
Table of Contents

Getting Started
 ARMbasic Stand-alone Compiler
 ARMmite
 ARMexpress
 wireless ARMmite
 ARMweb

The Compiler
 About
 Main Features
 Requirements
 ARMbasic and other BASICs
 Differences from PBASIC
 Frequently Asked Questions
 Revision History
 Notices

The Language
 Simple Statements
 Compound Statements
 Other Statements
 Functions
 Operators
 Data Types
 Alphabetical Keyword List

Runtime Library
 Date and Time Functions
 Mathematical Functions
 String Functions
 User Input Functions

Hardware Library
 Version 7 Hardware Library

Hardware Specs
 Hardware Specs

Miscellaneous
 PreProcessor
 Debugging
 Logic Scope

ARMweb
 ARMweb

Tables
 ASCII Character Codes
 Bitwise Operators
 Operator Precedence
 Variable Types

Support
 How to contact the developers
 How to report a bug
 Contributors

Page 1

http://www.coridiumcorp.com/ARMmite.php
http://www.coridiumcorp.com/ARMexpress.php

Getting Started

Getting Started

 PRO, PROplus and SuperPRO
 ARMmite and ARMexpress
 ARMweb and DINkit(ethernet)
 wireless ARMmite
 ARMbasic for non-Coridium Hardware

Page 2

ARMmite, ARMmite PRO and ARMexpress Getting Started

Getting Started
 Install Software
 Connect ARMmite
 Connect PRO family
 Writing your first program

 Programming the IO
 More complex programs
 Trouble Shooting
 BASICtools Features

Page 3

http://www.coridiumcorp.com

Step 1: Install Software
The ARMexpress family use a BASIC Compiler that runs on the PC. Coridium supplies BASICtools which
includes a terminal emulator and IDE that is specifically designed for the ARMexpress and ARMmite. Also,
a number of help files and documents about the ARMexpress will be installed on the machine at this time.
This installer is meant for WIndows either 98, NT, XP or XPx64 and Vista.

If you are installing from the CD, then it will automatically run the install program when the CD is inserted. If
downloading from the web, run the SETUP program to start the installation.

 Click Next to get started.

 Accept the defaults and Install. You may chose a different target directory.

Page 4

 The installation will now run, and when it finishes hit Close .

 And its as easy as that.

On to Step 2

Page 5

Step 2: Connect USB
Connect USB Cable to ARMmite/ARMexpress Eval PCB/ARMmite PRO

For details on connecting the ARMmite PRO visit this page.

The ARMmite / ARMexpress Eval Kit comes with a USB cable. This cable allows you to connect the
ARMmite/ARMexpress directly to a computer equipped with USB. Locate the USB jack on the side of the
Eval PCB and plug one end of the USB cable into it. When connected to a PC power is supplied by the PC,
the optional power connection is not required, but both may be safely connected.

Connect USB Cable to Computer

Locate the USB jack on your computer and plug the other end of
the cable into it.

Please Consult Installation Guides

Page 6

Most PC's will sound a tone that indicates a new USB device has been connected. Most Windows Vista
and 7 systems will either include the FTDI device driver or are able to download it automatically from the
network.

If your system is unable to do that. Run the FTDI driver installation setup in the \Program
Files\Coridium\Windows_drivers directory. This will install the proper drivers for the FTDI chips we use for
interfacing to the USB.

Up to date details are at the www.ftdichip.com VCP drivers page.

Driver Installation Complete, Confirm USB Connection

The Eval PCB or the ARMmite will be powered from the USB bus. It may also be connected to a 5-12V DC
power source simultaneously.

To verify connection with the USB and PC the LED on the Eval PCB should light up.

On to Step 3

Page 7

http://www.ftdichip.com

Step 2: Connect USB on ARMmite PRO family
Connect Coridium USB Dongle to ARMmite PRO

The ARMmite PRO Eval Kit comes with a USB dongle and cable. This dongle and cable allows you to
connect the ARMmite PRO directly to a computer equipped with USB. When connected to a PC, power is
supplied by the PC, the optional power connection is not required, but both may be safely connected.

Connect FTDI cable to ARMmite PRO

Connect black wire to GND. This cable is available at Digikey or the Makershed. This cable connects RTS
to RESETn, BASICtools support this.

Connect SparkFun USB Dongle to ARMmite PRO

Page 8

http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=768-1028-ND
http://www.makershed.com/ProductDetails.asp?ProductCode=TTL232R

USB dongle from Sparkfun shown.

Connect USB Cable to Computer

Locate the USB jack on your computer and plug the other end of
the cable into it.

Please Consult Installation Guides

Most PC's will sound a tone that indicates a new USB device has been connected. Most Windows Vista
and 7 systems will either include the FTDI device driver or are able to download it automatically from the
network.

If your system is unable to do that. Run the FTDI driver installation setup in the \Program
Files\Coridium\Windows_drivers directory. This will install the proper drivers for the FTDI chips we use for

Page 9

http://www.sparkfun.com/commerce/product_info.php?products_id=8772

interfacing to the USB.

Up to date details are at the www.ftdichip.com VCP drivers page.

Driver Installation Complete, Confirm USB Connection

The ARMmite PRO will be powered from the USB bus, when using either the Coridium Dongle or the FTDI 5V
cable. It may also be connected to a 6-7V DC power source simultaneously.

To verify connection with the USB and PC the LED on the Eval PCB should light up.

On to Step 3

Page 10

http://www.ftdichip.com

Step 3: Writing your first Program with BASICtools
Start the BASICtools from the StartMenu or from the Desktop Icon. You should see a welcome message
which has been sent from the ARMmite or ARMexpress-

If you do not see this welcome, even after pushing the RESET button, then communication has not been
established.

 check cables
 check power supply
 check COM port choice in BASICtools -> Options
 check baud rate in BASICtools -> Options
 on non-Coridium Boards, remove any BOOT select jumpers, press RESET again
 if still not working, check theTrouble Shooting Section

The traditional "Hi Mom" program

Page 11

So type something like the traditional PRINT "Hi Mom"
When you hit the ENTER key it will be sent to the ARMexpress and be echoed back
in the console window. (below)

Now RUN the program

Page 12

Which you can do by either typing RUN or hitting the RUN button at the top of the screen.

And see the results

You can notice a number of things. First the program is compiled and then written into
Flash memory, and your program takes 40 bytes of code and less than 10 bytes of data space.
Next the program will be executed, as evidenced by the output of "Hi Mom" to the console.
ARMexpress also reports back how long the program executed, in this case 4 msec, which is mostly startup
time.

Also your program is now saved in the ARMmite/express Flash memory. And it will be executed the next
time the board is RESET. So try that...

Page 13

On to Step 4

Page 14

Step 4: Programming the IO
Clear previous ARMmite/ARMexpress program

To begin a new program, you should CLEAR the previous one. You can do this with either the button or by
typing clear.

A program that uses IO

Type the following program in the console window. (below)

DIR(15)= 1 ' enable pin 15 as an output
WHILE X<30
 OUT(15) = X AND 1 ' drive pin 15 high when x is odd, low when x is even
 X=X+1
 WAIT(500)
LOOP

For the SuperPRO and PROplus, the LED is connected to P2(10). Use the following

 FIO2DIR = &H2009C040 ' this is the DIR register for port 2, its also defined in #include <LPC17xx.bas>
 *FIO2DIR = 1<<10
 WHILE X<30
 P2(10) = X and 1
 X=X+1
 WAIT(500)
 LOOP

Now RUN the program

Page 15

The LED on the PCB should pulse 15 times.

And see the results

Stop the program

Page 16

To stop a running program simply press the Stop button.

On to Step 5

Page 17

Step 5: More Complex Programming
Choose a File

While the Enter line can be useful for small programs or quickly checking out hardware, you will probably
soon need to write larger programs. The way to do this is with a text editor. We don't enforce any text editor
on you, you can choose your favorite. We tend to use the Crimson Editor, though a number of users are
liking NotePad Plus (NPP). Once you've typed up your program you can load that with BASICtools. It is
easier to create a larger program with a text editor and then to Load File. You can link BASICtools to your
favorite editor with the options (see the next section), or launch the original Windows Notepad if no editor is
chosen.

Also the Enter line is limited in that #include <library> may be used, but the general pre-processor #include
and other #directives should be avoided when typing a program a line at a time.

Page 18

http://www.crimsoneditor.com/
http://notepad-plus.sourceforge.net/uk/site.htm

You're now ready to start tackling your application. Check with the Yahoo Forum for files and help from
other users of ARMbasic products. There are also examples on the Coridium Website Programming
pages.

For more details on the BASICtools IDE check the next page.

Page 19

http://tech.groups.yahoo.com/group/ARMexpress/
http://www.coridiumcorp.com/ProgrammingEx.php
http://www.coridiumcorp.com/ProgrammingEx.php

BASICtools Features
BASICtools startup

When BASICtools starts up, it will STOP any user program. So if you find yourself with a program flooding
the PC serial port with data, close BASICtools and then restart it (you may need to use the Task Manager to
exit). It will STOP your spewing program.

BASICtools Layout

keyw ords: enter line debugin type BASIC commands

Buttons

 ..

Page 20

The CLEAR button only erases the display screen and the buffer on the PC of statements you have typed
into the Enter window.

To erase the program, load a new program, either a line at a time or using the Load menu.

keyw ords: reset button stop button run button clear button

File Menu

 ..

file load file reload file print save file quit

Page 21

Edit Menu

 ..

keyw ords: edit choose editor

Options Menu

Refresh will check for serial devices again, it is useful if you plugged a device in after starting BASICtools.

keyw ords: options port baud new line char mode PC compile control throttle

Control Menu

Page 22

keyw ords: options port baud new line char mode PC compile control throttle

BASIC variable viewer

Open this window from the Tools Menu (variables)

variables window

Page 23

This page is active when your program ENDs or hits a STOP statement or has been STOPed with the button.

code window

keyw ords: variable dump breakpoint STOP view memory

Search Window

Open this window from the Edit Menu

Page 24

keyw ords: search
Logic Scope Window

This module must be included in your BASIC program. It will monitor the pins for a period of time when called
from your program.

See the example program ScopeDemo.bas and details in the Logic Scope Section .

Page 25

keyw ords: oscilloscope logic analyzer logic scope

Page 26

Trouble Shooting
Reset ARMexpress shows no message

Most PCs have a number of COM ports, you might not have the correct port selected, you can change that in
the Options>Port Menu This window lists all the available ports, those in capital letters are recognized as
FTDI USB serial ports and are usually the location of the ARMexpress Eval PCB or the ARMmite.

One other reason that communication could be lost, is that the driver can lose sync with the card if it is
disconnected and reconnected with the USB, especially when BASICtools or TclTerm (under MakeItC) is
running and connected to the card. When this happens it is often necessary to restart the PC. Because the
serial port is being emulated, and the Windows enumerator gets involved, when the USB is disconnected, the
various pieces of software can get confused if the port is open. If you are using the original hardware serial
port, normally with COM1 this is not an issue.

Determining which COM port should be used

 This can be found in the Control Panel>System>Device Manager

Page 27

COM port conflicts

 While rare there are systems out there with non-plug and play serial ports, or its possible for 2 com
ports to have the same address. The address can be changed from the Control Panel.

 Control Panel> System> Hardware> Device Manager> Ports> Port Settings> Advanced

Page 28

Check the USB Driver version

 Our software does not reinstall the USB drivers if they already existed. We expect to be running version
2.6.0.0 dated 10/22/2009. Find this in the Control panel>Driver properties

Page 29

If this does not match, then you have an older driver and it should be updated...

Offline indicator

 This will be shown if the port you were using last time the program was run is no longer available. You
must reselect a Port using the Option Menu to reestablish communication with the ARMmite or
ARMexpress.

Page 30

Check Baud Rate

Or you might not have the correct baud rate selected.

Check your cables, check the LED

The green LED should be on if the USB connection is made for the ARMmite, or when power is connected for
wireless ARMmite or ARMweb.

See Connect USB

Wireless Serial link

Page 31

When debugging the serial connection for the wireless ARMmite, make sure both modems are set to the
same baud rate, otherwise one way communication is possible. Check your solder connections. Use a USB
breakout board to monitor the communication of either side, connect the RXD pin of the USB breakout to
either TXD or RXD on the ARMmite to monitor the serial communication.

If you can see the Welcome message following pressing the reset button on the ARMmite wireless, then
communication is running one direction. Type a ? at the enter line, you should see a number of 4 digit hex
numbers come back. At this point communication is running in both directions.

You can also use BASICtools to send repetitive data through the serial port. To do this check the Char mode
under options, this will send out any key you hold down from the enter box, rather than the normal line
buffering. Then you should be able to see the data on a scope. Remember to uncheck Char mode when
done.

Odd behavior following Windows Update

In rare cases, when the Windows Update has automatically rebooted while BASICtools was running, the
serial port settings of BASICtools have been corrupted. To correct this, reboot the system, and if the problem
persists delete the BASICtools configuration settings (BASICtools.ini, it will be regenerated when you run
BASICtools). This file is located in the %AppData%/Coridium directory or in older versions of BASICtoos
in Program Files\Coridium directory. If you don't know where the %AppData% directory is, open a DOS
command line and type echo %AppData% .

Have Fun!!

Page 32

ARMweb Getting Started

Getting Started
 Install Software
 Connect Ethernet
 USB connection for ARMweb
 Writing simple programs via the web
 Writing programs with BASICtools

Page 33

http://www.coridiumcorp.com

Step 1: Install Software
Actually much of the software you need for the ARMweb is already on your computer. The interface to the
ARMweb is through any web-browser. That's why we call this Simply Connected™ technology.

A simple ARMbasic compiler runs on the ARMweb. While you can write short BASIC programs with this
interface, the compiler is there to support BASIC that is embedded into the HTML of the webpages served by
the ARMweb. Your main BASIC program should be debugged and loaded via BASICtools over a USB
connection.

You will want to run the setupBASIC installation, to get access to documentation about ARMbasic and the
PC based main BASIC compiler.

 Click Next to get started.

 Accept the defaults and Install. You may chose a different target directory.

Page 34

 The installation will now run, and when it finishes hit Close .

 And its as easy as that.

On to Step 2

Page 35

Step 2: Connect Power and Ethernet
Connect Ethernet Cable to ARMweb PCB

The primary power for the ARMweb is 3.3V provided from a linear regulator. The input power for the PCB may
be 5V regulated supply or a 6-9V unregulated supply, with a current rating of 250 mA or more. The connector
is a standard 2.5mm barrel connector with the + positive side of the supply in the center. A good choice for
this power is this 5V regulated supply from SparkFun .

You should see a green LED connect light on the lower left side of the ethernet cable indicate a connection
was made. Also your hub normally has a similar type of connection indicator. There should also be some
traffic indicated on the right side as the ARMweb looks for a DHCP.

If you don't see the LEDs lit, check your power connections (you should see at least 6V of the + side marked
on C1 with an unregulated supply or 5V with a regulated supply, and 3.3V as marked in the prototype area).

USB connection

We recommend that you have at least one USB connection to debug BASIC programs as well as network
issues. This can be our USB dongle or some other TTL serial connection.

Below is the picture you should see. Depending on which version of firmware and which USB dongle you
may see an EINT1 interrupt message. EINT1 was being used for network debug in earlier firmware versions.
You should disable that by choosing ARMweb control under the Options. After that you should see the
ARMweb "Searching for DHCP" and if there is one it will report the DHCP IP address and the IP address
assigned by the DHCP (MyIP)

Page 36

http://www.sparkfun.com/products/8269
http://www.coridiumcorp.com/catalog/product_info.php?products_id=83

Again, if you don't see the LEDs or this display, check your power connections (you should see at least 6V
of the + side marked on C23, and 3.3V as marked in the prototype area), check your com connections
(details in Troubleshooting section).

Finding the card on the network (larger network) -- NetBIOS name service

The ARMweb will configure itself with an IP address assigned by a DHCP server. IP addresses are the way
networks organize themselves. If there is no DHCP server found, the ARMweb can provide limited DHCP
services in a Diagnostic mode, assuming a single connection on Ethernet with a PC using either a hub or
cross-over cable (see the Diagnostic section below).

Assuming a DHCP server is available and you are running on a Windows machine, you can use the Windows
NetBIOS Name Service. In which case you can find the ARMweb initially with http://armweb. Note that
some administrators disable NetBIOS name service .

Page 37

http://armweb
http://armweb

Finding the card using the DHCP server

On most home networks your DHCP will be your internet connection, and its address will share the first 3
bytes with the IP address of your PC. And the final byte being 1. The IP address of your PC is available from
the control panel or by typing IPCONFIG at a DOS command line. Common values for the DHCP server are
192.168.1.1 or 192.168.0.1 as in the example below.

You can navigate to the DHCP server using that IP address from a browser as below.

Page 38

Most DHCP servers will list client machines which have been assigned an IP address. This 2wire server
indicates it on the details view of the home network, and details for the device

Page 39

Another example is the display from a Dlink Firewall that is also providing DHCP services.

So in this case the ARMweb can be found at http://192.168.0.2

Diagnostic Mode -- only to be used in special situations

A minimal configuration is an ARMweb connected to a PC with a cross-over cable. This can be useful for
configuring an ARMweb prior to connecting with a larger network, In this case no DHCP server will
be found, and after 10 seconds the ARMweb will provide limited DHCP services, assigning an IP address to
the PC. However, this miniDHCP service will be terminated if the ARMweb is ever connected to a

Page 40

http://192.168.0.2
http://192.168.0.2

network with a DHCP server . To restore this miniDHCP service and the factory defaults, hold the
push-button for 5 seconds while cycling the power.

The ARMweb will normally be located at http://192.168.0.50 unless it has been reconfigured before, in which
case it will use the last assigned IP address.

If you can not find the ARMweb at http://192.168.0.50 or http://ARMweb as above, then you can locate its
IP address with the DOS command line program IPCONFIG. The ARMweb will appear as the default gateway
in this case. Also if your ARMweb has been connected to a network serviced by a DHCP it will not function
as a limited DHCP server (this would cause confusion in a large network).

If you're not seeing this make sure your PC Network configuration is set to Obtain an IP address
automatically. (Control Panel -> Network Connections -> Local Area Network -> Properties -> TCPIP ->
Properties)

Now that you have the IP address of the ARMweb

You can go onto configuration settings, or writing simple programs using the web interface (the web interface
is only meant for simple programs, to do more extensive programs will require a USB connection and
BASICtools.

But for this web interface navigate using a browser to http://w.x.y.z where w.x.y.z is the IP address of the
ARMweb

DHCP assignment vs fixed IP addressing

We routinely allow the DHCP server to assign an initial address, but will use a fixed IP address in the final
setup. One reason to assign a fixed IP, is to make sure that the IP address assigned never changes, for
instance following a power outage. Details on setting a fixed IP address.

On to Step 3

Page 41

http://192.168.0.50
http://192.168.0.50
http://ARMweb
http://w.x.y.z
http://192.168.0.50
http://192.168.0.50
http://ARMweb
http://w.x.y.z

Optional: USB connection for BASICtools
While the ARMweb can be programmed through the webpage, during the development cycle BASICtools can
be used via a USB connection. BASICtools has a much faster response than a browser.

The attachment of the USB and power supply is shown below. While an Ethernet connection is not required,
if it exists and there is a DHCP server, the ARMweb will boot faster (otherwise each reset the 10 second
timeout waiting for DHCP service will occur).

 ARMweb

 DINkit (ethernet)

Why use BASICtools?

Browsers are very slow when refreshing a webpage, so the interaction with the programmer is better with
BASICtools.

#include can not be used from a webpage, as the ARMweb does not have direct access to the #include'd file

Page 42

The BASIC compiler on the PC has more memory for the symbol table and can handle larger programs than
when compiling on the builtin ARMweb compiler.

The variable dump tool is available in BASICtools. Debug messages are sent to the USB port, as well as
<?BASIC ... ?> source and output when processing web requests. When your program is debugged and
AutoRun is turned on the USB port is turned off. You can improve the performance of the web server BASIC
compiler by increasing the speed of UART0, by changing baud settings in BASICtools and executing
BAUD0(937500) in your main program.

For an introduction to BASICtools refer to the ARMmite sections .

BASIC and Webpage interaction

BASIC can be embedded in the webpage served by the ARMweb. That BASIC code can access global
variables of the user program running on the ARMweb. At present, BASIC embedded in the webpage can not
call a FUNCTION or SUB (this will be a future enhancement).

The user (client) can also interact with an ARMweb BASIC program via the CGI mechanism.

USB drivers

Most PC's will sound a tone that indicates a new USB device has been connected. Most Windows Vista
and 7 systems will either include the FTDI device driver or are able to download it automatically from the
network.

If your system is unable to do that. Run the FTDI driver installation setup in the \Program
Files\Coridium\Windows_drivers directory. This will install the proper drivers for the FTDI chips we use for
interfacing to the USB.

Up to date details are at the www.ftdichip.com VCP drivers page.

Continue with the some programming examples.

or

More details on ARMweb and BASIC...

Page 43

http://www.ftdichip.com

Step 3: Writing a simple Program with the web
interface
The traditional "Hi Mom" program

This section describes writing programs with the web interface, which is fine for small programs. But you will
really want to use the USB interface to write larger programs, covered in the next section .

So type something like the traditional PRINT "Hi Mom"
When you hit the ENTER key it will be sent to the ARMexpress and be echoed back
in the console window. (below)

Page 44

Now RUN the program

Page 45

Which you can do by either typing RUN or hitting the RUN button at the top of the screen.

And see the results

Page 46

You can notice a number of things. First the program is compiled and then written into
Flash memory, and your program takes 0K of code and 0K of data space.
Next the program will be executed, as evidenced by the output of "Hi Mom" to the console.
ARMexpress also reports back how long the program executed, in this case 3 msec

On to the next Step

Page 47

Step 3: Writing your first Program with BASICtools
Start the BASICtools from the StartMenu or from the Desktop Icon. You should see a welcome message
which has been sent from the ARMmite or ARMexpress-

If you do not see this welcome, even after pushing the RESET button, then communication has not been
established.

 check cables
 check power supply
 check COM port choice in BASICtools -> Options
 check baud rate in BASICtools -> Options
 on non-Coridium Boards, remove any BOOT select jumpers, press RESET again
 if still not working, check theTrouble Shooting Section

The traditional "Hi Mom" program

Page 48

So type something like the traditional PRINT "Hi Mom"
When you hit the ENTER key it will be sent to the ARMexpress and be echoed back
in the console window. (below)

Now RUN the program

Page 49

Which you can do by either typing RUN or hitting the RUN button at the top of the screen.

And see the results

You can notice a number of things. First the program is compiled and then written into
Flash memory, and your program takes 40 bytes of code and less than 10 bytes of data space.
Next the program will be executed, as evidenced by the output of "Hi Mom" to the console.
ARMexpress also reports back how long the program executed, in this case 4 msec, which is mostly startup
time.

Also your program is now saved in the ARMmite/express Flash memory. And it will be executed the next
time the board is RESET. So try that...

Page 50

On to Step 4

Page 51

ARMweb C support

FreeRTOS

We have posted at the FreeRTOS web site a version of FreeRTOS that has been ported to the ARMweb.
This open source system is available to our users.

