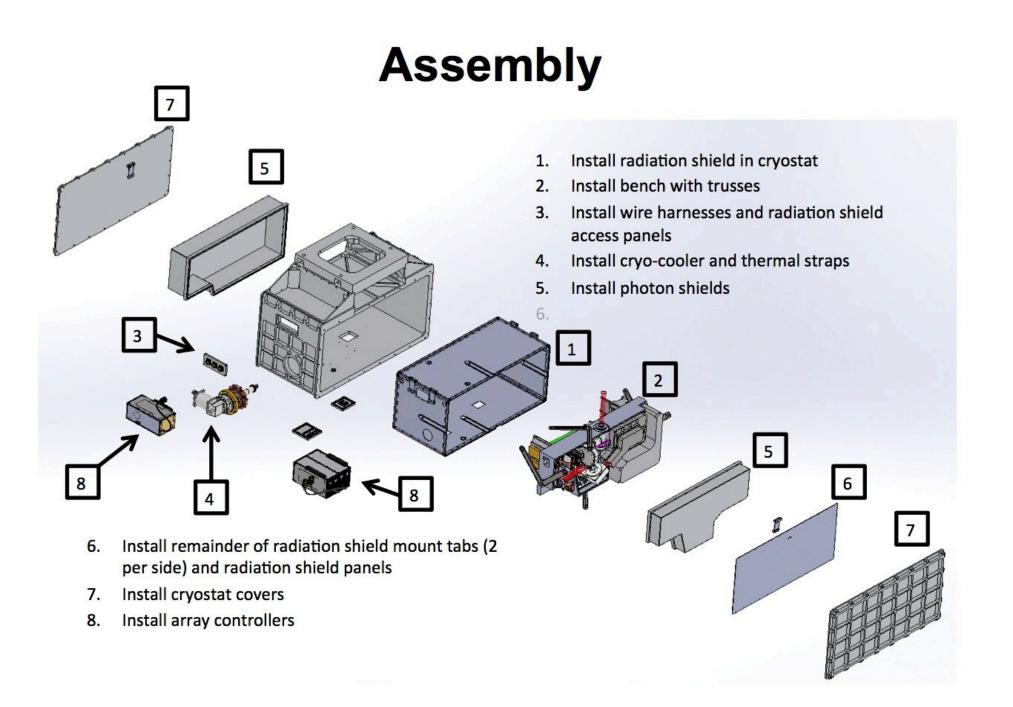
Motor and Heater Power

Position and Temp Sense


X-disperser

Slit Viewer Filter Wheel




- De-scope: 8 positions instead of 15, easier to implement
- Now same as order sorter filter wheel
- Light-tight motor mount

Slit Viewer Assembly

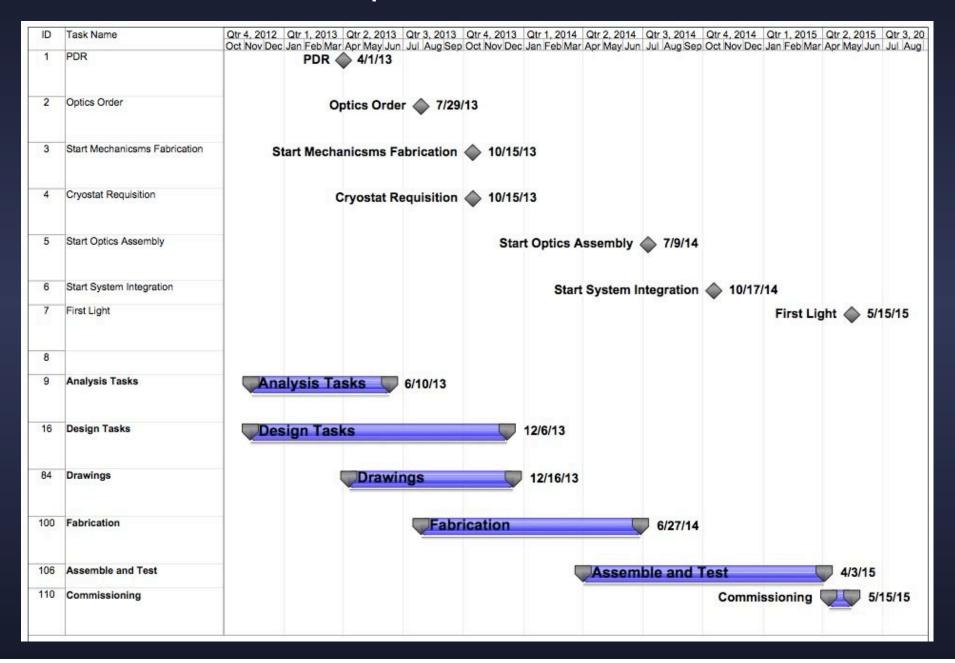
- Light tight from filter wheel to Aladdin array
- Reusing the array mount and baffle tube "as is". Only the baffles are redesigned to accommodate ISHELL's optical layout
- The doublet mount is used as a light-tight interface between the filter wheel and array mount