Coridium will provide C support based on either FreeRTOS or on our proprietary system for a fee for custom
programming.

The FreeRTOS will support a web server interface, but it does not include the HTML inline BASIC compiler.

Page 52

http://www.coridiumcorp.com

Wireless ARMmite Getting Started

Getting Started
 Install Software
 Wire up USB
 Wire up Bluetooth

 Wire up Bluetooth Module
 Wire up Zigbee
 Custom Serial
 BASICtools Features

Page 53

http://www.coridiumcorp.com

Step 0: Have a wired alternative
Because a wireless link can be an additional unknown, we STRONGLY suggest you have a wired connection
handy, either a SparkFun USB breakout board and connector or something you have that is homebuilt. At
less than $20 this will give you visibility into what is going on between the PC and the wireless ARMmite.
You can also use this connection to monitor the data from the ARMmite or the wireless modem (do this by
jumpering the RXD pin on breakout board to either RXD or TXD, also remember a GND connection, do NOT
connect TXD when monitoring in parallel with the modem).

Step 1: Install Software
The ARMexpress family use a BASIC Compiler that runs on the PC. Coridium supplies BASICtools which
includes a terminal emulator and IDE that is specifically designed for the ARMexpress and ARMmite. Also,
a number of help files and documents about the ARMexpress will be installed on the machine at this time.
This installer is meant for WIndows either 98, NT, XP or XPx64 and Vista.

If you are installing from the CD, then it will automatically run the install program when the CD is inserted. If
downloading from the web, run the SETUP program to start the installation.

 Click Next to get started.

Page 54

http://www.sparkfun.com/commerce/product_info.php?products_id=718
http://www.sparkfun.com/commerce/product_info.php?products_id=115

 Accept the defaults and Install. You may chose a different target directory.

 The installation will now run, and when it finishes hit Close .

 And its as easy as that.

On to Step 2

Page 55

Step 2: Make USB connections
The Wireless ARMmite can be connected to SparkFun's USB breakout board. The minimal connection
uses a 4 pin 0.1" header. This connection gives a hardwired serial connection for configuration and
debugging, which can be useful during the initial setup of the tools and software, or for monitoring serial traffic
during program debugging.

Minimal USB connections. The pin diagram is shown below (pin names to match the USB breakout board)

Additional pins may be wired up to the USB breakout board, so that it will work identically with the original
ARMmite. In this case 5V from the USB will power the board. But when that connection is made a
power supply should NOT be connected.

Below is the schematic with the names representing the perspective of the ARM processor (RXD0 on the
ARM connnects to TXD on the USB breakout board).

Page 56

http://www.sparkfun.com/commerce/product_info.php?products_id=718

Shown below is the orientation with the USB breakout board mounted on the ARMmite, using a 4 pin
receptacle soldered into the breakout board-

BASICtools Configuration

While you are not using a wireless connection, if you are using just the 4 pin connection to the USB breakout
board, the Wireless ARMmite is functioning in "Wireless" mode as there is no control from the PC for reset.
So for BASICtools to function correctly you must enable the Wireless option shown below.

Page 57

On to Step 2

Page 58

Step 3: Make Zigbee connections
The Wireless ARMmite can be connected to Maxstream Zigbee Xbee and Xbee PRO modules
(available at Newark or Digikey). The connection uses two 10 pin 2mm receptacles .

Xbee connections. The pin diagram is shown below-

Shown below is the orientation with the Xbee module mounted on the ARMmite, using two 10 pin
receptacles soldered into the ARMmite-

Page 59

http://www.maxstream.net/products/xbee/xbee-oem-rf-module-zigbee.php
http://www.newark.com
http://www.digikey.com
http://www.sparkfun.com/commerce/product_info.php?products_id=8272
http://www.sparkfun.com/commerce/product_info.php?products_id=8272
http://www.sparkfun.com/commerce/product_info.php?products_id=8272

PC side connection

The other end of the Zigbee wireless connection can use a Maxstream Development Kit or a USB
Maxstream dongle adapter. At present while Zigbee is a standard, modules are only compatable with
each other if they are based on the same firmware which often means both ends are from the same vendor
(Maxstream in this case). Follow directions supplied with that unit for installation on the PC. The
Maxstream X-CTU utility can be used to configure and test the setup.

Setting the Baud rate

The default baud rate for the Xbee module is 9600 baud. This can be changed to 19.2Kb with the X-CTU
utility or it can be lett there. To run the ARMmite at 9600 baud, install a jumper on the 9600 BAUD location.

Page 60

http://www.maxstream.net/products/xbee/dev-kit-zigbee.php
http://www.newmicros.com/index2.php?url=http://www.newmicros.com/cgi-bin/store/order.cgi?form=prod_detail&part=USB-XBEE-DONGLE-CARRIER&id=Is8JgC503tbE7Lq6i15lBd3Hjbr31353
http://www.newmicros.com/index2.php?url=http://www.newmicros.com/cgi-bin/store/order.cgi?form=prod_detail&part=USB-XBEE-DONGLE-CARRIER&id=Is8JgC503tbE7Lq6i15lBd3Hjbr31353
http://www.maxstream.net/support/downloads.php

Setting the COM port

The port for the USB connection can be set with the Control Panel.

Page 61

At this point BASICtools will work normally, (make sure you check the Wireless option, and note that the
serial port will be one identified as a USB serial - in capital letters, assuming you're using the USB adapter)-

On to Step 2

Page 62

Step 3: Make BlueSMiRF connections
The Wireless ARMmite can be connected to SparkFun's BlueSMiRF module . When using the
BlueSMiRF, the power from the wall adapter is applied directly to the BlueSMiRF and it must be
limited to 6V or less. We recommend using a regulated 5V supply such as carried by SparkFun .

The connection can be made with a right angle 0.1" receptacle or by soldering the 2 boards together directly.
The pin diagram is shown below-

Shown below is one orientation with the BlueSMiRF mounted below the ARMmite-

Page 63

http://www.sparkfun.com/commerce/product_info.php?products_id=582
http://www.sparkfun.com/commerce/product_info.php?products_id=8269

And this orientation is also proper-

PC side connection

The other end of the Bluetooth wireless connection can use a Bluetooth USB dongle . Follow directions
supplied with that unit for installation on the PC. Do not try to install more than 1 Bluetooth USB dongle on a
PC, as the drivers will probably conflict. Also the Bluetooth software will assign a number of serial ports of
which 2 may be used to emulate a serial connection that can be used with the BASICtools.

WIDCOMM tools

After you install the tools (the latest from SparkFun are the WIDCOMM utilities), you will see a BlueTooth
icon on the desktop. When connecting for the first time open this to "pair" the PC to the BlueSmiRF--

Page 64

http://www.sparkfun.com/commerce/product_info.php?products_id=150

The Bluetooth security code for the SparkFun BlueSmiRF is "default". In some versions of the BlueSmiRF
this pairing must occur within 60 seconds of the BlueSmiRF powering on. So it may be necessary to cycle
power before the pairing. The symptom for not pairing is that no services will be available for the BlueSmiRF.

Now paired, if you double click on the SparkFun-BT it should display

At this point you should be able to connect the serial port by double clicking or right clicking on this icon. If
the connection is made, the flashing green LED will go off on the BlueSmiRF and its red LED should be
continously on. The icon should now show-

Page 65

Now you know where the com port has been located, as COM6 in the above example.

You can now start the BASICtools and use COM6. Warning, the drivers will often at this point get confused,
and you may not be able to make the connection, but at least at this point everything is configured correctly.
One indication is that the red LED on the BlueSmiRF will go off, and it will return to flashing green. The best
course is to reboot Windows at this point, start BASICtools, set the com port and baud rate and then make
the Bluetooth connection.

Setting the Baud rate

The default baud rate for the BlueSMiRF is 9600 baud. Once communication is established it can be
changed to 19.2Kb or it can be left at 9600. To run the ARMmite at 9600 baud, install a jumper on the 9600
BAUD location.

The command to change the baud rate is done with an AT command, specifically ATSW20,79,0,0,1<cr>
which can be done with a short BASIC program

version 7

 PRINT "ATSW20,79,0,0,1"

version 6

 SEROUT 16,9600,["ATSW20,79,0,0,1",13]

To return to 9600 baud

 PRINT "ATSW20,39,0,0,1"

BlueSoleil connection

In IVT's BlueSoleil, this is not a trivial excercise. And it seems to be a bit hit or miss. The listing of ports in
the Control panel also seems a bit arbitrary and the services option of BlueSoleil seems to misreport which
COM port will be assigned. But once a connection is made on the proper port, it does seem to stay there
through reboot.

To connect the serial port, you may need to Refresh Devices, Refresh Services, then Connect. When all is
working well you can identify the port being used in the Status window-

Page 66

At this point BASICtools will work normally, (make sure you check the Wireless option, and note that the
serial port will not be one identified as a USB serial - in capital letters)-

Also if you disconnect the service in the BlueSoleil utility, you will need to exit the program, restart it, refresh
devices, refresh services and then connect.

Page 67

On to Step 2

Page 68

Step 3: Make BlueTooth SMD module connections
The Wireless ARMmite can be connected to SparkFun's BlueTooth v2.0 SMD module .

Under development

So far there has not been enough customer interest to complete this board.

Page 69

http://www.sparkfun.com/commerce/product_info.php?products_id=149

Step 3: Custom Serial connections
The Wireless ARMmite can be used with the USB breakout board to download BASIC code, but then use
the download/debug connection to communicate with some other serial device..

Available serial connections. The pin diagram is shown below (pin named for perspective of the ARM CPU,
RXD is an input to the ARM).

Page 70

BASICtools Features
BASICtools startup

When BASICtools starts up, it will STOP any user program. So if you find yourself with a program flooding
the PC serial port with data, close BASICtools and then restart it (you may need to use the Task Manager to
exit). It will STOP your spewing program.

BASICtools Layout

keyw ords: enter line debugin type BASIC commands

Buttons

 ..

Page 71

The CLEAR button only erases the display screen and the buffer on the PC of statements you have typed
into the Enter window.

To erase the program, load a new program, either a line at a time or using the Load menu.

keyw ords: reset button stop button run button clear button

File Menu

 ..

file load file reload file print save file quit

Page 72

Edit Menu

 ..

keyw ords: edit choose editor

Options Menu

Refresh will check for serial devices again, it is useful if you plugged a device in after starting BASICtools.

keyw ords: options port baud new line char mode PC compile control throttle

Control Menu

Page 73

keyw ords: options port baud new line char mode PC compile control throttle

BASIC variable viewer

Open this window from the Tools Menu (variables)

variables window

Page 74

This page is active when your program ENDs or hits a STOP statement or has been STOPed with the button.

code window

keyw ords: variable dump breakpoint STOP view memory

Search Window

Open this window from the Edit Menu

Page 75

keyw ords: search
Logic Scope Window

This module must be included in your BASIC program. It will monitor the pins for a period of time when called
from your program.

See the example program ScopeDemo.bas and details in the Logic Scope Section .

Page 76

keyw ords: oscilloscope logic analyzer logic scope

Page 77

Win98 Setup

 The BASICtools.exe is not compatable with Win98. BASICtools.exe is generated by the Freewrap
utility which turns a Tcl program into a standalone executeable requiring no other .DLLs or support programs.

 There seems to be a bug in the Freewrap that does not support the calls to batch (.BAT) files that
BASICtools uses to run the pre-processor.

 When Tcl is installed on a Win98 system, and the Tcl source is run that way, it all functions normally. So
that is the current work-around for Win98 systems. So to run BASICtools on Win98, you will need to
install some version of TclTk. We like the MinGW version as it is pretty simple and requires only a few
.DLLs. This is available at SourceForge.net, and we also have a copy on our server-

TclTk 8.4.1 installation

This is a self-extracting executeable that will install TclTk.

Once this is installed copy the BASICtools.tcl file to the \Program Files\Coridium\ directory

BASICtools.tcl

Change the Desktop shortcut for BASICtools from

C:\Program FIles\Coridium\BASICtools.exe to C:\Program FIles\Coridium\BASICtools.tcl

This will launch the Tcl source version which runs on Win98.

While this is not optimal, it does work, and will probably be required for Win98 to be used.

Page 78

http://www.coridiumcorp.com/files/tcltk.exe
http://www.coridiumcorp.com/files/BASICtools.tcl

ARMbasic Standalone Compiler

This section does NOT apply to Coridium Hardware
Products, it is for installing BASIC on boards from

other vendors.

The ARMbasic compiler runs on the PC, in combination with a BASIC support library that is installed on the
ARM.

Getting Started
 Install Software
 Install DEMO Firmware
 Unlocking the firmware installer

 Writing your first program
 Programming the IO
 More complex programs
 Trouble Shooting
 BASICtools Features

Page 79

This section does NOT apply to Coridium Products, it is for
installing BASIC on boards from other vendors.

Step 1: Install Software
The ARMbasic compiler runs on the PC, in combination with a BASIC support library that is installed on the
ARM. Coridium supplies BASICtools which includes a terminal emulator and IDE that is specifically
designed to run BASIC on an ARM processor. Also, a number of help files and documents about the
ARMbasic will be installed on the machine at this time. This installer is meant for 32 bit WIndows either NT,
XP or XPx64 and Vista.

The software is downloaded from the web, and run as an installer SETUP program.

 Click Next to get started.

 Accept the defaults and Install. You may chose a different target directory.

Page 80

 The installation will now run, and when it finishes hit Close .

 And its as easy as that.

On to Step 2

Page 81

This section does NOT apply to Coridium Products, it is for
installing BASIC on boards from other vendors.

Step 2: Install DEMO Firmware, if you have purchased
the compiler skip to step 3
The ARMbasic compiler is freely downloaded, but the utility to install BASIC support libraries is locked to a
PC. But we do support a DEMO mode that limits variables to 100 words and 4K of code. To install this
firmware follow these steps.

The software installed in the previous step is NewFirm for the standalone ARMbasic compiler.

 NewFirm allows you to choose the serial port on the PC from a list of known ports. Ports in that list that
are capitalized were determined to be using FTDI USB serial devices. You must also set the control type,
For Coridium style designed boards which use DTR for reset and RTS for boot, this can be selected by the
Normal checkbox. For boards without those connections, you must Manually get the board into a ROM boot
configuration. This is done by holding P0.14 low while asserting RESET. For instance on Olimex boards this
is done by shorting the BSL jumper while pushing RST. On Futurelec boards, hold the LOAD button while
pressing and releasing RESET.

Page 82

Page 83

If this does not pass, then you cannot go on to the next step. You must verify your connections, choice of
COM port, and whether you are driving P0.14 low while driving RST on the LCP2xxx low, and then releasing
it. These would be the same steps you use to program any hex file with a program like FlashMagic. Refer to
the documents that came with your PCB.
Once the TEST passes, you can load the DEMO code. Set the CPU and Crystal values. Then you can
LOAD DEMO firmware.

Install Firmware on ARM
 This part of the install needs to be run once to place a base set of libraries on the ARM processor. This
firmware includes the initialization code, communication routines, and a set of subroutines called from the
user ARMbasic program.

The NewFirm utility is also used to accomplish this. The first time you run this portion of the installation, a
key will be required. This process is not yet automated, and requires you to get a key from Coridium. For
details on that look at the unlock pages .

After passing the communication TEST, choose the CPU type -

Page 84

Once the CPU is chosen the TEST button will become an UPDATE.

Before doing the UPDATE, check the Crystal setting, for instance the Olimex board uses a 14.7456 MHz
crystal.

You can also choose the default baud rate.

Page 85

Remember, that if you change the baud rate here, you will need to set the baud rate in BASICtools, the
default is 19.2Kb.

Now you are ready to place the Firmware on your PCB.

You can use the UPDATE option if you have purchased an ARMbasic firmware license, if not you can install
the demo code.

Click UPDATE or click LOAD DEMO

Assuming all was connected correctly, you will see something like above, and you are now ready to start
writing ARMbasic programs. This is the last time you will need to run the NewFirm program, as the portion
of the Flash that contains your program will be maintained by the BASIC program.

Remove any BOOT jumpers, and press RESET, which will now launch the ARMbasic runtime monitor
running on your PCB.

If you bought an ARMbasic compiler, continue to installing full firmware.

Page 86

If you are just running the demo code, continue to write your first program.

Page 87

Step 3: Writing your first Program with BASICtools
Start the BASICtools from the StartMenu or from the Desktop Icon. You should see a welcome message
which has been sent from the ARMmite or ARMexpress-

If you do not see this welcome, even after pushing the RESET button, then communication has not been
established.

 check cables
 check power supply
 check COM port choice in BASICtools -> Options
 check baud rate in BASICtools -> Options
 on non-Coridium Boards, remove any BOOT select jumpers, press RESET again
 if still not working, check theTrouble Shooting Section

The traditional "Hi Mom" program

Page 88

So type something like the traditional PRINT "Hi Mom"
When you hit the ENTER key it will be sent to the ARMexpress and be echoed back
in the console window. (below)

Now RUN the program

Page 89

Which you can do by either typing RUN or hitting the RUN button at the top of the screen.

And see the results

You can notice a number of things. First the program is compiled and then written into
Flash memory, and your program takes 40 bytes of code and less than 10 bytes of data space.
Next the program will be executed, as evidenced by the output of "Hi Mom" to the console.
ARMexpress also reports back how long the program executed, in this case 4 msec, which is mostly startup
time.

Also your program is now saved in the ARMmite/express Flash memory. And it will be executed the next
time the board is RESET. So try that...

Page 90

On to Step 4

Page 91

Step 4: Programming the IO
Clear previous program

To begin a new program, you should CLEAR the previous one. You can do this with either the button or by
typing clear.

A program that uses IO

Type the following program in the console window. (below -- assuming Olimex 2106 proto board, an LED is
connected to IO(12) on the Olimex, IO(15) on many Coridium boards).

DIR(12)= 1 ' enable pin 12 as an output
WHILE X<30
 OUT(12) = X AND 1 ' drive pin 15 high when x is odd, low when x is even
 X=X+1
 WAIT(500)
LOOP

Now RUN the program

Page 92

The LED on the PCB should pulse 15 times.

You can allow the program to finish or --

Stop the program

To stop a running program simply press the Stop button.

On to Step 5

Page 93

Step 5: More Complex Programming
Choose a File

While the Enter line can be useful for small programs or quickly checking out hardware, you will probably
soon need to write larger programs. The way to do this is with a text editor. We don't enforce any text editor
on you, you can choose your favorite. We tend to use the Crimson Editor, though a number of users are
liking NotePad Plus (NPP). Once you've typed up your program you can load that with BASICtools. It is
easier to create a larger program with a text editor and then to Load File. You can link BASICtools to your
favorite editor with the options (see the next section), or launch the original Windows Notepad if no editor is
chosen.

Also the Enter line is limited in that #include <library> may be used, but the general pre-processor #include
and other #directives should be avoided when typing a program a line at a time.

Page 94

http://www.crimsoneditor.com/
http://notepad-plus.sourceforge.net/uk/site.htm

You're now ready to start tackling your application. Check with the Yahoo Forum for files and help from
other users of ARMbasic products. There are also examples on the Coridium Website Programming
pages.

For more details on the BASICtools IDE check the next page.

Page 95

http://tech.groups.yahoo.com/group/ARMexpress/
http://www.coridiumcorp.com/ProgrammingEx.php
http://www.coridiumcorp.com/ProgrammingEx.php

BASICtools Features
BASICtools startup

When BASICtools starts up, it will STOP any user program. So if you find yourself with a program flooding
the PC serial port with data, close BASICtools and then restart it (you may need to use the Task Manager to
exit). It will STOP your spewing program.

BASICtools Layout

keyw ords: enter line debugin type BASIC commands

Buttons

 ..

Page 96

The CLEAR button only erases the display screen and the buffer on the PC of statements you have typed
into the Enter window.

To erase the program, load a new program, either a line at a time or using the Load menu.

keyw ords: reset button stop button run button clear button

File Menu

 ..

file load file reload file print save file quit

Page 97

Edit Menu

 ..

keyw ords: edit choose editor

Options Menu

Refresh will check for serial devices again, it is useful if you plugged a device in after starting BASICtools.

keyw ords: options port baud new line char mode PC compile control throttle

Control Menu

Page 98

keyw ords: options port baud new line char mode PC compile control throttle

BASIC variable viewer

Open this window from the Tools Menu (variables)

variables window

Page 99

This page is active when your program ENDs or hits a STOP statement or has been STOPed with the button.

code window

keyw ords: variable dump breakpoint STOP view memory

Search Window

Open this window from the Edit Menu

Page 100

keyw ords: search
Logic Scope Window

This module must be included in your BASIC program. It will monitor the pins for a period of time when called
from your program.

See the example program ScopeDemo.bas and details in the Logic Scope Section .

Page 101

keyw ords: oscilloscope logic analyzer logic scope

Page 102

This section does NOT apply to Coridium Hardware Products, it is
for installing BASIC on boards from other vendors.

Writing ARMbasic Firmware
The ARMbasic compiler is freely downloaded and there is a demo version of firmware freely available, but the
to install the full BASIC a special NewFirm utility has to be purchased from Coridium.

The software installed in the previous step is NewFirm for the standalone ARMbasic compiler.

A specific version of the NewFirm has been built for you. This utilty does require a network connection, and it
is limited to 5 installs for the single user license, and 100 installations for the commercial license. Larger
licenses are available, contact the Coridium Sales Department.

 On to Step 3

Page 103

Trouble Shooting
Reset Target PCB shows no message

Most PCs have a number of COM ports, you might not have the correct port selected, you can change that in
the Options>Port Menu This window lists all the available ports, those in capital letters are recognized as
FTDI USB serial ports and are usually the location of the ARMexpress Eval PCB or the ARMmite.

One other reason that communication could be lost, is that the driver can lose sync with the card if it is
disconnected and reconnected with the USB, especially when BASICtools or TclTerm (under MakeItC) is
running and connected to the card. When this happens it is often necessary to restart the PC. Because the
serial port is being emulated, and the Windows enumerator gets involved, when the USB is disconnected, the
various pieces of software can get confused if the port is open. If you are using the original hardware serial
port, normally with COM1 this is not an issue.

Determining which COM port should be used

 This can be found in the Control Panel>System>Device Manager

Page 104

COM port conflicts

 While rare there are systems out there with non-plug and play serial ports, or its possible for 2 com
ports to have the same address. The address can be changed from the Control Panel.

 Control Panel> System> Hardware> Device Manager> Ports> Port Settings> Advanced

Page 105

Check the USB Driver version

 Our software does not reinstall the USB drivers if they already existed. We expect to be running version
2.4.6.0 dated 3/13/2008 (for XP). Find this in the Control panel>Driver properties

Page 106

If this does not match, then you have an older driver and it should be updated...

Offline indicator

 This will be shown if the port you were using last time the program was run is no longer available. You
must reselect a Port using the Option Menu to reestablish communication with the ARMmite or
ARMexpress.

Page 107

Check Baud Rate

Or you might not have the correct baud rate selected.

Check your cables

Check the serial connection to your PCB.

Odd behavior following Windows Update

Page 108

In rare cases, when the Windows Update has automatically rebooted while BASICtools was running, the
serial port settings of BASICtools have been corrupted. To correct this, reboot the system, and if the problem
persists delete the BASICtools configuration settings (BASICtools.ini, it will be regenerated when you run
BASICtools). This file is located in the %AppData%\Coridium directory.

Have Fun!!

Page 109

The Compiler

The Compiler
 About
 Main Features
 Requirements
 ARMbasic and other BASICs
 Differences from PBASIC
 Frequently Asked Questions
 Pre-processor
 Revision History
 Notices

Page 110

http://www.coridiumcorp.com

About

 ARMbasic is a 32-bit BASIC compiler for ARM processors. It was started to create a portable, alternative
to hardware debuggers, but has quickly grown into a powerful programmable controller tool, already including
support for asynchronous serial, I2C, SPI, PWM, timer and counter operations. It is run on ARM CPUs such
as that found in the ARMexpress PCB, which is pin compatable with other DIP24 modules such as the
Parallax BASICstamp.

 ARMbasic is simple to use, and runs totally on the ARMexpress or from the PC for the ARMmite, and
both can programmed from a serial port. The target applications include control functions, so performance
and a powerful set of hardware routines have been included. The language has a minimum of overhead when
compared to larger general purpose languages.

 Aside from having a syntax the most compatible possible with MS-VisualBASIC and PBASIC, ARMbasic
introduces several new features such as hardware specific routines, string support, limited pointers and many
others.

 ARMbasic is written in ANSI-C compiled with GCC.

Page 111

Main Features

Simplicity

 Many control applications can be accomplished in a very small program
 ARMbasic can be installed in minutes, and be solving your control problems just as quickly
 While BASIC is considered a simplistic language, ARMbasic with built-in hardware functions and the

speed of compiled code can be a higher performance solution than many more complex languages
 As it is an incremental compiler, it has the feel of an interpreter. Its quick and easy to debug its

programs. Why learn a new development system, you can either enter programs directly from the
console or use any text editor that you are already familiar with.

BASIC Compatability

 ARMbasic from Coridium is not a "new" BASIC language. It is not required of you to learn anything
new if you are familiar with any Microsoft-BASIC variant. Even if you don't have knowledge of the
BASIC language, its constructs are easy to learn and easy to use.

 ARMbasic is case-insensitive; scalar variables don't need to be dimensioned or declared before
use; MAIN function is not required. Syntax follows much of that of Microsoft-Visual BASIC

Most of the PBASIC IO functions have been added

 INPUT and OUTPUT control pin direction
 HIGH and LOW control pin output values
 I2C on any of the 15 pin pairs
 SPI using any group of 2/3 pins
 HWPWM on ARMmite/ARMweb
 Software PWM on any pin with 256 levels
 FREQOUT on any pin upto 50 KHz
 PULSIN and PULSOUT will measure or output a pulse
 SHIFTIN, SHIFTOUT can be used for SPI or MicroWire devices
 OWIN and OWOUT support one-wire devices
 SERIN, SEROUT can be used for low duty cycle asynchronous serial ports on any pin upto

115Kbaud
 RCTIME will measure a capacitive delay

Support for 32-bit variables and Strings

 Integer: (32-bit math)
 String support

Arrays

 Static arrays supported, up to 32KB in size on the ARMexpress, 4KB on the ARMmite
Memory Limits

 All arrays, variables and strings are allocated from a 33KB space on the ARMexpress, 5KB on the
ARMmite

 Code will include user programs, constant strings (used in expressions or PRINT), DATA constants.
 On the ARMexpress 48KB is available for user programs, and an additional 8KB is available for

DATA constants and constant strings. 4KB of this space (overlays DATA area) can be written into
Flash and functions as non-volatile memory. Note that Flash may be written a minimum of 100K
times.

 On the ARMmite 19KB is available for user programs, and 1KB shared for DATA constants (256
max) and constant strings.

Direct Hardware Access

 Uses the same syntax as C-pointers
Debugging support

 The ease and speed of an interpreter.
 Dump of variables used

Included with any module

Page 112

 The ARMmite and ARMexpress compile their programs on the PC and they are downloaded using
BASICtools, that compiler is part of the utilities available on CD or download from Coridium

Page 113

Requirements

All versions

 ARMbasic for the ARMmite, Wireless and ARMexpressLITE runs on Windows and is controlled by a
USB port..

 The ARMbasic compiler runs on the ARMexpress hardware platform and only requires a terminal
emulator connection through either a USB or serial port, but to get pre-processor functions the
compiler needs to run on Windows.

 The ARMbasic compiler runs on the ARMweb hardware platform and only requires a browser for
programming.

 TclTerm is a terminal emulation program written in Tcl, and has been ported to Windows. Other
terminal emulators may be used, if they allow control of DTR/RTS, or they can be run in Legacy
mode .

 Documentation is available in both Windows CHM format and HTML.

Page 114

Installing

Window Vista

 Follow the installer instructions which are also outlined in the Getting Started section. The compiler
is run on the PC and hex code is downloaded and stored in Flash on the ARM chip.

 Connection to a PC is done with a serial port, details in the corresponding Getting Started Section
.

Windows Vista 64bit version

 The Windows XP installer BASICtools and TclTerm interface program works for WinXP x64, but the
drivers specific for x64 and the FTDI interface must be used.

Windows XP

 Follow the installer instructions which are also outlined in the Getting Started section. The compiler
can be run on either the PC or the ARMexpress. New debug features of BASICtools do rely on the
compiler being run on the PC.

 Connection to a PC is done with a serial port, details in the corresponding Getting Started Section
.

Windows XP 64bit version

 The Windows XP installer BASICtools and TclTerm interface program works for WinXP x64, but the
drivers specific for x64 and the FTDI interface must be used.

Windows 2000

 The Windows XP installer, BASICtools and TclTerm interface program works for Win2000.
Windows 98

 Win98 is no longer supported, if you have an old machine install Win2000 on it.
Linux

 Currently an installer is not supported, but only the documentation and a terminal emulator are
required.

 A command line interface has been developed for Windows as an example of how to do the same in
Linux. The necessary files and sources can be found in the files section of the Yahoo
ARMexpress Group . There is an effort to port this to Python going on, contact Coridium if you
would like to help.

Others

 To communicate with the ARMexpress, a connection to a serial port is required
 The documentation is available in HTML format so anything with a browser should be capable of

using it.
 Parallels on Mac OS X runs with the WinXP utilities. OS X version of Tcl does not currently support

serial devices so we have not been able to port our utilities to run natively on the Mac.

.

Page 115

http://tech.groups.yahoo.com/group/ARMexpress/files/
http://tech.groups.yahoo.com/group/ARMexpress/files/

Running

Windows version

 A desktop icon and start-menu links should be created by the installer, use them to open the
console directly into the directory where the tools are stored

 see Getting Started section
Linux version

 port not done, though the source is available
 an alternative implementation exists at http://www.devscott.org/projects/bside/

Mac version

 runs on Parallels using WinXP
DOS version

 no direct support for this

Page 116

http://www.devscott.org/projects/bside/
http://www.devscott.org/projects/bside/

ARMbasic and other BASICs

ARMbasic and Visual BASIC have different goals. Visual BASIC is a general purpose language that includes
access to various elements of Microsoft Windows and its application programs. ARMbasic is a small
language aimed at controlling hardware with some communication abilities with host systems. Wherever
practical ARMbasic is a proper subset of Visual BASIC. Some elements of earlier BASICs do not apply to
Visual BASIC, but still do in ARMbasic. These elements include keywords such as RUN and CLEAR.

Data Types

 Visual BASIC has a rich set of data types as well as some object oriented extensions.
 In ARMbasic the default data type is 32 bits (SIGNED INTEGER), and also supports arrays of

SIGNED INTEGERS and STRINGs.
Changed due to ambiguity

 FOR..NEXT is ambiguous for negative STEP. To clarify negative steps use DOWNTO.
Design differences

 One goal of ARMbasic is to be a simple, easy to use language, but still be a powerful tool for
controlling hardware. For this reason a simple subset of BASIC has been chosen, with extensions
for hardware control.

 Only single dimension arrays are supported.
Pre-Processor

 This is a very powerful tool available to C programmers, but not available in many BASICs
 The C-preprocessor (CPP) has been integrated into BASICtools

Page 117

Differences from PBASIC

Although version 6 ofARMbasic has an extremely similar syntax to PBASIC, there are subtle differences.

ARMbasic version 7 has been shipping and it abandons the script style commands of PBASIC hardware
routines in favor of Visual BASIC like functions and subroutines in seperate libraries accessed by #include.

32-bits vs. 16-bits

 ARMbasic is written for 32-bit hardware, and cannot utilize code which depends on 16-bit truncation.
 The default data type is 32 bits, rather than 16 bits in PBASIC.

Changed due to ambiguity

 FOR..NEXT is ambiguous for negative STEP. To clarify negative steps use DOWNTO
 The PBASIC syntax of IN0, DIR0, OUT0 has problems with parameterization. It is replaced by the

use of IN(0), DIR(0) and OUT(0).
 The formatted input of many PBASIC words will in many cases hang waiting for input if it is not of the

proper form. Its better to accept any or all input and then parse it later, but PBASIC does not have
that ability. A simple set of string functions have been added to ARMbasic to interpret input

Design differences

 Integer variables do not need to be declared. This is common to most other BASICs. ARMbasic
does not require simple variables to be declared before use. As of version 6.23 of the Windows
ARMbasic compiler allows the use of DIM xxx AS INTEGER to declare simple variables, and will
enforce that all variables be declared by DIM after that first DIM declaration.

 As there is much more variable space available, simple BIT, NIBBLE, BYTE types are not supported.
Arrays of BYTE also called strings are supported

 Normal BASIC array declarations are supported using DIM. Unlike PBASIC syntax.
 PIN declaration is replaced by treating pins as an array IN(x) vs INx. This makes parameterization of

pins simpler.
 The standard CONST syntax of most BASICs is used instead of PBASIC CON syntax
 Multiple statements on a single line are not supported
 The standard PRINT is used and its syntax is used in place of PBASIC DEBUGOUT
 Simple statements must be completed on a single line, run on statements are not supported
 The $ suffix can be used to declare strings using the DIM statement
 Strings use a null (char 0) terminator .
 CLEAR is used to reset all variables and reset the stack.
 In an interpreter there is an advantage to having functions such as &\ |\ ^\ ** *\ DIG and DCD But

these are easily done in a compiled BASIC and have no performance or space penalty.

 x = NOT (a AND b) ' equivalent to a &\ b

 x = a * b >> 16 ' equivalent to a ** b (for 16 bit values)

 x = a * b >> 8 ' equivalent to a */ b (for 16 bit values)

 x = y /1000 mod 10 ' equivalent to y DIG 4

 x = 1<<6 ' equivalent to DCD 6

 HYP, TAN and NCD are not implemented in ARMbasic
 Many differences will be handled in the PBASIC translator pre-process step (under development)
 -$hex values are not supported

Design simplifications

 Only 1 statement per line is allowed
 run-on statements are not allowed (continuation to the next line)
 Formatted input is replaced with elementary string functions

Archaic commands

Page 118

 DTMFOUT is not supported.
 ON and BRANCH should be coded using SELECT CASE.
 LOOKUP can use arrays or strings.
 LOOKDOWN should be coded using SELECT CASE
 GET, PUT can be replaced with arrays

Page 119

Preprocessor for BASIC

Most BASICs do not have a pre-processor. ARMbasic does not include one as part of the standard
language, but a version of the CPP has been included as part of the utilites.

These are the most common directives that apply to use with ARMbasic: Unlike ARMbasic these keywords
and any parameters used in them ARE CASE SENSITIVE. The pre-processor is run on the PC, so it is nor
available when using the builtin compiler of the ARMweb. However the compiler with preprocessor can be
used to generate files that can be downloaded to the ARMweb (use the Save Intermediates check box in the
Files menu of BASICtools).

#include "filename"

#include <filename>

#define

#ifdef

#ifndef

#if

#if (defined)

#else

#elif

#endif

#undef

#error

#warning

The CPP (C preprocessor) is a very powerful tool, most users use just a fraction of the features, but if you
want the full story check this 90+ page document from the Free Software Foundation.

CPP operation

The CPP is a multi-step process carried out automatically by the BASICtools program. All operations are
done in a temp file directory created at c:/Program Files/Coridium/temp. All files in this directory will be
deleted when a File>>Load is performed by BASICtools.

It starts with your source file, and it will be copied into the c:/Program Files/Coridium/temp directory. When
copied all comments will be stripped. All included files will be also copied into this temp directory. Then the
CPP will be run on the files in that temp directory creating a __temp.bpp file that is the result of all the
pre-processor operations. This __temp.bpp file will be combined with other information as __temp.bas and
then compiled by ARMbasic.exe and its output is __temp.out. This __temp.out file is a modified Intel hex
format of the code generated by the source BASIC program. __temp.out will be downloaded to the
ARMexpress or ARMmite.

In addition __temp.bat and __errors.tmp files will be created. __temp.bat is a batch file used in the
compilation process. Errors from the compile or any of its steps will be contained in __errors.tmp.

Page 120

http://www.coridiumcorp.com/files/rhel-cpp-en.pdf

Frequently Asked Questions

ARMbasic questions:

What is ARMbasic?

 ARMbasic is a compiler included in a family of modules using the ARM CPU from Coridium Corp. The
compiler runs on the ARM processor for the ARMexpress and ARMweb products or on the PC for the
ARMmite.
 Aside from having a syntax generally compatible with Visual BASIC, ARMbasic introduces several
features of the popular PBASIC, including I2C, SERIAL, PWM, IN, OUT and FREQOUT.

 ARMbasic is written in ANSI C, compiled with GCC.

Who is responsible for ARMbasic?

 Coridium Corp. distributes and maintains ARMbasic. They can be contacted at
www.coridiumcorp.com .

Why should I use ARMbasic?

 ARMbasic has innumerable advantages over the alternatives.
 It's fast.
 It produces compiled machine code not interpreted tokens.
 It's simple.
 It has powerful hardware functions builtin for the popular serial control busses.
 It's cost effective.
 It's easy to use
 Did we say it's fast?

Why should I use ARMbasic rather than GCC?

 There's no question that some problems require more complex languages. But many control problems are
quite simple and this is what ARMbasic exceeds at. In many cases ARMbasic will run faster than a
compiled C program. How is that possible, you ask? The answer is that ARMbasic has only global scope,
there is no stack frame in the majority of the user code. Control transfers are faster than procedure calls of
C or Java. ARMbasic is a compromise of speed and code size, but it compares favorably to programs
written in C.

How fast is ARMbasic?

 The fastest loops use the WHILE ... LOOP, with a simple loop running 4 million iterations per second.
 Loops take a number of instructions to execute, when running simple instructions such as X= X+1, it will
run at speeds exceeding 13 million lines per second.

What differences are there between ARMbasic and PBASIC?

 See Differences between ARMbasic and PBASIC.

How compatible is ARMbasic with Windows Visual-BASIC code?

 ARMbasic uses Visual BASIC syntax where compatible. Its unlikely you'll be porting a Visual BASIC
application to ARMbasic, but if you do let us know about it.
 Being a subset of Visual BASIC opens a larger audience of programmers to this tool, including those who
may not have thought they'd be writing code for programmable controllers. .

Does ARMbasic support Object Oriented Programming?

 ARMbasic does not support Object Oriented Programming.

Page 121

http://www.coridiumcorp.com

Variable Scope

 All labels and variables are global in ARMbasic. The advantage is that there is little stack overhead
which gives greater performance.

 As of version 6.24, of the PC compiler a local scope for functions has been added. At present this
only requires a change to the compiler running on the PC not firmware on the ARMexpress/mite.

Floating Point Math

 ARMbasic uses 32 bit math for all numeric operations. There is no plan to add floating point at this
point. Floats are available in C for the ARMexpress and ARMmite.

Why have any of the compiler on the ARM?

The original ARMexpress had the compiler completely on the ARM, and this was the heritage of where the
compiler came from and why it came into existance. But the intention was always to have an ARMweb
product, and for that product to support adding ARMbasic statements into a webpage that are executed on
the fly. The only reasonable way to do that was to be able to compile those statements at runtime during
page service, and that means the compiler has to live at least on the ARMweb.

The 2103 group of products uses a very small ARM memory chip, so the runtime and hardware libraries that
are used by the ARMbasic are all that is included there.

Another side-effect of the compiler being onchip, is that it had to be small, and the smallest compilers are of
the recursive-decent type, which includes the ARMbasic compiler. What this means is that the syntax of the
language is included in the source of the compiler parser. An advantage of these compilers is the size and
normally they are also pretty fast. Some of the bad things are you can break the compiler with some odd
coding styles. As there is a stack being used for parsing, you can make that overflow with statements that
cause a lot of recursion like-

x =
((1))
))))))))))))))))))

But why would you need to write any code like that? Another "feature" of recursive decent compilers is that
error recovery can be poor. The way we chose to do this is to have any error reset the parser to the
"outermost" state. What this means is that if an error occurs inside a loop like

DO
 x x =2
 y = 3
LOOP

will cause an error on the LOOP statement as well as the x x = 2 statement, as the loop has been broken
as the parser returns to the outermost state. Yes this causes errors on good statements, but its a prudent
choice from our perspective. You don't want the compiler guessing what you meant and correcting your code
(I believe PL1 tried that to comical results).

What are the planned future features for ARMbasic?

 more string functions
 more serial busses
 more hardware functions
 networking
 analog functions
 let us know what you need

Getting Started with ARMbasic questions

Advanced ARMbasic

Can ARMbasic be customized?

Page 122

Coridium Corporation is aimed to produce high performance modules based on the latest technologies.
Currently this includes the ARM processor. But Coridium also has the engineering resources to customize
our designs for the specific needs of our OEM customers. This may include an interface to a specific
peripheral chip with language extensions added to the ARMbasic. It may also include an FPGA solution to
extend the capabilities of both the hardware and software.

So if you need something special, but want the ease of use of ARMbasic, tell us about your application. We
are quick to respond, and have designed a custom hardware software combination that delivered prototypes
in a couple of weeks, and production volumes within a month.

What volumes make sense for customization? It depends on the complexity, but at a few hundred units the
numbers begin to pencil out.

Page 123

Revision History

Revision History:

6.06

 ARMbasic initial release summer of 2006

 This version of hardware uses open drain IOs on IO(5) and IO(6), this will be changed in future versions.

6.07

 Generalized the operation of the I2CIN (backward compatable) and I2COUT.

 Optimized all index operations (includes arrays, input/output and strings). Gave 3x performance
improvement for these types of operations. Now no difference in using constants or expressions for indexes.

 Added the ability to use SIN and SOUT pins for SERIN, SEROUT, BAUD(), RXD() and TXD() as pin 16.

 Corrected STRCOMP function.

6.08

 Extended break timeout on RESET to 0.5 second.

 Accept either CR or LF to terminate a line.

 SLEEP now goes into a power down mode using alarm function to wake up.

 DEBUGIN string$ added

 Enforce proper declaration of strings and arrays

 Multiple string concatenations allowed per line

 noted an error - BAUD rate for port 16 can not be changed currently.

6.09

 Added string$ support as an Outputlist in hardware functions (zero terminated or constant string)

 Expanded the space available for programs to 56K.

6.10

 Support for ARMmite.

6.11

 BAUD rate setting for port 16 (the hardware serial port) is now allowed. The ARMexpress transceivers limit
speed to 19.2Kb, but the ARMmite can run up to 942Kb on port 16.

6.12

 Expanded symbol table on ARMexpress, and also allow PC to compile for ARMexpress, which allows
much larger symbol table.

6.13

 Added SPIMODE and SPIBI.

6.14

 Fixed a bug affecting ARMexpress only in large programs with certain GOSUBs. The bug resulted in
programs restarting at the GOSUB.

6.15

 Improved SPI performance.

Page 124

6.16

 Improved SERIN performance to accept 115.2 Kb streams. There is still a 30 uSec startup for SERIN, and
RXD() has better performance as long as the pin is not changed.

6.17

 Added HWPWM for 8 channels, though there is a bug that times for channel 7 and 8 are swapped. Added
send of + character after Flash has been written, this was done as XON/XOFF was overrunning, and this is
used to handshake with BASICtools.

6.18

 Fixed HWPWM swap of channel 7 and 8. Added gets() like support for SPIIN, SERIN, OWIN and I2CIN.
Also added I2CSPEED for slower I2C devices. Corrected subtract followed by divide bug.

6.19

 Added I2CSPEED to slow down I2C operations for older parts or long cables. DATA statements can
contain negative numbers now. 32 bit constants on ARMmite or when using PC compiler. On ARMexpress
compiler constants while still limited to 16 bits are sign extended. ARMexpress was reporting missing
labels, but ARMmite was not, now fixed. Allow for multiple strings in data lists of SEROUT, I2COUT,...
Corrected error reporting of strings missing a final ". DEBUGIN now accepts negative numbers. INTERRUPT
keyword added. Support for ARMexpress LITE.

6.20

 Support for STOP as a breakpoint.

6.21

 SERIN_TIMEOUT added. Support for Wireless ARMmite. HWPWM supports duty cycles upto 40
seconds. Baud rates for SERIN/OUT 16,baud works again.

6.22

 Support for ARMweb.

6.23

 Refinements for ARMweb and STRSTR, STRCHR and TOUPPER string functions. SERIN, RXD was
filtering ESCAPE and ctlC characters on pin 16 (UART0). This has been corrected.

6.24

 Added DIM name AS INTEGER and SUB .. ENDSUB local scope (as this is an ARMbasic.exe feature it
is backward compatable to 6.17 and later firmware versions.

 Firmware changes: only look for ESC/ctlC for 500/1000 msec after reset (1000 for wireless versions). RND
function added (uses an LCG algorithm). HWPWM now uses times in microseconds rather than duty-cycles.

6.25

 Added FUNCTION ... END FUNCTION, BYREF and BYVAL parameters for SUB/FUNCTION. This change
affects the compiler on the PC or ARMweb.

7.05

 Support for old and new firmware versions (new firmware moves builtin functions into #include'd libraries).

 fixes to FUNCTIONs and SUBs. Null strings ("") allowed. String constants can be used in string BYREF
calls. DIM enforcement of variable declarations once used. VB style CALLs to FUNCTION/SUB, i.e. CALL
keyword is optional. Access to hardware registers via * is optiimized.

7.09

 Firmware support and PC compiler support for interrupts (both are required).

 Improved PC compiler generation of constants.

7.10

 Minor fixes in PC compiler for calls to SUB/FUNCT with constant strings, flag embedded chr(0) in string
expressions. Improved some error messages in PC compiler.

Page 125

7.11

 Support for VBstyle CGIIN, MAIL, UDPIN and UDPOUT for ARMweb.

7.13

 Support for BAUD0 to change UART0 speed. TXD0 subroutine syntax supported.

 Support for UART1 added with BAUD1, RXD1 and TXD1

 Support for FREAD, WRITE to Flash.

 Both PC compiler and firmware are required

7.17

 reorganization for generic compiler.

7.18

 fix for ARMexpress LITE AD. Inline TIMER code added. and improved constant generation.

7.20

 Improved call/return. Expanded *pointer handling, and added & addressOf operator.

 TX FIFO enabled.

7.41

 changed call/return mechanism for better performance.