Data Reduction

- iSHELL requires DR tool similar to Spextool
- Not included in original NSF iSHELL proposal
- We will propose (1 Nov 2013) to NSF/ATI to fund this work :
 - Based on Spextool algorithms and GUI
 - Consultant Mike Cushing and a programmer
 - Estimate 26 weeks of effort, \$100k
 - Schedule: first six months of 2015 starting when lab data is first available

iSHELL Budget and Schedule

Budget


Funding needed to complete (not including IRTF manpower):

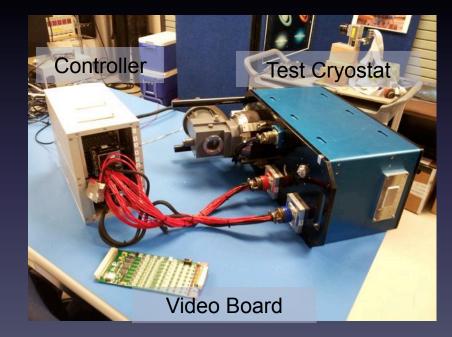
Oceanit	\$390K
Machine shop	\$550K
Equipment	\$250K
Optics	\$120K
Materials; Supplies	\$100K
Total	\$1,390K

Funding available: Remaining NSF funds IRTF operations

\$1,292K \$120K

Top-level schedule

Teledyne H2RG Procurement


- IRTF paid \$0.8m for two science grade arrays and two MUXes. Teledyne also agreed to supply two good eng. grade arrays
- All four arrays suffered from the indium migration problem discovered in 2010
- Teledyne agreed to replace the science grade arrays and replace an eng. grade array if foundry run yields allowed
- New science grade arrays for iSHELL and SpeX are now in hand
- Teledyne was not able to provide a new eng. grade array for NSFCAM
- Procurement is now complete

Teledyne H2RG Procurement

- 1. New (fixed) science grade array for SpeX
- 2. New (fixed) science grade array for iSHELL
- Original science grade array (5% bad pixels) is in NSFCAM.
 No further degradation expected if array is stored cold
- 4. Original engineering grade array (20% bad pixels) is being used for testing

IARC Controller Background

IRTF is using the Astronomical Research Cameras (ARC) Generation III controller for both H2RG and Aladdin arrays

NSFCAM2 (Upgraded & <u>In Use</u> April 2013)

H2RG Noise Results

Readout Mode	Noise Requirement	Current Noise	Conditions
Cryostat Standard	<=15e-	11e-	COAD=1, NDR=1
NSFCAM Standard	<=15e-	15e-	COAD=1, NDR=1
Cryostat Slow (30s)	<=5e-	3.1e-	COAD=1, NDR=16, 30s
NSFCAM Slow (30s)	<=5e-	4.4e-	COAD=1, NDR=16, 30s

- Used original science grade H2RG (degraded by indium migration about 5% bad pixels)
- Results obtained by selecting a 40 pixel by 40 pixel area in the array that was free of defective pixels
- Slow readout using NDRs is dominated by pattern noise since it is the change in value of a pixel over a long series of readouts
- Currently working to optimize this fixed pattern noise

iARC past semester milestones

- February 2013
 - H2RG controller deployed with NSFCAM
 - NSFCAM first light
- March 2013
 - New cryogenic configuration (cable interface) board
 - New flex cable
 - Separate clock and bias signals cabling to optimize noise
- April <u>2</u>013
 - Receive new array mounts for SpeX and iSHELL
 - Incorporate 100-pin mil-spec connector for SpeX and iSHELL
- July 2013
 - Clocking Aladdin MUX with ARC Aladdin controller
 - New ANU board ready (stable biases)
 - Sub-array clocking with H2RG
- August 2013
 - Aladdin controller working

iARC Schedule

- September 2013
 - o Install Aladdin PAIDAI array in lab dewar and test
- October 2013
 - H2RG eng. Array test with new mount and SpeX H2RG controller
 - Install and test SpeX science array in lab test dewar
- November 2013
 - Run cold H2RG together with warm Aladdin MUX to simulate science integrations and IR guiding
- December 2013
 - SpeX H2RG and Aladdin controllers ready for deployment
- February 2013
 - SpeX in Hilo lab ready for upgrade