8.02

 added support for Cortex parts.

8.05

 initial bug fixes for Cortex parts.

8.08

 added error reporting when an integer operand expected but not found.

Page 126

Notices

 NO WARRANTY

 1. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. CORIDIUM PROVIDES THE PROGRAM "AS IS" WITHOUT WARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM

IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF

ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 2. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL CORIDIUM BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,

INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO

USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE

OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR

OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The ARMbasic© compiler is distributed as part of hardware sold by Coridium Corp. such as the ARMexpress
module. All rights to the compiler are reserved under copyright to Coridium Corp. It may not be copied or
reverse engineered..

 Windows® is a registered trademark of Microsoft Corporation.
 VisualBASIC® is a registered trademark of Microsoft Corporation.
 BASIC Stamp® is a registered trademark of Parallax, Inc.
 PBASIC™ is a trademark of Parallax, Inc.
 I2C® is a registered trademark of Philips Corporation.
 1-Wire® is a registered trademark of Maxim/Dallas Semiconductor.
 SPI™ is a trademark of Motorola

 This documentation is released under the GFDL license.

Page 127

The Language

The Language
 Pre Processor
 Simple Statements
 Compound Statements
 Other Statements
 Functions
 Operators
 Data Types
 Alphabetical Keyword List

Page 128

http://www.coridiumcorp.com

Preprocessor for BASIC

Most BASICs do not have a pre-processor. ARMbasic does not include one as part of the standard
language, but a version of the CPP has been included as part of the utilites.

These are the most common directives that apply to use with ARMbasic: Unlike ARMbasic these keywords
and any parameters used in them ARE CASE SENSITIVE. The pre-processor is run on the PC, so it is nor
available when using the builtin compiler of the ARMweb. However the compiler with preprocessor can be
used to generate files that can be downloaded to the ARMweb (use the Save Intermediates check box in the
Files menu of BASICtools).

#include "filename"

#include <filename>

#define

#ifdef

#ifndef

#if

#if (defined)

#else

#elif

#endif

#undef

#error

#warning

The CPP (C preprocessor) is a very powerful tool, most users use just a fraction of the features, but if you
want the full story check this 90+ page document from the Free Software Foundation.

CPP operation

The CPP is a multi-step process carried out automatically by the BASICtools program. All operations are
done in a temp file directory created at c:/Program Files/Coridium/temp. All files in this directory will be
deleted when a File>>Load is performed by BASICtools.

It starts with your source file, and it will be copied into the c:/Program Files/Coridium/temp directory. When
copied all comments will be stripped. All included files will be also copied into this temp directory. Then the
CPP will be run on the files in that temp directory creating a __temp.bpp file that is the result of all the
pre-processor operations. This __temp.bpp file will be combined with other information as __temp.bas and
then compiled by ARMbasic.exe and its output is __temp.out. This __temp.out file is a modified Intel hex
format of the code generated by the source BASIC program. __temp.out will be downloaded to the
ARMexpress or ARMmite.

In addition __temp.bat and __errors.tmp files will be created. __temp.bat is a batch file used in the
compilation process. Errors from the compile or any of its steps will be contained in __errors.tmp.

Page 129

http://www.coridiumcorp.com/files/rhel-cpp-en.pdf

#define

Syntax

#define IDname

 or

#define IDname expression

 or

#define IDname(param,...) expression (param,...)

Description

This statement directs the pre-processor to replace the word IDname with expression in the file before
compiling. This replacement can also contain parameters that will be replaced in corresponding positions as
defined in expression.

It may also be used to control #ifdef

Example

#define COMPILETHIS

#ifdef COMPILETHIS

#endif
Differences from other BASICs

 similar function in PBASIC
 no equivalent in Visual BASIC, but may be done with C-pre-processor

See also

 #ifdef

Page 130

#else #elif #endif

Syntax

#if expression

#else

#endif

 or

#if (defined name)

#elif expression

#endif

 or

#if (defined name)

#endif

Description

These statements complete or extend #if statements.

These statements may nest. And unlimited #elif are allowed.

Example

#if someNAME == 3

#elif someNAME == 4

#elif (defined COMPILETHIS) || (defined COMPILETHAT)

#else

#endif
Differences from other BASICs

 only #else available in PBASIC
 no equivalent in Visual BASIC, but may be done with

C-pre-processor
See also

 #define

Page 131

#ifdef

Syntax

#ifdef IDname

#endif

 or

#ifndef IDname

#endif

Description

This statement directs the pre-processor to copy the contents of file between the ifdef and the endif into the
source to be compiled by the BASIC compiler, if IDname is defined . #ifndef copies the statements if IDname
has not been defined.

These statements may nest.

Example

#define COMPILETHIS

#ifdef COMPILETHIS

 ... will now be included

#endif
Differences from other BASICs

 no equivalent in PBASIC
 no equivalent in Visual BASIC, but may be done with C-pre-processor

See also

 #define

Page 132

#if

Syntax

#if expression

#endif

 or

#if (defined name)

#endif

Description

This statement directs the pre-processor to copy the contents of file between the if and the endif into the
source to be compiled by the BASIC compiler, if expressionis TRUE (non-zero).

#if (defined name) is equivalent to #ifdef, and can be used for more complex defines.

These statements may nest.

Example

#if someNAME == 3

#endif

#if (defined COMPILETHIS) || (defined COMPILETHAT)

#endif
Differences from other BASICs

 similar function in PBASIC
 no equivalent in Visual BASIC, but may be done with C-pre-processor

See also

 #define

Page 133

#include

Syntax

#include " filename"

#include <filename>

Description

This statement directs the pre-processor to copy the contents of filename into the source to be compiled by
the BASIC compiler. After that file is copied, the compilation continues on with the next statement in the
original program.

These statements may nest, as one file can include another which can include another...

When filename is enclosed in " ", the directory of the main BASIC program is searched. The filename may
contain a relative path, and remember that path is always relative to the directory of the main BASIC program.

When the filename is enclosed in < >, the Program Files/Coridium/BASIClib directory is searched.

Normally #include statements are near the beginning of the BASIC program so that FUNCTIONs and SUBs
can be defined before their first use. When this is the case a MAIN: should be used so that code does not
try to execute the FUNCTION or SUB code inline.

Example

' include the module that controls VDRIVE

#include "Vdrive.bas"

' compiler picks up here

Differences from other BASICs

 no equivalent in PBASIC
 no equivalent in Visual BASIC, but may be done with C-pre-processor

See also

 #ifdef
 MAIN:

Page 134

#undef

Syntax

#undef IDname

Description

This statement directs the pre-processor to forget the word IDname for pre-processing.

So #ifdef IDname will now evaluate to FALSE.

Example

#define COMPILETHIS

 ...

#ifdef COMPILETHIS

 ... will now be included

#endif

#undef COMPILETHIS

#ifdef COMPILETHIS

 ... will now not be included

#endif
Differences from other BASICs

 no equivalent in PBASIC
 no equivalent in Visual BASIC, but may be done with C-pre-processor

See also

 #ifdef

Page 135

#warning #error

Syntax

#warning Message

 or

#error ErrorMessage

Description

#warning will issue a warning message visible in the progress window of BASICtools.

#error will generate a compiler error and prevent the BASIC program from being downloaded.

Example

#define COMPILETHIS

#ifdef COMPILETHIS
 ...
#else
 #error No code available for this option
#endif
Differences from other BASICs

 similar function in PBASIC
 no equivalent in Visual BASIC, but may be done with C-pre-processor

See also

 #ifdef

Page 136

Simple Statements

Simple Statements
 Assignment
 CALL
 Comments
 END
 EXIT
 GOSUB
 GOTO
 DEBUGIN
 PRINT
 READ
 RETURN

Page 137

http://www.coridiumcorp.com

assignment

Syntax

lvalue = expression

Description

This statement changes the value of the variable, string, array element or hardware register lvalue with that of
expression.
Example

DIM AB(10) AS STRING

AB = "this is a string"
AB(8) = "1" ' makes it this is 1 string

IN(0) = 1 'set pin 0 to be high

x = 100+(x*z-3)
Differences from other BASICs

 none from PBASIC
 some BASICs allow the archaic LET to precede this statement

See also

 Mathematical Functions

Page 138

GOSUB CALL

Syntax

GOSUB label

 or

CALL label

[CALL] function/sub

CALL (expr)

Description

GOSUB is supported for backward compatibility, now FUNCTIONs and SUBs and their implied CALL would
be a preferred method.

Execution jumps to a subroutine marked by line label. Always use RETURN to exit a GOSUB, execution will
continue on next statement after Gosub.

label may be defined as label: or as a SUB or FUNCTION

CALL for a FUNCTION or SUB is optional. When CALLing a FUNCTION the return value is discarded.

CALL (expr) was added in 7.40 compiler which allows calls to a pointer to a function. The parenthesis
are required. Parameter passing to this type of call is not supported.

Example

GOSUB message
END

message:
PRINT "Welcome!
return

sub print1111
 print 1111
endsub

main:
 fpointer = ADDRESSOF print1111

 call (fpointer)
Differences from other BASICs

 CALL used in Visual BASIC and version 7.00 makes the CALL optional for FUNCTION/SUB like
VB

 GOSUB used in PBASIC
See also

 GOTO
 RETURN

Page 139

comment

Syntax

 ' comment

Description

Comments in ARMbasic can follow a single quote character. All text after the single quote to the end of the
line is ignorred by the compiler.
Example

AB = "this is a string" ' double quotes are for strings, including single character strings
x = x + 1 ' this is a comment for the instruction to increment x

' this entire line is a comment

Differences from other BASICs

 none from PBASIC
 most early BASICs used the REM statement, which ARMbasic does not support

See also

 Simple Statements

Page 140

END

Syntax

END
Description

END is used to terminate the program.

When the ARMbasic is used in a control application, the END would not normally be encountered. As most
control applications would be a loop, as when a program ends it would require the user to restart or a reboot.

There is an implied END added to any program. When a program ENDs, the last state of variables, IOs and
IO controls is maintained. If a program is then RUN again those states will probably be different than running
the program by hitting RESET. RESET sets all variables to 0, and all IOs to inputs. When a program is
restarted from RUN, the variables will be set to 0, but the last IO state will be maintained.

Example

PRINT "An unrecoverable error has occurred "
END
Differences from other BASICs

 none
See also

 STOP
 SLEEP

Page 141

EXIT

Syntax

EXIT

Description

Leaves a code block such as a DO...LOOP, FOR...NEXT, or a WHILE...LOOP block.
Example

'e.g. the print command will not be seen

DO
 EXIT ' Exit the DO...LOOP
 PRINT "i will never be shown"
LOOP

Differences from other BASICs

 None
See also

 DO
 FOR
 WHILE

Page 142

GOSUB CALL

Syntax

GOSUB label

 or

CALL label

[CALL] function/sub

CALL (expr)

Description

GOSUB is supported for backward compatibility, now FUNCTIONs and SUBs and their implied CALL would
be a preferred method.

Execution jumps to a subroutine marked by line label. Always use RETURN to exit a GOSUB, execution will
continue on next statement after Gosub.

label may be defined as label: or as a SUB or FUNCTION

CALL for a FUNCTION or SUB is optional. When CALLing a FUNCTION the return value is discarded.

CALL (expr) was added in 7.40 compiler which allows calls to a pointer to a function. The parenthesis
are required. Parameter passing to this type of call is not supported.

Example

GOSUB message
END

message:
PRINT "Welcome!
return

sub print1111
 print 1111
endsub

main:
 fpointer = ADDRESSOF print1111

 call (fpointer)
Differences from other BASICs

 CALL used in Visual BASIC and version 7.00 makes the CALL optional for FUNCTION/SUB like
VB

 GOSUB used in PBASIC
See also

 GOTO
 RETURN

Page 143

GOTO

Syntax

GOTO label

Description

Jumps code execution to a line label.

Goto's should be avoided for more modern structures such as DO...LOOP, FOR...NEXT, and WHILE...LOOP
.
Example

GOTO message

message:
PRINT "Welcome!

Differences from other BASICs

 none from Visual BASIC
 none from PBASIC

See also

 GOSUB

Page 144

DEBUGIN variable

Syntax

DEBUGIN variable | string
Description

Normally the programs running on an ARMexpress/ARMmite are running stand-alone and without direct
human input. However, during the bringup phase a programmer may want to try different values. So a
simplified replacement of the normal BASIC INPUT has been added, called DEBUGIN.

INPUT is used to control the direction of one of the IO pins.

DEBUGIN has a limited edit capacity: it allows to erase characters using the backspace key. If a better user
interface is needed, a custom input routine should be used.

DEBUGIN may also read a string from the control serial port.

On the ARMweb, this command is available only on the debug USB port.

Example

while 1
 debugin a
 print a*10
loop

Differences from other BASICs

 ARMexpress DEBUGIN can take numbers in hexadecimal, binary or decimal format by using $hex
%bin

Page 145

 PBASIC is taylored for more interaction and allows more complex DEBUGIN
 other BASICs calls this function INPUT

See also

Page 146

PRINT

Syntax

PRINT [expressionlist] [(, | ;)] ...

Description

Prints expressionlist to screen.

Expressionlist can be constant string, constant numbers, variables, string variables or expressions consisting
ov variables and numbers. Seperated by either , or ;

Using a comma (,) as separator or in the end of the expressionlist will place the cursor in the next column
(every 5 characters), using a semi-colon (;) won't move the cursor. If neither of them are used in the end of
the expressionlist, then a new-line will be printed.

PRINT statements send data out the serial port. There is a 16 byte FIFO in the serial port, once that is filled
BASIC will wait for space to be available.

Example

DIM AB(10) AS STRING
'' new-line"Hello World!"'' no new-line
PRINT "Hello";AB; "!";
PRINT

'' column separator
PRINT "Hello!", "World!"

PRINT "3+4 =",3+4

y=4321
x=1234
PRINT "sum=",x+y

Differences from other BASICs

 none from Visual BASIC
 PBASIC uses DEBUGIN and a non-standard syntax

See also

 DEBUGIN the opposite function that receives user input

Page 147

READ

Syntax

READ {constant,} variable_list

variable_list = variable | array_element | string_element {, variable_list }
Description

Reads data stored by the BASIC application with the DATA command.

The elements of the variable_list must be integer variables, elements of a string, or elements of arrays. Each
element read, will be filled from a 32bit value in the 4K space used to store the DATA statements. All the
DATA statements in the program behave as a single list.

After the last element of a DATA is read, the first element of the following DATA will be read.

The RESTORE statement resets the next-element pointer to the start of the DATA. This allows the user to
alter the order in which the DATA are READ.

If the READ is followed by a constant, then the element will be filled from the nth DATA element where n =
constant.

Example

' Create an array of 5 integers.
DIM h(4)

' Set up to loop 5 times (for 5 numbers... check the data)
FOR read_data = 0 TO 4

 ' Read in an integer.
 READ h(read_data)

 ' Display it.
 PRINT "Number"; read_data;" = "; h(read_data)

NEXT

END

' Block of data.

DATA 3, 234, 4354, 23433, 87643
Differences from other BASICs

 Most classic BASICs contain this construct
 Does not exist in Visual BASIC
 PBASIC allows modifiers for size. In PBASIC the first element always sets the offset into the data

array. This is the case in ARMbasic only if the first element is a constant.
See also

 DATA
 RESTORE

Page 148

RETURN

Syntax

RETURN

inside function-
 RETURN expression | string-expression

Description

RETURN is used to return control back to the statement immediately following a previous GOSUB call. When
used in combination with GOSUB, A GOSUB call must always have a matching RETURN statement, to avoid
stack

If the RETURN is inside a function, an integer or string expression is expected.

RETURN will exit a FUNCTION or SUB even when inside a component statement such as WHILE, FOR,
SELECT ...

If a RETURN is executed without a corresponding GOSUB or CALL, a Prefetch Abort error will stop your
program.

Example

PRINT "Let's Gosub!"
GOSUB MyGosub
PRINT "Back from Gosub!"
END

MyGosub:
PRINT "In Gosub!"
RETURN

Differences from other BASICs

 a subset of the RETURN of Visual BASIC
 none from PBASIC

See also

 GOSUB.

Page 149

Compound Statements

Compound Statements
 DO...LOOP
 FOR...NEXT
 IF...THEN
 SELECT CASE
 WHILE...LOOP

Page 150

http://www.coridiumcorp.com

DO...LOOP

Syntax

[DO] WHILE condition
 [statement block]
LOOP

DO
 [statement block]
[LOOP] UNTIL condition

DO
 [statement block]
LOOP

Description

Repeats a block of statements until/while the condition is met. The three above syntaxes show the different
types. The DO .. LOOP without a WHILE or UNTIL will loop forever, unless an EXIT statement is executed.
Example

'This will continue to print "hello" on the screen until the condition (a > 10) is met.

a = 1
DO
 PRINT "hello"
 a += 1
LOOP UNTIL a > 10

Differences from other BASICs

 Some BASICs allow interchangeablilty of UNTIL as the equivalent of NOT WHILE

See also

 EXIT
 FOR...NEXT
 WHILE...LOOP

Page 151

FOR...NEXT

Syntax

FOR counter = startvalue TO endvalue [STEP stepvalue]
 [statement block]
NEXT [counter]

FOR counter = startvalue DOWNTO endvalue [STEP stepvalue]
 [statement block]
NEXT [counter]

Description

A FOR [...] NEXT loop initializes counter to startvalue, then executes the statement block 's, incrementing
counter by stepvalue until it reaches endvalue. If stepvalue is not explicitly given it will set to 1.

If the DOWNTO is used, then the counter is decremented by the stepvalue or 1 if none is specified.

Example

PRINT "counting from 3 to 0, with a step of -1"
FOR i = 3 DOWNTO 0 STEP 1
 PRINT "i is "; i
NEXT i

Differences from other BASICs

 PBASIC does not use DOWNTO, and must specify a negative step
 PBASIC does not allow the variable in the NEXT statement (while this is not necessary it is good

coding practice)
See also

 STEP
 NEXT
 DO...LOOP
 EXIT

Page 152

IF...THEN

Syntax

IF expression THEN statement(s) [ELSE statement(s)]

IF expression [THEN]
 statement(s)
[ELSEIF expression [THEN]
 statement(s)]
[ELSE
 statement(s)]
ENDIF

Description

IF...THEN is a way to make decisions. It is a mechanism to execute code only if a condition is true, and can
provide alternative code to execute based on more conditions.

The syntax allows single line IF..THEN, or multi-line versions that end with ENDIF.

The single line version only allows simple statements. To use nested IFs the multi-line version must be used.

Version 7.00 allows ENDIF or END IF

Example

'e.g. here is a simple "guess the number" game using if...then for a decision.

PRINT "guess the number between 0 and 10"

DO 'Start a loop
 PRINT "guess"
 DEBUGIN y 'Input a number from the user
 IF x = y THEN
 PRINT "right!" 'He/she guessed the right number!
 EXIT
 ELSEIF y > 10 THEN 'The number is higher then 10
 PRINT "The number cant be greater then 10! Use the force!"
 ELSEIF x > y THEN
 PRINT "too low" 'The users guess is to low
 ELSEIF x < y THEN
 PRINT "too high" 'The users guess is to high
 ENDIF
LOOP 'Go back to the start of the loop

Differences from other BASICS

 none
See also

 DO...LOOP
 SELECT CASE

Page 153

SELECT [CASE]

Syntax

SELECT [CASE] expression
[CASE expressionlist]
 [statements]
[CASE ELSE]
 [statements]
ENDSELECT
Description

Select case executes specific code depending on the value of an expression. If the expression matches the
first case then it's code is executed otherwise the next cases are compaired and if one case matches then
its code is executed. If no cases are matched and there is a 'case else' on the end then it wll be executed,
otherwise the whole select case block will be skipped.

Syntax of an expression list:
expression [{TO expression | relational operator expression}][, ...]

example of expression lists:
CASE "A" ' the "A" is equivalent to $41, multi-character strings can not be used in CASE
statements
CASE 5 TO 10
CASE > "e"
CASE 1, 3 TO 10
CASE 1, 3, 5, 7, 9
Example

PRINT "Choose a number between 1 and 10: "
DEBUGIN choice
SELECT choice
CASE 1
 PRINT "number is 1"
CASE 2
 PRINT "number is 2"
CASE 3, 4
 PRINT "number is 3 or 4"
CASE 5 TO 10
 PRINT "number is in the range of 5 to 10"
CASE <= 20
 PRINT "number is in the range of 11 to 20"
CASE ELSE
 PRINT "number is outside the 1-20 range"
ENDSELECT
Differences from other BASICs

 SELECT CASE is used in Visual BASIC
 SELECT is used in PBASIC
 either is allowed in ARMbasic
 Visual BASIC uses an optional IS before relational operators
 ENDSELECT is used to terminate the SELECT in both ARMbasic and PBASIC
 END SELECT (seperate words) are used in Visual BASIC and is allowed in ARMbasic

See also

 IF...THEN

Page 154

WHILE...LOOP

Syntax

[DO] WHILEcondition
 [statements]
LOOP
Description

WHILE [...] LOOP will repeat the statements between WHILE and LOOP, while the condition is true.

If the condition isn't true when the WHILE statement begins, none of the statements will be run.

The DO is optional in ARMbasic.

WHILE loops have the lowest overhead of all looping constructs.

Example

WHILE x = 0
 x = 1
LOOP

Differences from other BASICs

 Visual BASIC uses the syntax DO WHILE ... LOOP, which is allowed by ARMbasic
 PBASIC also requires the DO
 Some BASICs use WHILE ... WEND

See also

 DO...LOOP
 EXIT

Page 155

Other Statements

Other Statements
 CLEAR
 CONST
 DATA
 DIM
 END
 label:
 MAIN
 ON
 RESTORE
 RUN
 STOP

Page 156

http://www.coridiumcorp.com

CONST

Syntax

CONST symbolname = value

Description

Declares compiler-time constant symbols that can be an integer.

More complex CONST can now be handled by #define -- see pre-processor

under the hood-

Constants do not take up any program space on the ARMmite or when using the PC Compile option on the
ARMexpress. In this case the constants are used by the compiler running on the PC and compiled into code
when used. When using the ARMexpress compiler, constants do take up space in the symbol table.

Constants can be 32 bit values using the PC ARMbasic compiler, butconstants are limited to 16bit values for
the onchip ARMweb compiler.

Example

CONST reps = 5

FOR I = 1 TO reps
 PRINT I
NEXT I

 -- will print out
1
2
3
4
5

Differences from other BASICs

 Visual BASIC allows more complex CONST declarations
 syntax in PBASIC is symbolname CON value

See also

 Preprocessor

Page 157

DATA

Syntax

DATA constant1 [,constant2]...

Description

DATA statements are used to build up a list of elements in Flash. The compiler processes them in order of
appearance in the progam, NOT in order of execution. DATA statements are evaluated at compile time, so
they should contain constant integers. DATA statements may not be located within complex statements
(such as FOR..NEXT, SUB..ENDSUB ...)

RESTORE resets the READ data pointer to the first DATA element defined.

DATA is normally used to initialize variables.

On the ARMmite, DATA statements are stored above the code space. So using DATA will reduce the space
available for code by 1K. DATA space is shared with constant strings on the ARMmite, so the combined
space allowable is 1K.

The space between the end of your code and the start of DATA statements can be written and read with
FREAD and WRITE commands, see the memory map for details.

Example

' Create an array of 5 integers and a string to hold the data.
DIM h(5)
' Set up to loop 5 times (for 5 numbers... check the data)
FOR read_data = 0 TO 4

 ' Read in an integer.
 READ h(read_data)

 ' Display it.
 PRINT "Number"; read_data;" = "; h(read_data)

NEXT

DATA 3, 234, 435, 23, 87643

Differences from QB

 common to earlier BASICs
 no equivalent in Visual BASIC
 similar to PBASIC

See also

 READ
 RESTORE
 WRITE

Page 158

DIM

Syntax

Declaring Arrays:
 DIM symbolname (max_element)

Declaring Strings:
 DIM symbolname$ (max_element)
 DIM symbolname (max_element) AS STRING

Declaring Integers:
 DIM symbolname AS INTEGER

Description

Declares a named variable and allocates memory to accommodate it. Though ARMbasic does not require the
declaration of integer variables, DIM is used to assign arrays of integers or strings (arrays of bytes). The size
is the max_element in the array plus 1. This allows indexing from 0 to max_element .

For backward compatibilty strings may have the last character the dollar sign $.

Only one symbolname may be declared with each DIM statement.

Memory for simple variables is allocated from the start of a heap, and strings or arrays are allocated from the
top or end of the heap. Strings are packed as bytes and always word alligned, you must allow enough space
to accomodate the expected maximum size of the string plus 1 byte for a termination (0) character. String
operators rely on the terminator.

Simple variable will be automatically declared on first use, unless you use DIM symbolname AS INTEGER.
At which point all subsequent integers must be declared using a DIM.

SUB procedures also use DIM between SUB .. ENDSUB. Those variables will be local to the procedure.
Using DIM here does not change whether all subsequent integers must be declared using a DIM or not. In
other words the state whether DIM is required is saved upon entering a SUB procedure and is restored at the
ENDSUB.

In version 7.05, AS STRING arrays are no longer limited to 255 bytes, so that they may be used for larger
arrays of bytes. However, string operations and functions ARE limited to 255 bytes.

Example

DIM a$ (10)
DIM b$ (20)
DIM c$ (30)

a$ = "Hello World"
b$ = "... from ARMbasic!"
c$ = a$ + b$

print c$ ' displays Hello World... from ARMbasic

Differences from other BASICs

 Like Visual BASIC the first element uses an offset of 0, but also memory is allocated for 0, 1 to size

Page 159

elements. This is backward compatable with earlier BASICs which indexed from 1 to size .
 PBASIC uses the syntax symbolname VAR WORD | BYTE [(size)]

See also

Page 160

label:

Syntax

name :
Description

GOTO and GOSUB go to a label. Somewhere in the code is that target label. A label can be any valid
variable name followed by a colon : . A label can be the only element on a line.

MAIN: is a special case of label that will start execution of the program at somewhere other than the first line
of code.

Example

...
GOSUB sayHello

....

sayHello:
PRINT "Hello"
RETURN

Differences from other BASICs

 none from Visual BASIC
 none from PBASIC

See also

 MAIN

Page 161

MAIN

Syntax

MAIN:

Description

Normally an ARMbasic program will start at the first statement in the BASIC source. This can be changed
by having a MAIN: somewhere else in the program. When a MAIN: does exist, the program will begin at this
point.

MAIN: is useful for programs that use FUNCTIONs or SUBs and have those FUNCTIONs or SUBs at the
beginning of the source. This also includes FUNCTIONs or SUBs that are #include'd in the source.

Example

SUB1:
PRINT "Hello from sub1"
RETURN

MAIN:
GOSUB SUB1
END

Differences from other BASICs

 none from Visual BASIC
 none from PBASIC

See also

 EXIT

Page 162

ON (version 7.30 and later on ARM7 parts)

For PROplus and SuperPRO see INTERRUPT SUB

Syntax

ON TIMER msec label

 or

ON EINT0|EINT1|EINT2 RISE|FALL|HIGH|LOW label

Description

These statements will initialize interrupt service routines so that when the interrupt occurs the code at label
will be executed. Label must have been pre-defined and can either be a SUB (without parameters) or code
beginning with a label: and ending in a RETURN. The interrupt response time is approximately 3 usec. Other
interrupts may make this time longer.

TIMER interrupts will occur every msec milliseconds. msec may be a variable or constant, expressions are
not allowed. The value for msec must be greater than 1. If TIMER interrupts are used, then only 4 hardware
PWM channels are available.

EINT0 and EINT2 are 2 pins that will interrupt when the defined event occurs. RISE and FALL are the
preferred method and will generate interrupts on rising or falling edges on those 2 pins. HIGH and LOW are
supported, but if the pin remains in that state interrupts will be continuously generated.

EINT1 is connected to the RTS line of the PC, and is normally high, so it can be used by a program on the
PC to interrupt the ARMmite, rather than having to reset the board. This pin is available on the wireless
ARMmite, but if you intend to use it, make sure it is pulled high normally, otherwise when the board is reset it
will go into the download C mode and will not run your BASIC program. EINT1 is also available on the
ARMexpress modules (pin 21), and should also be kept normally high if used.

Each time the ON statement is executed the interrupt will be initialized, so it is possible to change routines
within the program. Multiple interrupts can be used, but they are serviced in the order received, and each
interrupt service routine will complete before the next one is handled (interrupts that occur while one is being
serviced will be handled after the current interrupt is processed).

Interrupt routines should normally be short and simple. The state of the other user BASIC code will be
restored after the interrupt, with the exception of string functions, which should NOT be done inside an
interrupt. PRINT statements use strings, so other than a temporary debug to see if the interrupt occurs, they
should not be inside an interrupt routine.

To disable the interrupt use the following #define

#defineVICIntEnClear *$FFFFF014

#define TIMERoff VICIntEnClear = $20
#define EINT0off VICIntEnClear = $4000
#define EINT1off VICIntEnClear = $8000
#define EINT2off VICIntEnClear = $10000

ON added in version 7.09

The LPC2106 based ARMexpress supports ONLY ON LOW, due to hardware limitations.

ON is a statement that is executed, so if multiple ON statements are in a program the last statement

Page 163

executed will be active command.

Cortex M3 and M0 do not support ON, but use INTERRUPT SUB

Example

IO15up = 0 ' serves to declare IO15up

...
SUB IO15count
 IO15up = IO15up + 1
ENDSUB

...
main:

ON EINT2 RISE IO15count

IO15up = 0
while 1
 if IO15up <> lastIO15count then
 print IO15up
 lastIO15count = IO15up
 endif

...

loop
every20msec:
 checkIO0 = checkIO0 + (IO(0) and 1)
 IO0samples = IO0samples +1
RETURN

...
main:

ON TIMER 20 every20msec

...

PRINT "Percentage of time IO0 is HIGH =", 100*checkIO0 / IO0samples

...

Differences from other BASICs

 VB ???
 no equivalent in PBASIC

See also

 GOTO
 RETURN

Page 164

RESTORE

Syntax

RESTORE
Description

Sets the next-data-to-read pointer to the first element of the first DATA statement.
Example

' Create an 2 arrays of integers and a 2 strings to hold the data.
DIM h(4)
DIM h2(4)

' Set up to loop 5 times (for 5 numbers... check the data)
FOR read_data1 = 0 TO 4

 ' Read in an integer.
 READ h(read_data1)

 ' Display it.
 PRINT "Bloc 1, number"; read_data1;" = "; h(read_data1)

NEXT

' Set the data read to the beginning
RESTORE

' Print it.
PRINT "Bloc 1 string = " + hs

' Spacers.
PRINT
Print

' Set the data read to the beginning
RESTORE

' Set up to loop 5 times (for 5 numbers... check the data)
FOR read_data2 = 0 TO 4

 ' Read in an integer.
 READ h2(read_data2)

 ' Display it.
 PRINT "Bloc 2, number"; read_data2;" = "; h2(read_data2)

NEXT

DATA 3, 234, 4354, 23433, 87643

DATA 546, 7894, 4589, 64657, 34554

Page 165

Differences from QB

 common to many earlier BASICs
 no equivalent in Visual BASIC
 none from PBASIC

See also

 DATA
 READ

Page 166

STOP

Syntax

STOP

Description

Halt execution of the program.

STOP functions like a breakpoint when under control of BASICtools. When the STOP is executed the BASIC
program halts excecution, but allows BASICtools to dump variable values. Also in BASICtools RUN will
resume execution at the statement following STOP.
Example

'If pin 2 is low halt the processor
IF IO(2) = 0 THEN
 PRINT "Processor Stopped"
 PRINT "Press Reset to Continue"
 STOP
ENDIF

Differences from other BASICs

 none from Visual BASIC
 none from PBASIC, though the breakpoint features are not supported

See also

 EXIT

Page 167

Debugging

 ARMbasic is an incremental compiler, meaning that you can enter a portion of a program, run it, check
some varialble values, enter some more code and run it again... This operates much like an interpreter, so
that debugging of code can be done very quickly.

It is also possible to execute a simple statement immediately. This can be very useful when interfacing to a
serial device, as you can step through operations manually, to test a program.

There are a number of operations that aid during the debug phase of programming an ARMexpress.

Debugging Functions
 >
 .
 @
 CLEAR
 DEC
 HEX
 RUN

Page 168

@ (dump memory)

Syntax

@ [expression]
Description

This command will dump ARM memory starting at expression. It is useful for debugging direct control of the
ARM peripherals. If expression is omitted, then the next page of memory will be displayed. Normally @
expression will be used first, with following pages displayed by typing @ without the expression.

Expression can only be a hex value without the leading $ and no spaces between the @ and the hexvalue.
The ARMmite does not list the address or the ASCII values.

Example

The following example displays the area of ARM memory corresponding to the PWM registers. Memory
address on the left, followed by 4 words of memory displayed in hex and then displayed as printable ASCII
characters.

@e0014000

00000000 00000001 04BFE6BB 0000E663 E0014010: 0000A516 00000000 00000000
00000000

Differences from other BASICs

 non-existant function in Visual BASIC or PBASIC
See also

 ! set memory

Page 169

! (set memory)

Syntax

! hex-number hex-number2
Description

This command will write hex-number2 into location hex-number in ARM memory. It is useful for debugging
direct control of the ARM peripherals.

Expression can only be a hex value without the leading $ or &H and no spaces between the ! and the
hexvalue. The ARMmite does not list the address or the ASCII values.

This function will be added in version 7.47 for ARM7 and 8.07 for Cortex parts. And also requires BASICtools
5.9 or later.

Example

The following example displays the area of ARM memory corresponding to the PWM registers. Memory
address on the left, followed by 4 words of memory displayed in hex and then displayed as printable ASCII
characters.

@e0014000

00000000 00000001 04BFE6BB 0000E663 E0014010: 0000A516 00000000 00000000
00000000

!e0014000 1234567

@e0014000

01234567 00000001 04BFE6BB 0000E663 E0014010: 0000A516 00000000 00000000
00000000

Differences from other BASICs

 non-existant function in Visual BASIC or PBASIC
See also

 @ (dump memory)

Page 170

CLEAR

Syntax

CLEAR

Description

This is a compile time command that erases the current BASIC program in memory.

It should NOT be used as a statement inside a BASIC program.

Example

Example
PRINT "hi there"
RUN
hi there

CLEAR
Differences from other BASICs

 same as many BASICs
 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also
 RUN

Page 171

DEBUGIN variable

Syntax

DEBUGIN variable | string
Description

Normally the programs running on an ARMexpress/ARMmite are running stand-alone and without direct
human input. However, during the bringup phase a programmer may want to try different values. So a
simplified replacement of the normal BASIC INPUT has been added, called DEBUGIN.

INPUT is used to control the direction of one of the IO pins.

DEBUGIN has a limited edit capacity: it allows to erase characters using the backspace key. If a better user
interface is needed, a custom input routine should be used.

DEBUGIN may also read a string from the control serial port.

On the ARMweb, this command is available only on the debug USB port.

Example

while 1
 debugin a
 print a*10
loop

Differences from other BASICs

 ARMexpress DEBUGIN can take numbers in hexadecimal, binary or decimal format by using $hex
%bin

Page 172

 PBASIC is taylored for more interaction and allows more complex DEBUGIN
 other BASICs calls this function INPUT

See also

Page 173

LIST

Syntax

LIST

Description

When typing commands into BASICtools a line at a time, use LIST to see what was typed.

Those lines can be captured into a file for further editing either by cut and paste or using the Save As under
files in BASICtools.

This command is not used by the BASIC compiler, so it should not be included in a file to be compiled

Example

for i=1 to 10
 print i
next i

....

LIST
for i=1 to 10
 print i
next

Page 174

RUN

Syntax

RUN

Description

RUN will compile the program and write it into Flash Memory. Then it will execute the program which has
been saved.

Now that the program is in Flash it will be executed when the board is either reset or powered on.

BASICtools can STOP a program that is being executed from Flash.

RUN is a command line function, it should NOT be included in a BASIC program. It is equivalent to the RUN
button in the BASICtools. Your BASIC program will start automatically when the ARM is reset.

Example

PRINT "hi there"
RUN
CLEAR
Differences from other BASICs

 same as many BASICs
 no equivalent in Visual BASIC
 no equivalent in PBASIC, done with the editor

See also

 CLEAR

Page 175

FUNCTIONs and SUBroutines

Sub Programs
 FUNCTION
 SUB
 ENDFUNCTION
 ENDSUB

Page 176

http://www.coridiumcorp.com

FUNCTION name (optional parameters)

Syntax

FUNCTION name [AS INTEGER | AS STRING]

 or

FUNCTION name (parameter list) [AS INTEGER | AS STRING]
 parameter list = parameter [, parameter list]
 parameter = [BYVAL] paramname [AS INTEGER]
 | [BYVAL] paramname(size) AS STRING
 | BYREF paramname AS STRING
 | BYREF paramname [AS INTEGER]

Description

FUNCTIONs are an extension of SUB that will return a value. If no type for the FUNCTION is specified, then
INTEGER is assumed.

The FUNCTION .. ENDFUNCTION construct allows for a second scope of variables. Scope meaning the
region in which code can see a set of labels. ARMbasic has a global scope and a local scope for any
variable declared with DIM inside an FUNCTION. Local scope variables will be only accessable from within
that FUNCTION procedure (the local scope).

Parameters are assumed to be called BYVAL if not specified. In BYVAL calls, a copy of the parameter is
passed to the Function. Integer or string parameters may be called BYREF which means a pointer to the
integer/string is passed, and changes to that integer/string can be made by code inside the function.

Code labels for goto/gosub declared within the SUB procedure are also in the local scope. Call to global
labels are allowed within a FUNCTION ... END FUNCTION , but that global label must be defined BEFORE
the FUNCTION ... END FUNCTION .

An implied RETURN is compiled at the ENDFUNCTION , but code should also return to the caller with
RETURN <expression>. A FUNCTION may also be called with a GOSUB, but the returned value is ignored.

Recursive calls with parameters or local variables are not supported. And ENDFUNCTION or END
FUNCTION syntax are allowed.

Program structure:

FUNCTIONs should be arranged ahead of the MAIN: body of code. In many cases they will be part of
#include files at the beginning of the user ARMbasic code. If FUNCTIONs are located at the start of a
program a MAIN: must be used.

FUNCTIONs can access global variables that have been declared before the FUNCTION, this declaration can
either be implicit or use a DIM.

FUNCTIONs must be defined before they are called.

Example

function toupper(a(100) as string) as string
 dim i as integer

 for i=0 to 100
 if a(i)=0 then exit
 if a(i) <= "z" and a(i) >= "a" then a(i) = a(i) - $20
 next i

Page 177

 return a
end function

main:

print toupper("asdf") ' will print ASDF

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 DIM
 GOSUB
 ENDSUB
 MAIN:

Page 178

SUB name (optional parameters)

Syntax

SUB name

 or

SUB name (parameter list)
 parameter list = parameter [, parameter list]
 parameter = [BYVAL] paramname [AS INTEGER]
 | [BYVAL] paramname(size) AS STRING
 | BYREF paramname AS STRING
 | BYREF paramname [AS INTEGER]

Description

GOSUB goes to a label. , but can also go to a defined SUB procedure.

The SUB.. ENDSUB construct allows for a second scope of variables. Scope meaning the region in which
code can see a set of labels. ARMbasic has a global scope and a local scope for any variable declared with
DIM inside an SUB. Local scope variables will be only accessable from within that SUB procedure (the local
scope).

Parameters are assumed to be called BYVAL if not specified. In BYVAL calls, a copy of the parameter is
passed to the SUB procedure. Integer or string parameters may be called BYREF which means a pointer to
the integer/string is passed, and changes to that integer/string can be made by code inside the SUB
procedure.

Code labels for goto/gosub declared within the SUB procedure are also in the local scope. Call to global
labels are allowed within a SUB .. ENDSUB, but that global label must be defined BEFORE the SUB ...
ENDSUB.

Recursive calls with parameters or local variables are not supported. And ENDSUB or END SUB syntax are
allowed.

Program structure:

SUB procedures should be arranged ahead of the MAIN: body of code. In many cases they will be part of
#include files at the beginning of the user ARMbasic code. If SUBs are located at the start of a program a
MAIN: must be used.

SUB procedures can access global variables that have been declared before the SUB, this declaration can
either be implicit or use a DIM.

An implied RETURN is compiled at the ENDSUB, but code may also return to the caller with RETURN

SUBs must be defined before they are called.

Example

SUB sayHello
 DIM I as INTEGER ' this variable is local to the sayHello SUB procedure

 FOR I=1 to 3
 PRINT "Hello"
 NEXT I

Page 179

ENDSUB
...

MAIN:
...
I = 55
PRINT I ' will display 55

GOSUB sayHello

PRINT I ' will still display 55, as this is the global I, different from sayHello local I
....

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 DIM
 GOSUB
 ENDSUB
 MAIN:

Page 180

ENDFUNCTION | END FUNCTION

Syntax

ENDFUNCTION

ENDFUNCTION or END FUNCTION syntax are allowed

Description

ENDFUNCTION terminates a FUNCTION procedure

FUNCTIONs must be defined before they are called.

Example

function toupper(a(100) as string) as string
 dim i as integer
 dim l as integer
 l = len(a)
 for i=0 to l
 if a(i) <= "z" and a(i) >= "a" then a(i) = a(i) - $20
 next i
 return a
end function

main:

print toupper("asdf") ' will print ASDF

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 DIM
 GOSUB
 SUB
 MAIN:

Page 181

ENDSUB | END SUB

Syntax

ENDSUB

ENDSUB or END SUB syntax are allowed

Description

ENDSUB terminates a SUB procedure

SUBs must be defined before they are called.

Example

SUB sayHello
 DIM I as INTEGER ' this variable is local to the sayHello SUB procedure

 FOR I=1 to 3
 PRINT "Hello"
 NEXT I

ENDSUB
...

MAIN:
...
I = 55
PRINT I ' will display 55

GOSUB sayHello

PRINT I ' will still display 55, as this is the global I, different from sayHello local I
....

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 DIM
 GOSUB
 SUB
 MAIN:

Page 182

Operators List

Operator List
 & (String concatenation)
 * (Multiplication)
 + (Addition)
 + (String concatenation)
 - (Negation)
 - (Subtraction)
 / (Division)
 < (Less than)
 <= (Less than or equal)
 <> (Inequality)
 = (Equality)
 > (Greater than)
 >= (Greater than or equal)
 ABS
 AND (Conjunction)
 COS
 MOD (Integer modulo)
 NOT (Bit-wise complement)
 OR (Disjunction, Inclusive Or)
 << (Shift-left)
 >> (Shift-right)
 REV
 SIN
 XOR (Exclusive Or)

Page 183

& (String concatenation)

Syntax

string1 & string 2

Description

The concatenation returns a string made of sticking both variables together. If some of the variables are not
strings, the STR function is called automatically to convert the variable to a string.

Multiple concatenations per line are supported, and the strings can include string functions such as LEFT,
RIGHT, HEX and STR. Also if a constant or integer is used it will be automatically converted to a string, as if
it had been enclosed in a STR().
Example

DIM A$(20)
DIM C$(20)
A$="The result is: "
B=1243
C$=A$ & B
PRINT C$
SLEEP

The output would look like:

The result is: 1243

Differences from other BASICs

 same as Visual Basic functions
 no equivalent in PBASIC

See also

 + String Concatenation
 String Functions

Page 184

* (Multiplication)

Syntax

argument1 * argument2

Description

The multiplication operator is used to multiply two numbers.and is the inverse of division, /. The arguments
argument1 and argument2 can be any valid numerical expression.

Example

n = 4 * 5
PRINT n
SLEEP

The output would look like:
20

Differences from other BASICs

 None
See also

 / (Division)
 + (Addition)
 Mathematical Functions

Page 185

+ (Addition)

Syntax

argument1 + argument2

Description

The addition operator is used to find the sum of two numbers. Addition, +, is the inverse of subtraction, -. The
arguments argument1 and argument2 can be any valid numerical expression.

Example

n = 454 + 546
PRINT n
SLEEP

The output would look like:
1000

Differences from other BASICs

 None
See also

 - (Subtraction)
 Mathematical Functions

Page 186

+ (String concatenation)

Syntax

string1 + string2

Description

The concatenation operator takes two string variables and returns a string made of sticking both strings
together.

Multiple concatenations per line are supported, and the strings can include string functions such as LEFT,
RIGHT, HEX and STR. Also if a constant or integer is used it will be automatically converted to a string, as if
it had been enclosed in a STR().
Example

DIM A$(20)
DIM B$(20)
DIM C$(30)

A$="Hello,"
B$=" World!"
C$=A$+B$
PRINT C$
SLEEP

The output would look like:
Hello, World!
Differences from other BASICs

 PBASIC does not have string function support
 Similar to Visual BASIC

See also

 & String Concatenation
 String Functions

Page 187

- (Negation)

Syntax

- number

Description

The negation operator is used to give the negitive value of number. number can be any valid numerical
expression.

Example

PRINT -5
n = 6543256
n = - n
PRINT n
SLEEP

The output would look like:
-5
-6543256

Differences from other BASICs

 None
See also

 Mathematical Functions

Page 188

- (Subtraction)

Syntax

argument1 - argument2

Description

The subtraction operator is used to find the difference between two numbers. Subtraction, -, is the inverse of
addition, +. The arguments argument1 and argument2 can be any valid numerical expression.

Example

n = 4 - 5
PRINT n
SLEEP

The output would look like:
-1

Differences from other BASICs

 None
See also

 + (Addition)
 Mathematical Functions

Page 189

/ (Division)

Syntax

argument1 / argument2

Description

The division operator is used to divide (or to find the ratio of) two numbers and return an integer result. Division
is the inverse of multiplication, *. The arguments argument1 and argument2 can be any valid numerical
expression. If either argument is an uninitialized variable, that argument will be evaluated as zero. If
argument2 is zero, a division by zero will be raised.

Example

PRINT n / 5
n = 600000 / 23
PRINT n
SLEEP

The output would look like:
0
 26086

Differences from other BASICs

 None with PBASIC
 Visual BASIC returns a floating point result

See also

 * (Multiplication)
 Mathematical Functions

Page 190

< (Less than)

Syntax

expressionLEFT < expressionRT

Description

The < (Less-than) Operator evaluates two expressions, compares them and returns the resulting condition.
The condition is false (0) if the left-hand side expression is greater than or equal to the right-hand side
expression, or true (1) if it is less than the right-hand side expression.

Example

The >= (Greater-than Or Equal) Operator is complement to the < (Less-than) Operator, and is functionally
identical when combined with the NOT (Bit-wise Complement) Operator:

 IF(69 < 420) THEN PRINT "(69 < 420) is true."
 IF NOT(69 >= 420) THEN PRINT "not(69 >= 420) is true."

Differences from other BASICs

 none

See also

 <
 <=
 <>
 >
 >=
 Mathematical Functions

Page 191

<= (Less than or equal)

Syntax

expressionLEFT <= expressionRT

Description

The <= (Less-than) or Equal Operator evaluates two expressions, compares them and returns the resulting
condition. The condition is false (0) if the left-hand side expression is greater than the right-hand side
expression, or true (1) if it is less than or equal to the right-hand side expression.

Example

The > (Greater-than) Operator is complement to the <= (Less-than or Equal) Operator, and is functionally
identical when combined with the NOT (Bit-wise Complement) Operator:

 IF(69 <= 420) THEN PRINT "(69 <= 420) is true."
 IF NOT(60 > 420) THEN PRINT "not(420 > 69) is true."

Differences from other BASICs

 the =< version of Visual BASIC is also supported
 none from PBASIC

See also

 <
 <=
 <>
 >
 >=
 Mathematical Functions

Page 192

<> (Inequality)

Syntax

expressionLEFT <> expressionRT

Description

The <> (Inequality) Operator evaluates two expressions, compares them for inequality and returns the
resulting condition. The condition is false (0) if the left-hand side expression and the right-hand side
expression are equal, or true (1) if they are unequal.

Example

In a number guessing game, the <> (Inequality Operator) can be used to check the player's guess with the
secret number:

guess = 0
 ... '' <- get number from user and store in guess
 IF(guess <> secret_number) THEN PRINT "Sorry, you guessed wrong. Try again."
 ...

The = (Equality) Operator is complement to the <> (Inequality) Operator, and is functionally identical when
combined with the NOT (Bit-wise Complement) Operator:

 IF(420 <> 69) THEN PRINT "(420 <> 69) is true."
 IF NOT(420 = 69) THEN PRINT "not(420 = 69) is true."

Differences from other BASICs

 none
See also

 <
 <=
 <>
 >
 >=
 Mathematical Functions

Page 193

= (Equality)

Syntax

expressionLEFT = expressionRT

Description

The = (Equality) Operator evaluates two expressions, compares them for equality and returns the resulting
condition. The condition is false (0) if the left-hand side expression and the right-hand side expression are
unequal, or true (1) if they are equal.

Example

Equality comparisons should not be confused with Assignments, both of which also use the "=" symbol:

 i = 420 '' assignment: assign the value of i as 420

 IF(i = 69) THEN '' equation: compare the equality of the value of i and 69
 PRINT "serious error: i should equal 420"
 END
 ENDIF

 ...

The <> (Inequality) Operator is complement to the = (Equality) Operator, and is functionally identical when
combined with the NOT (Bit-wise Complement) Operator:

 IF(420 = 420) THEN PRINT "(420 = 420) is true."
 IF NOT(69 <> 69) THEN PRINT "not(69 <> 69) is true."

Differences from other BASICs

 none
See also

 <
 <=
 <>
 >
 >=
 Mathematical Functions

Page 194

> (Greater than)

Syntax

expressionLEFT > expressionRT
Description

The > (Greater-than) Operator evaluates two expressions, compares them and returns the resulting condition.
The condition is false (0) if the left-hand side expression is less than or equal to the right-hand side
expression, or true (1) if it is greater than the right-hand side expression.

Example

The <= (Less-than Or Equal) Operator is complement to the > (Greater-than) Operator, and is functionally
identical when combined with the NOT (Bit-wise Complement) Operator:

 IF(420 > 69) THEN PRINT "(420 > 69) is true."
 IF NOT(420 <= 69) THEN PRINT "not(420 <= 69) is true."

Differences from other BASICs

 none
See also

 <
 <=
 <>
 >
 >=
 Mathematical Functions

Page 195

>= (Greater than or equal)

Syntax

lexpressionLEFT >= expressionRT

Description

The >= (Greater-than) or Equal Operator evaluates two expressions, compares them and returns the resulting
condition. The condition is false (0) if the left-hand side expression is less than the right-hand side
expression, or true (1) if it is greater than or equal to the right-hand side expression.

Example

The < (Less-than) Operator is complement to the >= (Greater-than or Equal) Operator, and is functionally
identical when combined with the NOT (Bit-wise Complement) Operator:

 IF(420 >= 69) THEN PRINT "(420 >= 69) is true."
 IF NOT(420 < 69) THEN PRINT "not(420 < 69) is true."

Differences from other BASICs

 the => version of Visual BASIC is also supported
 none from PBASIC

See also

 <
 <=
 <>
 >
 >=
 Mathematical Functions

Page 196

AND

Syntax

number AND number

Description

And, at its most primitive level, is a boolean operation, a logic function that takes in two bits and outputs a
resulting bit.
If given two bits, this function returns true if both bits are true, and false for any other combination. The truth
table below demonstrates all combinations of a boolean and operation:
Bit1 Bit2 Result
 0 0 0
 1 0 0
 0 1 0
 1 1 1

This holds true for conditional expressions in ARMbasic . When using "And" encased in an If block, While
loop, or Do loop, the output will behave quite literally:
IF condition1 AND condition2 THEN expression1

Is translated as:
IF condition1 IS true, AND condition2 IS true, THEN perform expression1

When given two expressions, numbers, or variables that return a number that is more than a single bit, AND
is performed "bitwise". A bitwise operation compares each bit of one number, with each bit of another
number, performing a logic operation for every bit.
The boolean math expression below describes this:
00001111 AND
00011110
-------- equals
00001110

Notice how in the resulting number of the operation, reflects an AND operation performed on each bit of the
top operand, with each corresponding bit of the bottom operand. The same logic is also used when working
with conditions.
Example

' Using the AND operator on two numeric values
numeric_value1 = 15 '00001111
numeric_value2 = 30 '00011110

'Result = 14 = 00001110
PRINT numeric_value1 AND numeric_value2
END

' Using the AND operator on two conditional expressions
numeric_value1 = 15
numeric_value2 = 25

IF numeric_value1 > 10 AND numeric_value1 < 20 THEN PRINT "Numeric_Value1 is between 10 and 20"
IF numeric_value2 > 10 AND numeric_value2 < 20 THEN PRINT "Numeric_Value2 is between 10 and 20"
END

' This will output "Numeric_Value1 is between 10 and 20" because
' both conditions of the IF statement is true
' It will not output the result of the second IF statement because the first
' condition is true and the second is false.

Page 197

Differences from other BASICs

 none from Visual BASIC
 PBASIC AND is always logical, and & is bitwise

See also

 OR
 XOR
 NOT

Page 198

NOT

Syntax

NOT expression

Description

Not, at its most primitive level, is a operation, a logic function that takes one bit and returns a inverted bit.
This function returns true if the bit is false, and false if the bit is true. This also holds true for conditional
expressions in ARMbasic . When using "Not" encased in an If block, While loop, or Do loop, the output will
behave quite literally:
IF NOT condition1 THEN expression1

Is translated as:
IF condition1 = 0 THEN perform expression1

When given a expression, number, or variable that return a number that is more than a single bit, Not is
performed "bitwise". A bitwise operation performs a logic operation for every bit.
The boolean math expression below describes this:
00001111 NOT
-------- equals
11110000

Notice how in the resulting number of the operation, reflects an NOT operation performed on each bit of the
expression.

When used with conditions NOT becomes a logical operation.

if NOT x>5 then ...
'-------- eqivalent to
if x <= 5 then ...

In the above example if x is 7 and you PRINT NOT x>5 would print 0, and print 1 if x is 3.

Example

' Using the NOT operator on a numeric value

numeric_value = 15 '00001111

'Result = -16 = 111111111111111111111111111110000
PRINT NOT numeric_value
END

' Using the NOT operator on conditional expressions

numeric_value1 = 15
numeric_value2 = 25

IF NOT numeric_value1 = 10 THEN PRINT "Numeric_Value1 is not equal to 10"
IF NOT numeric_value2 = 25 THEN PRINT "Numeric_Value2 is not equal to 25"
END

' This will output "Numeric_Value1 is not equal to 10" because
' the first IF statement is false.
' It will not output the result of the second IF statement because the
' condition is true.

Page 199

Differences from other BASICs

 None
See also

 AND
 OR
 XOR

Page 200

OR

Syntax

number OR number

Description

Or, at its most primitive level, is a boolean operation, a logic function that takes in two bits and outputs a
resulting bit. If given two bits, this function returns true if either bit is true, and false if both bits are false. The
truth table below demonstrates all combinations of a boolean or operation:
Bit1 Bit2 Result
 0 0 0
 1 0 1
 0 1 1
 1 1 1

This holds true for conditional expressions in ARMbasic. When using "Or" encased in an If block, While loop,
or Do loop, the output will behave quite literally:
IF condition1 OR condition2 THEN expression1

Is translated as:
IF condition1 IS true, OR condition2 IS true, THEN perform expression1

When given two expressions, numbers, or variables that return a number that is more than a single bit, Or is
performed "bitwise". A bitwise operation compares each bit of one number, with each bit of another number,
performing a logic operation for every bit.
The boolean math expression below describes this:
00001111 OR
00011110
-------- equals
00011111

Notice how in the resulting number of the operation, reflects an OR operation performed on each bit of the top
operand, with each corresponding bit of the bottom operand. The same logic is also used when working with
conditions.
Example

numeric_value1 = 15 '00001111
numeric_value2 = 30 '00011110

'Result = 31 = 00011111
PRINT numeric_value1 OR numeric_value2
END

' Using the OR operator on two conditional expressions
numeric_value = 10

IF numeric_value = 5 OR numeric_value = 10 THEN PRINT "Numeric_Value equals 5 or 10"
END

' This will output "Numeric_Value equals 5 or 10" because
' while the first condition of the first IF statement is false, the second is true

Differences from PBASIC

Page 201

 PBASIC OR is always logical, and | is bitwise
See also

 AND
 XOR
 NOT

Page 202

<<

Syntax

number << places

Description

<< shifts all bits in the argument number integer to the left by argument places. This has the effect of
multiplying the argument number by two for each shift given in the argument places. Both arguments,
numbers and places are integers. This is easiest to see in a binary number. For example %0101 << 1 return
the binary number %01010. In base 10 numbers this looks like 5 << 1 and returns 10.
Example

FOR i = 1 TO 10
 PRINT 1 << i
NEXT i
SLEEP

The output would look like:
2
4
8
16
32
64
128
256
512
1024

Differences from other BASICs

 none
See also

 >>

Page 203

>>

Syntax

number >> places

Description

>> shifts all bits in the argument number integer to the right by argument places. This has the effect of
dividing the argument number by two for each shift given in the argument places. Both arguments, numbers
and places are integers. This is easiest to see in a binary number. For example %0101 >> 1 return the binary
number %010. In base 10 numbers this looks like 5 >> 1 and returns 2.

If the number variable is signed, the sign bit is recopied into its place after the shift.

Example

FOR i = 1 TO 10
 PRINT 1000 >> i
NEXT i
SLEEP

The output would look like:
500
250
125
62
31
15
7
3
1
0

Differences from other BASICs

 none
See also

 <<

Page 204

REV

Syntax

(value) REV (number of bits)

Description

Function returning a reversed (mirrored) copy of a specified number of bits of a value, starting with the
rightmost bit (LSB).

For instance, 0xFEED REV 4 would return 0xB, a mirror image of the last four bits of the value.(The binary
representation of 0xD being 1101 and 0xB 1011)

Differences from PBASIC

 no equivalent in Visual BASIC
 same as PBASIC

See also

 AND
 XOR
 NOT

Page 205

XOR

Syntax

number XOR number
Description

Xor, at its most primitive level, is a boolean operation, a logic function that takes in two bits and outputs a
resulting bit. If given two bits, this function returns true if ONLY one of the bits are true, and false for any other
combination. The truth table below demonstrates all combinations of a boolean xor operation:
Bit1 Bit2 Result
 0 0 0
 1 0 1
 0 1 1
 1 1 0

This holds true for conditional expressions in ARMbasic. When using "Xor" encased in an If block, While
loop, or Do loop, the output will behave quite literally:
IF condition1 XOR condition2 THEN expression1

Is translated as:
IF condition1 IS only true, OR only condition2 IS true, THEN perform expression1

When given two expressions, numbers, or variables that return a number that is more than a single bit, Xor is
performed "bitwise". A bitwise operation compares each bit of one number, with each bit of another number,
performing a logic operation for every bit.
The boolean math expression below describes this:
00001111 XOR
00011110
-------- equals
00010001

Notice how in the resulting number of the operation, reflects an XOR operation performed on each bit of the
top operand, with each corresponding bit of the bottom operand. The same logic is also used when working
with conditions.
Example

' Using the XOR operator on two numeric values

numeric_value1 = 15 '00001111
numeric_value2 = 30 '00011110

'Result = 17 = 00010001
PRINT numeric_value1 AND numeric_value2
END

' Using the XOR operator on two conditional expressions

numeric_value1 = 10
numeric_value2 = 15

IF numeric_value1 = 10 XOR numeric_value2 = 20 THEN PRINT "Numeric_Value1 equals 10 or
Numeric_Value2 equals 20"
END

' This will output "Numeric_Value1 equals 10 or Numeric_Value2 equals 20"
' because only the first condition of the IF statement is true

Page 206

Differences from PBASIC

 PBASIC XOR is always logical, and ^ is bitwise
See also

 AND
 OR
 NOT

Page 207

Operator Precedence

Description

 When several operations occur in a single expression, each operation is evaluated and resolved in a
predetermined order. This called the order of operation or operator precedence. There are three main
categories of operators; arithmetic, comparison, and logical. If an expression contains operators from more
than one category, arithmetic operators are evaluated first, comparison operators next, and finally logical
operators are evaluated last. If operators have equal precedence, they then are evaluated in the order in which
they appear in the expression from left to right. Comparison operators all have equal precedence.

 The following table gives the operator precedence for each operator in each category. Operators lower on
the list have a lower operator precedence. Operators on the right have lower precedence than ALL operators
in the column to the left. Arithmetic operators are evaluated before comparison operations, and logical
operators are last.

 Parentheses can be used to override operator precedence. Operations within parentheses are performed
before other operation. However, within the parentheses operator precedence is used.

Arithmetic Comparison Logical

- (Negation) = <> < > <= >= AND

*, / (Multiplication and division) OR

MOD (Modulus Operator) XOR

+, - (Addition and subtraction) NOT

<<, >> (Shift Bit Left and Shift Bit Right)

See also

 Operator List

Page 208

Data Types

Data Types
 Constants
 Variables
 Arrays
 Strings
 ARM Hardware Access
 Address Operator
 Converting Data Types

Page 209

http://www.coridiumcorp.com

Constants

Description

 Constants are numbers which cannot be changed after they are defined. For example, 5 will always mean
the same number.

 In ARMbasic, variable names can be told to be constants by defining them with the CONST command.

 Such constants are then available globally, meaning that once defined, you can use the word to refer to a
constant anywhere in your program.

 After being defined with the CONST command, constants cannot be altered. If code tries to alter a
constant, an error message will result upon code compilation.

 Only the first 32 characters of a constant name are used, beyond that they are truncated.

 By default, constants are defined by decimal numbers. Versions of the compiler after 7.43 also support VB
style hex constants defined by &H, such as &H1000 = 4096.

 PBASIC style hex and binary constants may also be used. A hex constant will begin with $, such as
$3FAB. Binary constants begin with %, such as %010101111. While decimal constants can be signed,
hex and binary constants are always unsigned.

Example

CONST FirstNumber = 1
CONST SecondNumber = - 2

PRINT FirstNumber, SecondNumber 'This will print 1 -2

See also

 CONST

Page 210

Variables

Syntax

symbolname = expression ' automatic declaration

 or

DIM symbolname AS INTEGER

Description

 Variables are values which can be manipulated. They are referenced using names composed of letters,
numbers, and character "_". These reference names cannot contain most other symbols because such
symbols are part of the ARMbasic programming language. They also cannot contain spaces.

 32-bit signed whole-number data type. Can hold values from -2147483648 to 2147483647.

 Variables are declared automatically on first use. A DIM statement is not required, but can be used.
Once a simple variable is declared using a DIM, then all following variables must be declared that way
.

 Only the first 32 characters of a variable name are used, beyond that they are truncated. Also names are
not case sensitive.
Example

FirstNumber = 1
SecondNumber = -2
ThirdNumber = &H20

PRINT FirstNumber, SecondNumber, ThirdNumber 'This will print 1 -2 32

DIM FirstNumber AS INTEGER
DIM SecondNumber AS INTEGER
DIM ThirdNumber AS INTEGER

FirstNumber = 1
SecondNumber = -2
ThirdNumber = &H20

PRINT FirstNumber, SecondNumber, ThirdNumber 'This will print 1 -2 32
Differences from other BASICs

 similar to Visual BASIC
 different syntac in PBASIC

See also

DIM

Page 211

Arrays

Description

 Arrays are Variables which contain more than one value. The value decided upon is chosen using an
index which is an integer value between 0 and the number of elements in the array. In ARMbasic , any array
must be declared before it's first use using the DIM command.

 The best way to conceptualize an array is look at it like a spreadsheet. For example, if you had an array
called myArray which contained elements (0 to 10), and was filled with random numbers, you could look at it
like this:

Index Data

0 4

1 5

2 2

3 6

4 5

5 9

6 1

7 0

8 4

9 5

10 7

 Keep in mind that the numbers in the Data column are completely arbitrary in our example. When you
create an array in ARMbasic using the DIM command, the elements are all set to 0.
 If you were to look at myArray(1), you'd find it's equal to 5. If you were tolook at myArray(5),you'd find it
equal to 9. In ARMbasic , you can for the most part treat arrays with indexes the same as you would all
Variables.

Page 212

Example

DIM Numbers(10)
DIM OtherNumbers(10)

Numbers(1) = 1
Numbers(2) = 2
OtherNumbers(1) = 3
OtherNumbers(2) = 4

GOSUB PrintArray

FOR a = 1 TO 10
 PRINT Numbers(a)
NEXT a

PRINT OtherNumbers(1)
PRINT OtherNumbers(2)
PRINT OtherNumbers(3)
PRINT OtherNumbers(4)
PRINT OtherNumbers(5)
PRINT OtherNumbers(6)
PRINT OtherNumbers(7)
PRINT OtherNumbers(8)
PRINT OtherNumbers(9)
PRINT OtherNumbers(10)

PrintArray:
 FOR i = 1 TO 10
 PRINT otherNumbers(i)
 NEXT i
RETURN

See also

 Strings
 DIM

Page 213

Strings

Syntax

DIM symbolname$ (maxlength) ' kept for backward compatibility

 or

DIM symbolname (maxlength) AS STRING

Description

A STRING is an array of characters, and is limited to 256 characters. Larger strings may be allocated, but
string operations should be limited to the first 256 characters (no runtime check).

Despite the use of the maxlength , an implicit CHR (0) is added to the end of the STRING, to allow for variable
length during program execution. For this reason a &H0 may not be used as a portion of a string. Byte
arrays can be used using an allocation as a string, and they may exceed 256 characters. They may also
contain embedded &H0 elements. But if they do, string operations can not be used. For instance a byte
array of &H0, &H1, &H2 can be built as-

 a$(0) = 0
 a$(1) = 1
 a$(2) = 2
 a$(3) = 3

But the following will NOT work-

 a$ = chr(0) + chr(1) + chr(2) + chr(3) ' fails as the first 0 terminates this string operation

But it can be done as-

 a$ = chr(1) + chr(1) + chr(2) + chr(3)
 a$(0) = 0 ' replace the first character with a $0

STRINGs are not checked for length at run time, so care must be taken to avoid filling it beyond the declared
DIM.

Individual characters within a string can be accessed like an array, such as a$(12) returns the character in
position 13, with the first element at offset 0.

Single character strings are a special case, and usually replaced by the byte constant representing that
character. So "A" can be used interchangeably with &H41 or 63.

Example

' Fixed-length declaration, but value varies during execution
DIM a$ (20)
a$ = "Hello"

a$ = a$+chr(32)+ "World"

PRINT a$ ' = "Hello World"

Differences from other BASICs

 Similar to Visual BASIC strings. In VB strings can have implied length when declared, but ARMbasic
requires an explicit length when declared.

 PBASIC has Arrays of BYTEs but no specific strings

Page 214

See also

 STR

Page 215

ARM Hardware Access

Description

 While ARMbasic provides access to many hardware functions through various keywords, there are cases
where the user may want to program the available control registers directly.

Example

DayOfWeek = * ($E0024034) ' read the real time clock day of week register

* ($E0024034) = DayOfWeek ' write the real time clock day of week register

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 CPU Register Details

Page 216

AdressOf

Syntax

 ... = ADDRESSOF sub/function ' get the starting address of the sub/function

 or

 ... = ADRESSOF variable/string

Description

 The address of a variable or function can be determined with the ADRESSOF operator.

Example

xx = 0

sub doit
 xx = xx+1
end sub

VICVectAddr3 = ADRESSOF doit ' setup the 3rd interrupt to execute doit

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

Page 217

Converting Data Types

To/From Strings
 ASC implied
 CHR
 HEX
 STR
 VAL

Page 218

ASC -- implied function

Syntax

In ARMbasic this is an automatic type conversion

But if you want to do it explicity, in your code add the following do-nothing #define

#define ASC(x) x

Description

ARMbasic allows individual elements of a string to be accessed, and when they are assigned or compared to
integer variable/constants, the ASCII value will be used.

Example

PRINT "the character represented by the ASCII code of 97 is:"; CHR(97) ' will print a

DIM astr(10) as string ' examples of automatic type conversion complimentary to CHR

PRINT astr(0), chr(astr(0)) ' will print 97 a
x = astr(0)
PRINT x ' will print 97
if x = "a" then PRINT "it is a" ' will print it is a
Differences from other BASICs

 does not exist in PBASIC
 same function exists in Visual BASIC

See also

 ASCII table
 HEX
 VAL

Page 219

CHR

Syntax

CHR(expression)
Description

CHR returns a single byte string containing the character represented by the ASCII code passed to it. For
example, CHR(97) returns "a".

Note:
There is no need for a complimentary function, as that type conversion is automatic, see sample code below.

Example

PRINT "the character represented by the ASCII code of 97 is:"; CHR(97) ' will print a

DIM a$(10) ' examples of automatic type conversion complimentary to CHR
a$="asdf"

PRINT a$(0), chr(a$(0)) ' will print 97 a
x = a$(0)
PRINT x ' will print 97
if x = "a" then PRINT "it is a" ' will print it is a
Differences from other BASICs

 does not exist in PBASIC
 same function exists in Visual BASIC/

See also

 STR
 HEX
 VAL
 [ASC]

Page 220

HEX

Syntax

HEX (expression)

Description

This returns the hexadecimal string representation of the integer expression. Hexadecimal values contain 0-9,
and A-F. The size of the result string depends on the integer type passed, it's not fixed.

This may also be used during debuging to change the default base to Hexadecimal, do this by typing just
HEX on the line, opposite of DEC when used this way.

Example

DIM text$(10)

text$ = HEX(4096)
PRINT "0x";text$ ' will display 0x1000

Differences from other BASICs

 same function as Visual BASIC
 similar to PBASIC format directive available in SHIFTIN, SERIN, DEBUGIN

See also

 CHR
 STR
 VAL

Page 221

STR

Syntax

STR(expression)
Description

STR will convert a expression into a string.

For example, STR(3) will become "3", or STR(333) will become "333".

Incidentally, this is the opposite of the VAL function, which converts a string into a number.

STR is also used in certain routines of the Hardware Library to designate that a series of bytes should be
read or written to a string.

Also in the following case the STR function is implied and is not required.

b$ = 333 + " sent" ' will save the ASCI string "333 sent" into b$

The implied STR will work for simple expressions, but anything complex should use STR(), this would include
any function call, array element fetches.

Example

DIM b$ (10)
a = 8421
b$ = STR(a)
PRINT a, b$ ' will display 8421 8421

Differences from other BASICs

 same function in Visual BASIC
 similar to DEC formatting function in PBASIC

See also

 VAL
 CHR
 HEX
 Hardware Library, Function List

Page 222

VAL

Syntax

VAL(string)
Description

VAL converts a string to a decimal number. For example, VAL("10") will return 10. The function parses the
string from the left and returns the longest number it can read, stopping at the first non-suitable charater it
finds.

Incidentally, this function is the opposite of STR , which converts a number to a string.
Example

DIM a$(20)
a$ = "20xa211"
b = VAL(a$)
PRINT a$, b

20xa211 20

Differences from other BASICs

 None from Visual BASIC
 similar to formatting directives DEC, HEX in PBASIC

See also

 STR
 HEX
 CHR

Page 223

Alphabetical Keyword List

With Version 7, most of the builtin firmware hardware routines have been replaced by ARMbasic routines that
can be accessed by #include <filename>. Version 7 frees up space for more user code (20K vs 12K in the
ARMmite). Version 7 is more Visual BASIC like.

The Welcome message shows the firmware version level of the ARMexpress Family device. This is
displayed when the device is stopped in the BASICtools or when reset and no user program has been loaded.

Version 7 Firmware Keywords

OPERATORS

 See Operator List

A

 ABS

 AD

 AND

 [ASC]

 AS

B

 BAUD

 BAUD0

 BAUD1

 BYREF

 BYVAL

C

 CALL

 CASE

 CHR

 CLEAR

 CONST

D

 DATA

 DEBUGIN

 DIM

M

 MAIL

 MAIN

 MOD

N

 NEXT

 NOT

O

 ON

 OR

 OUT

 OUTPUT

P

 PRINT

R

 READ

 RESTORE

 RETURN

 REV

 RIGHT

 RND

 RUN

 RXD

 RXD0

Page 224

 DIR

 DO...LOOP

 DOWNTO

E

 ELSE

 ELSEIF

 END

 ENDFUNCTION

 ENDIF

 ENDSELECT

 ENDSUB

 EXIT

F

 FOR

 FREAD

G

 GOSUB

 GOTO

H

 HEX

 HIGH

I

 IF...THEN

 IN

 INPUT

 INTEGER

 INTERRUPT

 IO

L

 LEFT

 LEN

 RXD1

S

 SELECT CASE

 SERIN

 SEROUT

 STEP

 STOP

 STR

 STRCOMP

 STRING

 SUB

T

 THEN

 TIMER

 TO

 TXD

 TXD0

 TXD1

U

 UDPIN

 UDPOUT

 UNTIL

V

 VAL

W

 WAIT

 WHILE

 WRITE

X

 XOR

other

Page 225

 LIST

 LOOP

 LOW

 * pointer

Page 226

* (ARM peripheral access)

Syntax

* variable

* constant

* (expression) ' added in version 8.04 of the compiler

Description

The C pointer syntax is used to give direct access to the ARM peripheral registers.

This gives the programmer the ability to directly control the ARM hardware. Details on what the registers do
can be found in the NXP User Manuals for the corresponding chip (LPC2103 for ARMmite, ARMexpress LITE,
PRO, LPC2106 for ARMexpress, LPC2138 for ARMweb, and LPC1751/6 for the PROplus and SuperPRO)

Examples of programming the registers can be found in the BASIClib directory which contains sub-programs
that control various hardware functions.

Example

' from the HWPWM.bas library

'* ---- Timer 2 --
#define T2_TCR * &HE0070004
#define T2_TC * &HE0070008
#define T2_PR * &HE007000C
#define T2_MCR * &HE0070014
#define T2_MR0 * &HE0070018
#define T2_MR1 * &HE007001C
#define T2_MR2 * &HE0070020
#define T2_MR3 * &HE0070024

 T2_PR = prescale
 T2_TCR = TxTCR_COUNTER_ENABLE ' Timer1 Enable

 T2_MR3 = cycletime -1
 T2_MCR = 0x400 ' rollover when count reaches MR3
Differences from other BASICs

 No equivalent in Visual BASIC
 no direct equivalent in PBASIC, CONFIGPIN is a similar function

See also

 Hardware Library Functions

Page 227

ABS

Syntax

ABS (number)

Description

The absolute value of a number is its unsigned magnitude. For example, ABS(-1) and ABS(1) both return 1.
The required number argument can be any valid numeric expression. If number is an uninitialized variable,
zero is returned.
Example

PRINT ABS (-1)
PRINT ABS (42)
PRINT ABS (N)

N = -69

PRINT ABS (N)

The output would look like:
1
42
0
69

Differences from other BASICs

 none from Visual BASIC
 none from PBASIC

See also

 OR
 XOR
 NOT

Page 228

AD

Syntax

FUNCTION AD (expression)

Description --- not available on the original ARMexpress

ARMmite and ARMmite PRO version

AD will return 0..65472 that corresponds to the voltage on the pin corresponding to expression . The value
returned will have the top 10 bits of significance followed by bits 5..0 will be 0. 0 would be read for 0V and
65472 for 3.3V.

An analog conversion on pin expression is performed when this builtin FUNCTION is called. This process
takes less than 6 usec.

Dual Use AD pins

On reset or power up the AD pins are configured as AD inputs. To change those to digital IOs, the user must
individually specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that
they will remain digital IOs until the next reset or power up.

ARMexpress LITE version

The ARMexpress LITE supports up to 6 channels of AD converters.

On the ARMexpress LITE and ARMweb these pins are configured as digital IOs at reset, but will be switched
to AD operation when AD(x) is read.

 AD(0) IO(7)
 AD(1) IO(10)
 AD(2) IO(8)
 AD(3) not available
 AD(4) not available
 AD(5) IO(9)
 AD(6) IO(11)

 AD(7) IO(12)

Stand-Alone Compilers

Because the hardware is not compatible between LPC types, this must be implemented as a FUNCTION in
BASIC and is not part of the firmware.

Example

voltage = AD (0) ' this will read the voltage on pin 0

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 IO
 DIR
 OUTPUT

Page 229

ADDRESSOF

Syntax

ADDRESSOF variable_name

 or

ADDRESSOF subroutine_name

Description

ADDRESSOF will return the address of a variable or subroutine.

Example

sub print1111
 print 1111
endsub

main:
 fpointer = ADDRESSOF print1111

 call (fpointer)
Differences from other BASICs

 similar to VB
 no equivalent in PBASIC

See also

 CALL

Page 230

AND

Syntax

number AND number

Description

And, at its most primitive level, is a boolean operation, a logic function that takes in two bits and outputs a
resulting bit.
If given two bits, this function returns true if both bits are true, and false for any other combination. The truth
table below demonstrates all combinations of a boolean and operation:
Bit1 Bit2 Result
 0 0 0
 1 0 0
 0 1 0
 1 1 1

This holds true for conditional expressions in ARMbasic . When using "And" encased in an If block, While
loop, or Do loop, the output will behave quite literally:
IF condition1 AND condition2 THEN expression1

Is translated as:
IF condition1 IS true, AND condition2 IS true, THEN perform expression1

When given two expressions, numbers, or variables that return a number that is more than a single bit, AND
is performed "bitwise". A bitwise operation compares each bit of one number, with each bit of another
number, performing a logic operation for every bit.
The boolean math expression below describes this:
00001111 AND
00011110
-------- equals
00001110

Notice how in the resulting number of the operation, reflects an AND operation performed on each bit of the
top operand, with each corresponding bit of the bottom operand. The same logic is also used when working
with conditions.
Example

' Using the AND operator on two numeric values
numeric_value1 = 15 '00001111
numeric_value2 = 30 '00011110

'Result = 14 = 00001110
PRINT numeric_value1 AND numeric_value2
END

' Using the AND operator on two conditional expressions
numeric_value1 = 15
numeric_value2 = 25

IF numeric_value1 > 10 AND numeric_value1 < 20 THEN PRINT "Numeric_Value1 is between 10 and 20"
IF numeric_value2 > 10 AND numeric_value2 < 20 THEN PRINT "Numeric_Value2 is between 10 and 20"
END

' This will output "Numeric_Value1 is between 10 and 20" because
' both conditions of the IF statement is true
' It will not output the result of the second IF statement because the first
' condition is true and the second is false.

Page 231

Differences from other BASICs

 none from Visual BASIC
 PBASIC AND is always logical, and & is bitwise

See also

 OR
 XOR
 NOT

Page 232

AS

Syntax

FUNCTION name [AS INTEGER | AS STRING]

 or

FUNCTION name (parameter list) [AS INTEGER | AS STRING]
 parameter list = parameter [, parameter list]
 parameter = [BYVAL] paramname [AS INTEGER]
 | [BYVAL] paramname(size) AS STRING
 | BYREF paramname AS STRING

 or

DIM symbolname (size) AS STRING

DIM symbolname AS INTEGER

Description

Used as a modifier in parameter declarations for FUNCTIONs or SUBs or DIMs

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 FUNCTION
 SUB
 DIM

Page 233

ASC -- implied function

Syntax

In ARMbasic this is an automatic type conversion

But if you want to do it explicity, in your code add the following do-nothing #define

#define ASC(x) x

Description

ARMbasic allows individual elements of a string to be accessed, and when they are assigned or compared to
integer variable/constants, the ASCII value will be used.

Example

PRINT "the character represented by the ASCII code of 97 is:"; CHR(97) ' will print a

DIM astr(10) as string ' examples of automatic type conversion complimentary to CHR

PRINT astr(0), chr(astr(0)) ' will print 97 a
x = astr(0)
PRINT x ' will print 97
if x = "a" then PRINT "it is a" ' will print it is a
Differences from other BASICs

 does not exist in PBASIC
 same function exists in Visual BASIC

See also

 ASCII table
 HEX
 VAL

Page 234

BYREF

Syntax

FUNCTION name [AS INTEGER | AS STRING]

 or

FUNCTION name (parameter list) [AS INTEGER | AS STRING]
 parameter list = parameter [, parameter list]
 parameter = [BYVAL] paramname [AS INTEGER]
 | [BYVAL] paramname(size) AS STRING
 | BYREF paramname AS STRING

Description

Used as a modifier in parameter declarations for FUNCTIONs or SUBs.

When used a pointer to the parameter will be used in the FUNCTION or SUB. This allows a function to read
AND write the original source parameter.

An advantage in use with STRINGs, is that extra space is not required and the STRING does not have to be
copied for the FUNCTION or SUB procedure. Constant strings may be passed BYREF, but any code that
attempts to modify a constant string will cause a Data Abort.

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 FUNCTION
 SUB

Page 235

BYTEBUS (ARMweb only)

Syntax

BYTEBUS (control)
Description

BYTEBUS reads or writes the 8 bit + 2 control lines on Port1 of the LPC2138. The control field sets the state
of the 2 control lines, with the intention of line 0 being used as a R/W line and line 1 being used as a CS line-

 0 -- set control line 0 low, and pulse line 1 low
 1 -- set control line 0 high, and pulse line 1 low
 2 -- set control line 0 low, and pulse line 1 high
 3 -- set control line 0 high, and pulse line 1 high

 4 -- use the 10 lines as a block of inputs or outputs (added in version 7 firmware)

For 0-3:

 The pulsewidth on line 1 is 250 nsec for write, and 550 nsec for read.

 Back to back operations occur 2.4 usec apart for writes, 2 usec for read.

None of these lines are driven on reset, and should be biased with resistors if devices connected to this bus
require it.

Example

'write to byte bus - negative true CS and W
BYTEBUS(0) = $A5

'read from byte bus - negative true CS, R-notW line
x = BYTEBUS(1)

block control added in version 7 firmware-
'write to 10 pins as a block
BYTEBUS(4) = $2A5

'read from 10 pins as a block
x = BYTEBUS(4)

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 HIGH

Page 236

BYVAL

Syntax

FUNCTION name [AS INTEGER | AS STRING]

 or

FUNCTION name (parameter list) [AS INTEGER | AS STRING]
 parameter list = parameter [, parameter list]
 parameter = [BYVAL] paramname [AS INTEGER]
 | [BYVAL] paramname(size) AS STRING
 | BYREF paramname AS STRING

Description

Used as a modifier in parameter declarations for FUNCTIONs or SUBs.

When used a copy of the parameter will be used in the FUNCTION or SUB. And the FUNCTION or SUB
procedure can change the copy of the parameter, BUT not the original.

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 FUNCTION
 SUB

Page 237

GOSUB CALL

Syntax

GOSUB label

 or

CALL label

[CALL] function/sub

CALL (expr)

Description

GOSUB is supported for backward compatibility, now FUNCTIONs and SUBs and their implied CALL would
be a preferred method.

Execution jumps to a subroutine marked by line label. Always use RETURN to exit a GOSUB, execution will
continue on next statement after Gosub.

label may be defined as label: or as a SUB or FUNCTION

CALL for a FUNCTION or SUB is optional. When CALLing a FUNCTION the return value is discarded.

CALL (expr) was added in 7.40 compiler which allows calls to a pointer to a function. The parenthesis
are required. Parameter passing to this type of call is not supported.

Example

GOSUB message
END

message:
PRINT "Welcome!
return

sub print1111
 print 1111
endsub

main:
 fpointer = ADDRESSOF print1111

 call (fpointer)
Differences from other BASICs

 CALL used in Visual BASIC and version 7.00 makes the CALL optional for FUNCTION/SUB like
VB

 GOSUB used in PBASIC
See also

 GOTO
 RETURN

Page 238

CASE

Syntax

CASE expression

Description

CASE is used in a SELECT CASE statement to determine conditions for running a branch of code.

See SELECT CASE.
See also

 SELECT CASE

Page 239

CHR

Syntax

CHR(expression)
Description

CHR returns a single byte string containing the character represented by the ASCII code passed to it. For
example, CHR(97) returns "a".

Note:
There is no need for a complimentary function, as that type conversion is automatic, see sample code below.

Example

PRINT "the character represented by the ASCII code of 97 is:"; CHR(97) ' will print a

DIM a$(10) ' examples of automatic type conversion complimentary to CHR
a$="asdf"

PRINT a$(0), chr(a$(0)) ' will print 97 a
x = a$(0)
PRINT x ' will print 97
if x = "a" then PRINT "it is a" ' will print it is a
Differences from other BASICs

 does not exist in PBASIC
 same function exists in Visual BASIC/

See also

 STR
 HEX
 VAL
 [ASC]

Page 240

CLEAR

Syntax

CLEAR

Description

This is a compile time command that erases the current BASIC program in memory.

It should NOT be used as a statement inside a BASIC program.

Example

Example
PRINT "hi there"
RUN
hi there

CLEAR
Differences from other BASICs

 same as many BASICs
 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also
 RUN

Page 241

CONST

Syntax

CONST symbolname = value

Description

Declares compiler-time constant symbols that can be an integer.

More complex CONST can now be handled by #define -- see pre-processor

under the hood-

Constants do not take up any program space on the ARMmite or when using the PC Compile option on the
ARMexpress. In this case the constants are used by the compiler running on the PC and compiled into code
when used. When using the ARMexpress compiler, constants do take up space in the symbol table.

Constants can be 32 bit values using the PC ARMbasic compiler, butconstants are limited to 16bit values for
the onchip ARMweb compiler.

Example

CONST reps = 5

FOR I = 1 TO reps
 PRINT I
NEXT I

 -- will print out
1
2
3
4
5

Differences from other BASICs

 Visual BASIC allows more complex CONST declarations
 syntax in PBASIC is symbolname CON value

See also

 Preprocessor

Page 242

DATA

Syntax

DATA constant1 [,constant2]...

Description

DATA statements are used to build up a list of elements in Flash. The compiler processes them in order of
appearance in the progam, NOT in order of execution. DATA statements are evaluated at compile time, so
they should contain constant integers. DATA statements may not be located within complex statements
(such as FOR..NEXT, SUB..ENDSUB ...)

RESTORE resets the READ data pointer to the first DATA element defined.

DATA is normally used to initialize variables.

On the ARMmite, DATA statements are stored above the code space. So using DATA will reduce the space
available for code by 1K. DATA space is shared with constant strings on the ARMmite, so the combined
space allowable is 1K.

The space between the end of your code and the start of DATA statements can be written and read with
FREAD and WRITE commands, see the memory map for details.

Example

' Create an array of 5 integers and a string to hold the data.
DIM h(5)
' Set up to loop 5 times (for 5 numbers... check the data)
FOR read_data = 0 TO 4

 ' Read in an integer.
 READ h(read_data)

 ' Display it.
 PRINT "Number"; read_data;" = "; h(read_data)

NEXT

DATA 3, 234, 435, 23, 87643

Differences from QB

 common to earlier BASICs
 no equivalent in Visual BASIC
 similar to PBASIC

See also

 READ
 RESTORE
 WRITE

Page 243

DEBUGIN variable

Syntax

DEBUGIN variable | string
Description

Normally the programs running on an ARMexpress/ARMmite are running stand-alone and without direct
human input. However, during the bringup phase a programmer may want to try different values. So a
simplified replacement of the normal BASIC INPUT has been added, called DEBUGIN.

INPUT is used to control the direction of one of the IO pins.

DEBUGIN has a limited edit capacity: it allows to erase characters using the backspace key. If a better user
interface is needed, a custom input routine should be used.

DEBUGIN may also read a string from the control serial port.

On the ARMweb, this command is available only on the debug USB port.

Example

while 1
 debugin a
 print a*10
loop

Differences from other BASICs

 ARMexpress DEBUGIN can take numbers in hexadecimal, binary or decimal format by using $hex
%bin

Page 244

 PBASIC is taylored for more interaction and allows more complex DEBUGIN
 other BASICs calls this function INPUT

See also

Page 245

DIM

Syntax

Declaring Arrays:
 DIM symbolname (max_element)

Declaring Strings:
 DIM symbolname$ (max_element)
 DIM symbolname (max_element) AS STRING

Declaring Integers:
 DIM symbolname AS INTEGER

Description

Declares a named variable and allocates memory to accommodate it. Though ARMbasic does not require the
declaration of integer variables, DIM is used to assign arrays of integers or strings (arrays of bytes). The size
is the max_element in the array plus 1. This allows indexing from 0 to max_element .

For backward compatibilty strings may have the last character the dollar sign $.

Only one symbolname may be declared with each DIM statement.

Memory for simple variables is allocated from the start of a heap, and strings or arrays are allocated from the
top or end of the heap. Strings are packed as bytes and always word alligned, you must allow enough space
to accomodate the expected maximum size of the string plus 1 byte for a termination (0) character. String
operators rely on the terminator.

Simple variable will be automatically declared on first use, unless you use DIM symbolname AS INTEGER.
At which point all subsequent integers must be declared using a DIM.

SUB procedures also use DIM between SUB .. ENDSUB. Those variables will be local to the procedure.
Using DIM here does not change whether all subsequent integers must be declared using a DIM or not. In
other words the state whether DIM is required is saved upon entering a SUB procedure and is restored at the
ENDSUB.

In version 7.05, AS STRING arrays are no longer limited to 255 bytes, so that they may be used for larger
arrays of bytes. However, string operations and functions ARE limited to 255 bytes.

Example

DIM a$ (10)
DIM b$ (20)
DIM c$ (30)

a$ = "Hello World"
b$ = "... from ARMbasic!"
c$ = a$ + b$

print c$ ' displays Hello World... from ARMbasic

Differences from other BASICs

 Like Visual BASIC the first element uses an offset of 0, but also memory is allocated for 0, 1 to size

Page 246

elements. This is backward compatable with earlier BASICs which indexed from 1 to size .
 PBASIC uses the syntax symbolname VAR WORD | BYTE [(size)]

See also

Page 247

DIR

Syntax

DIR (expression)
Description

DIR (expression) can be used to set or read the direction of the 16 configurable pins. If DIR (expression) is 1
then the corresponding pin is an output. If the value is 0 then that pin is an input.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital IOs, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they will remain
digital IOs until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance DIR 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIO0DIR.

Example

' Set pin 4 as an input
DIR(4) = 0

' Set pin 12 as an output
DIR(12) = 1

Differences from other BASICs

 no equivalent in Visual BASIC
 equivalent to DIR0..15 in PBASIC

See also

 INPUT
 OUTPUT

Page 248

DO...LOOP

Syntax

[DO] WHILE condition
 [statement block]
LOOP

DO
 [statement block]
[LOOP] UNTIL condition

DO
 [statement block]
LOOP

Description

Repeats a block of statements until/while the condition is met. The three above syntaxes show the different
types. The DO .. LOOP without a WHILE or UNTIL will loop forever, unless an EXIT statement is executed.
Example

'This will continue to print "hello" on the screen until the condition (a > 10) is met.

a = 1
DO
 PRINT "hello"
 a += 1
LOOP UNTIL a > 10

Differences from other BASICs

 Some BASICs allow interchangeablilty of UNTIL as the equivalent of NOT WHILE

See also

 EXIT
 FOR...NEXT
 WHILE...LOOP

Page 249

DOWNTO

Syntax

FOR counter = startvalue DOWNTO endvalue [STEP stepvalue]
 [statement block]
NEXT [counter]

Description

This has been added for FOR loops that count down, which are ambiguous when startvalue or endvalue
are variables.
Example

PRINT "counting from 3 to 0, with a step of -1"
FOR i = 3 DOWNTO 0 STEP 1
 PRINT "i is "; i
NEXT i

Page 250

ELSE

Syntax

if [condition] then [action] ELSE [action]

Description

see IF...THEN.
Example

IF 1 THEN
 PRINT "One!"
ELSE
 PRINT "Nope!"
ENDIF

Differences from QB

 none from Visual BASIC
 none from PBASIC

See also

 IF THEN

Page 251

ELSEIF

Syntax

if [condition] then [action] ELSEIF [condition] then [action]

Description

see IF...THEN.
Example

IF A = 1 THEN
 PRINT "ONE!"
ELSEIF A = 2 THEN
 PRINT "TWO!"
ENDIF

Differences from other BASICs

 None from PBASIC
 Visual BASIC uses a two word END IF, rather than the ARMbasic ENDIF

See also

 IF...THEN

Page 252

END

Syntax

END
Description

END is used to terminate the program.

When the ARMbasic is used in a control application, the END would not normally be encountered. As most
control applications would be a loop, as when a program ends it would require the user to restart or a reboot.

There is an implied END added to any program. When a program ENDs, the last state of variables, IOs and
IO controls is maintained. If a program is then RUN again those states will probably be different than running
the program by hitting RESET. RESET sets all variables to 0, and all IOs to inputs. When a program is
restarted from RUN, the variables will be set to 0, but the last IO state will be maintained.

Example

PRINT "An unrecoverable error has occurred "
END
Differences from other BASICs

 none
See also

 STOP
 SLEEP

Page 253

ENDFUNCTION | END FUNCTION

Syntax

ENDFUNCTION

ENDFUNCTION or END FUNCTION syntax are allowed

Description

ENDFUNCTION terminates a FUNCTION procedure

FUNCTIONs must be defined before they are called.

Example

function toupper(a(100) as string) as string
 dim i as integer
 dim l as integer
 l = len(a)
 for i=0 to l
 if a(i) <= "z" and a(i) >= "a" then a(i) = a(i) - $20
 next i
 return a
end function

main:

print toupper("asdf") ' will print ASDF

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 DIM
 GOSUB
 SUB
 MAIN:

Page 254

ENDIF | END IF

Syntax

if [statement] then
[action]
ENDIF

Description

ENDIF is used to denote the end of a block IF statement.

Version 7.00 allows ENDIF or END IF syntax

Example

IF a = 1 THEN
 PRINT "A is equal to one!"
ENDIF

See also

 IF...THEN

Page 255

ENDSELECT | END SELECT

Syntax

SELECT [CASE] expression
[CASE expressionlist]
 [statements]
[CASE ELSE]
 [statements]
ENDSELECT

ENDSELECT or END SELECT syntax are allowed

Description

ENDSELECT is used to terminate the SELECT..CASE statement.
Example

SELECT choice
CASE 1
 PRINT "number is 1"
CASE 2
 PRINT "number is 2"
CASE 3, 4
 PRINT "number is 3 or 4"
CASE 5 TO 10
 PRINT "number is in the range of 5 to 10"
CASE <= 20
 PRINT "number is in the range of 11 to 20"
CASE ELSE
 PRINT "number is outside the 1-20 range"
ENDSELECT

Differences from other BASICs

 ENDSELECT is used to terminate the SELECT in PBASIC
 END SELECT used in Visual BASIC

See also

 IF...THEN
 SELECT CASE

Page 256

ENDSUB | END SUB

Syntax

ENDSUB

ENDSUB or END SUB syntax are allowed

Description

ENDSUB terminates a SUB procedure

SUBs must be defined before they are called.

Example

SUB sayHello
 DIM I as INTEGER ' this variable is local to the sayHello SUB procedure

 FOR I=1 to 3
 PRINT "Hello"
 NEXT I

ENDSUB
...

MAIN:
...
I = 55
PRINT I ' will display 55

GOSUB sayHello

PRINT I ' will still display 55, as this is the global I, different from sayHello local I
....

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 DIM
 GOSUB
 SUB
 MAIN:

Page 257

EXIT

Syntax

EXIT

Description

Leaves a code block such as a DO...LOOP, FOR...NEXT, or a WHILE...LOOP block.
Example

'e.g. the print command will not be seen

DO
 EXIT ' Exit the DO...LOOP
 PRINT "i will never be shown"
LOOP

Differences from other BASICs

 None
See also

 DO
 FOR
 WHILE

Page 258

FOR...NEXT

Syntax

FOR counter = startvalue TO endvalue [STEP stepvalue]
 [statement block]
NEXT [counter]

FOR counter = startvalue DOWNTO endvalue [STEP stepvalue]
 [statement block]
NEXT [counter]

Description

A FOR [...] NEXT loop initializes counter to startvalue, then executes the statement block 's, incrementing
counter by stepvalue until it reaches endvalue. If stepvalue is not explicitly given it will set to 1.

If the DOWNTO is used, then the counter is decremented by the stepvalue or 1 if none is specified.

Example

PRINT "counting from 3 to 0, with a step of -1"
FOR i = 3 DOWNTO 0 STEP 1
 PRINT "i is "; i
NEXT i

Differences from other BASICs

 PBASIC does not use DOWNTO, and must specify a negative step
 PBASIC does not allow the variable in the NEXT statement (while this is not necessary it is good

coding practice)
See also

 STEP
 NEXT
 DO...LOOP
 EXIT

Page 259

FREAD

Syntax

SUB FREAD (FlashAddr, Destination, size)

Destination = arrayname | stringname

size in bytes

Description -- added version 7.13

The builtin subroutine FREAD copies data stored in the Flash memory to the Destination array, for size
bytes. When a string is used, it is treated like a byte array, not a 0 terminated string

Example

' simple example of write and read
DIM A(511) as string
DIM B(511) as string
...

WRITE (&H6000, A, 512) ' this will erase the &H6000 sector, as its the first encountered
WRITE (&H6200, A, 512) ' no erasure is required, as it was erased in the last call

FREAD (&H6200, B, 512)
...

WRITE (&H6000, A, 0) ' this forces an erase of sector &H6000, needed as it was the last sector
erased
WRITE (&H6000, A, 512)

...

WRITE (&H6000, A, 512) ' as the same block is being written it will automatically be erased
WRITE (&H6000, A, 512)

Differences from other BASICs

 Does not exist in Visual BASIC
 PBASIC has a similar function

See also

 WRITE
 Memory Map
 CPU details

Page 260

FUNCTION name (optional parameters)

Syntax

FUNCTION name [AS INTEGER | AS STRING]

 or

FUNCTION name (parameter list) [AS INTEGER | AS STRING]
 parameter list = parameter [, parameter list]
 parameter = [BYVAL] paramname [AS INTEGER]
 | [BYVAL] paramname(size) AS STRING
 | BYREF paramname AS STRING
 | BYREF paramname [AS INTEGER]

Description

FUNCTIONs are an extension of SUB that will return a value. If no type for the FUNCTION is specified, then
INTEGER is assumed.

The FUNCTION .. ENDFUNCTION construct allows for a second scope of variables. Scope meaning the
region in which code can see a set of labels. ARMbasic has a global scope and a local scope for any
variable declared with DIM inside an FUNCTION. Local scope variables will be only accessable from within
that FUNCTION procedure (the local scope).

Parameters are assumed to be called BYVAL if not specified. In BYVAL calls, a copy of the parameter is
passed to the Function. Integer or string parameters may be called BYREF which means a pointer to the
integer/string is passed, and changes to that integer/string can be made by code inside the function.

Code labels for goto/gosub declared within the SUB procedure are also in the local scope. Call to global
labels are allowed within a FUNCTION ... END FUNCTION , but that global label must be defined BEFORE
the FUNCTION ... END FUNCTION .

An implied RETURN is compiled at the ENDFUNCTION , but code should also return to the caller with
RETURN <expression>. A FUNCTION may also be called with a GOSUB, but the returned value is ignored.

Recursive calls with parameters or local variables are not supported. And ENDFUNCTION or END
FUNCTION syntax are allowed.

Program structure:

FUNCTIONs should be arranged ahead of the MAIN: body of code. In many cases they will be part of
#include files at the beginning of the user ARMbasic code. If FUNCTIONs are located at the start of a
program a MAIN: must be used.

FUNCTIONs can access global variables that have been declared before the FUNCTION, this declaration can
either be implicit or use a DIM.

FUNCTIONs must be defined before they are called.

Example

function toupper(a(100) as string) as string
 dim i as integer

 for i=0 to 100
 if a(i)=0 then exit
 if a(i) <= "z" and a(i) >= "a" then a(i) = a(i) - $20
 next i

Page 261

 return a
end function

main:

print toupper("asdf") ' will print ASDF

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 DIM
 GOSUB
 ENDSUB
 MAIN:

Page 262

GOSUB CALL

Syntax

GOSUB label

 or

CALL label

[CALL] function/sub

CALL (expr)

Description

GOSUB is supported for backward compatibility, now FUNCTIONs and SUBs and their implied CALL would
be a preferred method.

Execution jumps to a subroutine marked by line label. Always use RETURN to exit a GOSUB, execution will
continue on next statement after Gosub.

label may be defined as label: or as a SUB or FUNCTION

CALL for a FUNCTION or SUB is optional. When CALLing a FUNCTION the return value is discarded.

CALL (expr) was added in 7.40 compiler which allows calls to a pointer to a function. The parenthesis
are required. Parameter passing to this type of call is not supported.

Example

GOSUB message
END

message:
PRINT "Welcome!
return

sub print1111
 print 1111
endsub

main:
 fpointer = ADDRESSOF print1111

 call (fpointer)
Differences from other BASICs

 CALL used in Visual BASIC and version 7.00 makes the CALL optional for FUNCTION/SUB like
VB

 GOSUB used in PBASIC
See also

 GOTO
 RETURN

Page 263

GOTO

Syntax

GOTO label

Description

Jumps code execution to a line label.

Goto's should be avoided for more modern structures such as DO...LOOP, FOR...NEXT, and WHILE...LOOP
.
Example

GOTO message

message:
PRINT "Welcome!

Differences from other BASICs

 none from Visual BASIC
 none from PBASIC

See also

 GOSUB

Page 264

HEX

Syntax

HEX (expression)

Description

This returns the hexadecimal string representation of the integer expression. Hexadecimal values contain 0-9,
and A-F. The size of the result string depends on the integer type passed, it's not fixed.

This may also be used during debuging to change the default base to Hexadecimal, do this by typing just
HEX on the line, opposite of DEC when used this way.

Example

DIM text$(10)

text$ = HEX(4096)
PRINT "0x";text$ ' will display 0x1000

Differences from other BASICs

 same function as Visual BASIC
 similar to PBASIC format directive available in SHIFTIN, SERIN, DEBUGIN

See also

 CHR
 STR
 VAL

Page 265

HIGH

Syntax

HIGH expression
Description

HIGH will set the pin corresponding to expression to a positive value (3.3V) and then set it to an output.

HIGH and LOW have been added for PBASIC compatablity.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in theHardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance HIGH 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands.

Example

SUB DIRS (x) ' similar to PBASIC keyword
 DIM i AS INTEGER

 FOR i = 0 to 15
 DIR(i) = x and (1 << i)
 NEXT i
END SUB

main:

DIRS (&H00FF) ' set pins 0 to 7 to output

FOR I=0 TO 7
 WAIT (1000)
 HIGH I ' set each pin HIGH one after the other every second
NEXT I

Differences from other BASICs

 no equivalent in Visual BASIC
 none from PBASIC

See also

 LOW

Page 266

IF...THEN

Syntax

IF expression THEN statement(s) [ELSE statement(s)]

IF expression [THEN]
 statement(s)
[ELSEIF expression [THEN]
 statement(s)]
[ELSE
 statement(s)]
ENDIF

Description

IF...THEN is a way to make decisions. It is a mechanism to execute code only if a condition is true, and can
provide alternative code to execute based on more conditions.

The syntax allows single line IF..THEN, or multi-line versions that end with ENDIF.

The single line version only allows simple statements. To use nested IFs the multi-line version must be used.

Version 7.00 allows ENDIF or END IF

Example

'e.g. here is a simple "guess the number" game using if...then for a decision.

PRINT "guess the number between 0 and 10"

DO 'Start a loop
 PRINT "guess"
 DEBUGIN y 'Input a number from the user
 IF x = y THEN
 PRINT "right!" 'He/she guessed the right number!
 EXIT
 ELSEIF y > 10 THEN 'The number is higher then 10
 PRINT "The number cant be greater then 10! Use the force!"
 ELSEIF x > y THEN
 PRINT "too low" 'The users guess is to low
 ELSEIF x < y THEN
 PRINT "too high" 'The users guess is to high
 ENDIF
LOOP 'Go back to the start of the loop

Differences from other BASICS

 none
See also

 DO...LOOP
 SELECT CASE

Page 267

IN

Syntax

IN (expression)
Description

When reading from IN (expression), -1 or 0 will be returned corresponding to the voltage level on the pin
numbered expression. Why -1 and 0? The main reason is that operations of operators like NOT are assumed
to be bitwise until there is a Boolean operation in the expression, and NOT 0 is equal to -1.

This directive does not change the input/output configuration of the pin.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital IOs, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they will remain
digital IOs until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in theHardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond to the port assigned by NXP, for instance IN(3) corresponds to P0.3

For port pins after port 0, use the P1 .. P4 commands .

Example

' Set pin 9 as an input
INPUT (9)

' Assume an external device has driven pin 9 high

PRINT "The current value of Input pin 9 is "; IN(9) AND 1

The current value of Input pins is 1

Differences from other BASICs

 no equivalent in Visual BASIC
 equivalent to IN0..15 PBASIC

See also

 OUT
 IO

Page 268

INPUT

Syntax

INPUT expression
Description

INPUT will set the pin corresponding to expression to an input.

INPUT and OUTPUT were added for PBASIC compatability, same function as DIR(x)= 0.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital IOs, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they will remain
digital IOs until the next reset or power up.

Making a pin an INPUT will also tri-state that pin.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance INPUT 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIO0DIR.

Example

INPUT (0) ' this will make pin 0 an input

Differences from other BASICs

 INPUT gets a value from the user in some BASICs, in ARMbasic get a value from the debug serial port
with DEBUGIN

 none from PBASIC
See also

 DIR
 OUTPUT
 DEBUGIN

Page 269

INTEGER

Syntax

FUNCTION name [AS INTEGER | AS STRING]

 or

FUNCTION name (parameter list) [AS INTEGER | AS STRING]
 parameter list = parameter [, parameter list]
 parameter = [BYVAL] paramname [AS INTEGER]
 | [BYVAL] paramname(size) AS STRING
 | BYREF paramname AS STRING

 or

DIM symbolname (size) AS STRING

DIM symbolname AS INTEGER

Description

Used as a modifier in parameter declarations for FUNCTIONs or SUBs or DIMs

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 FUNCTION
 SUB
 DIM

Page 270

INTERRUPT

Syntax

INTERRUPT expression
Description

INTERRUPT will disable interrupts if expression is 0. And it will enable interrupts if expression is non-zero.
The default case is to have interrupts enabled.

Use this routine with caution, such as generating fixed time signals, or doing synchronous input. Do NOT
disable interrupts around large sections of the program. Serial input will stop functioning and characters may
be lost if interrupts are off for too long.

Example

' read a synchronous byte from a device with ready on pin 0, clock pin 1 and data on pin 2

FUNCTION ReadBit
 WHILE IN(1)=0 ' wait for clock to go high
 RETURN IN(2) AND 1
END FUNCTION

...

WHILE IN(0) ' wait for ready signal
LOOP

INTERRUPT 0
BIT0 = ReadBit
BIT1 = ReadBit
BIT2 = ReadBit
BIT3 = ReadBit
BIT4 = ReadBit
BIT5 = ReadBit
BIT6 = ReadBit
BIT7 = ReadBit
INTERRUPT 1

VALUE = BIT0 + (BIT1<<1) + (BIT2<<2)+ (BIT3<<3)+ (BIT4<<4)+(BIT5<<5)+ (BIT6<<6)+ (BIT7<<7)
Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 ON

Page 271

IO

Syntax

IO (expression)
Description

IO is a more complex way to access or control the pins. When IO (expression) is read, the pin
corresponding to expression is converted to an input and the value on that pin is returned.

When assiging a value to IO(expression), then pin expression is converted to an output and the logic value is
written to the pin, 0 writes a low level any other value sets the pin high. When read IO returns a 0 or -1. Why
-1 and 0? The main reason is that operations of operators like NOT are assumed to be bitwise until there is a
Boolean operation in the expression, and NOT 0 is equal to -1. When setting a pin state with IO(x) = 0 then
the pin becomes low, any other value and the pin becomes high, so IO(x) =1 and IO(x) = -1 both set the pin
high.

Using IO simplifies pins that are being used as both inputs and outputs. As it also sets direction it will be
slower than IN, OUT, HIGH or LOW.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital IOs, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they will remain
digital IOs until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance IO(3) corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIO0DIR.

Example

' Set pin 9 as an output and drive it high
IO(9) = 1

IO(9) = NOT IN(9) ' invert pin DO NOT USE IO(9) as that would be ambiguous for controlling the direction of
the pin

' Set pin 8 as an input and reads its value
x = IO(8)

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 OUT
 IN

Page 272

LEFT

Syntax

LEFT(string, characters)
Description

Returns n-characters starting from the left of string. String may be a constant or variable string.

String functions may not be nested.

A$ = LEFT("this is a test",5) + RIGHT(B$,3) ' valid string operation

A$ = LEFT("this "+b$,5) ' NOT ALLOWED nested operation

Example

text$ = "hello world"
PRINT LEFT(text$, 5) 'displays "hello"

Differences from other BASICs

 none from Visual BASIC
 no equivalent in PBASIC

See also

 RIGHT
 LEN

Page 273

LEN

Syntax

LEN(string)

Description

LEN will return the length of a string in characters.
Example

PRINT LEN("hello world") 'returns "11"

Differences from PBASIC

 This function does not exist in PBASIC.
See also

Page 274

LIST

Syntax

LIST

Description

When typing commands into BASICtools a line at a time, use LIST to see what was typed.

Those lines can be captured into a file for further editing either by cut and paste or using the Save As under
files in BASICtools.

This command is not used by the BASIC compiler, so it should not be included in a file to be compiled

Example

for i=1 to 10
 print i
next i

....

LIST
for i=1 to 10
 print i
next

Page 275

LOOP

Description

Part of Do [...] Loop.
See DO...LOOP.

Page 276

LOW

Syntax

LOW expression
Description

LOW will set the pin corresponding to expression to a low value (0V) and then set it to an output.

HIGH and LOW have been added for PBASIC compatablity.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance LOW 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIO0DIR.

Example

SUB OUTS (x) ' similar to PBASIC keyword
 DIM i AS INTEGER

 FOR i = 0 to 15
 OUT(i) = x and (1 << i)
 NEXT i
END SUB

SUB DIRS (x) ' similar to PBASIC keyword
 DIM i AS INTEGER

 FOR i = 0 to 15
 DIR(i) = x and (1 << i)
 NEXT i
END SUB

main:

DIRS (&H00FF) ' set pins 0 to 7 to output
OUTS (255) ' and then set them hign or to 3.3 V

FOR I=0 TO 7
 WAIT (1000)
 LOW (I) ' set each pin LOW one after the other every second
NEXT I

Differences from other BASICs

 no equivalent in Visual BASIC
 none from PBASIC

See also

 HIGH
 IO

Page 277

MAIN

Syntax

MAIN:

Description

Normally an ARMbasic program will start at the first statement in the BASIC source. This can be changed
by having a MAIN: somewhere else in the program. When a MAIN: does exist, the program will begin at this
point.

MAIN: is useful for programs that use FUNCTIONs or SUBs and have those FUNCTIONs or SUBs at the
beginning of the source. This also includes FUNCTIONs or SUBs that are #include'd in the source.

Example

SUB1:
PRINT "Hello from sub1"
RETURN

MAIN:
GOSUB SUB1
END

Differences from other BASICs

 none from Visual BASIC
 none from PBASIC

See also

 EXIT

Page 278

MOD

Syntax

argument1 MOD argument2

Description

MOD is the modulus or "remainder" arthimetic operator. The result of MOD is the integer remainder of
argument1 divided by argument2.
Example

PRINT 47 MOD 7
PRINT 56 MOD 2
PRINT 5 MOD 3

The output would look like:
5
0
2

Differences from other BASICs

 none from Visual BASIC
 PBASIC uses //

See also

Page 279

NEXT

Syntax

NEXT [identifier_list]

Description

Indicates the end of a statement block associated with a matching FOR statement. identifier_list, if given,
must match the identifiers used in the associated FOR statements in reverse order.

There should be exactly one NEXT statement (or one item in the identifier list) for every FOR statement.
Example

FOR i=1 TO 10
FOR j=1 TO 2
 ...
NEXT
next

FOR i=1 TO 10
FOR j=1 TO 2
 ...
NEXT j
NEXT i

FOR i=1 TO 10
FOR j=1 TO 2
 ...
NEXT j,i

See also

 FOR statement

Page 280

NOT

Syntax

NOT expression

Description

Not, at its most primitive level, is a operation, a logic function that takes one bit and returns a inverted bit.
This function returns true if the bit is false, and false if the bit is true. This also holds true for conditional
expressions in ARMbasic . When using "Not" encased in an If block, While loop, or Do loop, the output will
behave quite literally:
IF NOT condition1 THEN expression1

Is translated as:
IF condition1 = 0 THEN perform expression1

When given a expression, number, or variable that return a number that is more than a single bit, Not is
performed "bitwise". A bitwise operation performs a logic operation for every bit.
The boolean math expression below describes this:
00001111 NOT
-------- equals
11110000

Notice how in the resulting number of the operation, reflects an NOT operation performed on each bit of the
expression.

When used with conditions NOT becomes a logical operation.

if NOT x>5 then ...
'-------- eqivalent to
if x <= 5 then ...

In the above example if x is 7 and you PRINT NOT x>5 would print 0, and print 1 if x is 3.

Example

' Using the NOT operator on a numeric value

numeric_value = 15 '00001111

'Result = -16 = 111111111111111111111111111110000
PRINT NOT numeric_value
END

' Using the NOT operator on conditional expressions

numeric_value1 = 15
numeric_value2 = 25

IF NOT numeric_value1 = 10 THEN PRINT "Numeric_Value1 is not equal to 10"
IF NOT numeric_value2 = 25 THEN PRINT "Numeric_Value2 is not equal to 25"
END

' This will output "Numeric_Value1 is not equal to 10" because
' the first IF statement is false.
' It will not output the result of the second IF statement because the
' condition is true.

Page 281

Differences from other BASICs

 None
See also

 AND
 OR
 XOR

Page 282

ON (version 7.30 and later on ARM7 parts)

For PROplus and SuperPRO see INTERRUPT SUB

Syntax

ON TIMER msec label

 or

ON EINT0|EINT1|EINT2 RISE|FALL|HIGH|LOW label

Description

These statements will initialize interrupt service routines so that when the interrupt occurs the code at label
will be executed. Label must have been pre-defined and can either be a SUB (without parameters) or code
beginning with a label: and ending in a RETURN. The interrupt response time is approximately 3 usec. Other
interrupts may make this time longer.

TIMER interrupts will occur every msec milliseconds. msec may be a variable or constant, expressions are
not allowed. The value for msec must be greater than 1. If TIMER interrupts are used, then only 4 hardware
PWM channels are available.

EINT0 and EINT2 are 2 pins that will interrupt when the defined event occurs. RISE and FALL are the
preferred method and will generate interrupts on rising or falling edges on those 2 pins. HIGH and LOW are
supported, but if the pin remains in that state interrupts will be continuously generated.

EINT1 is connected to the RTS line of the PC, and is normally high, so it can be used by a program on the
PC to interrupt the ARMmite, rather than having to reset the board. This pin is available on the wireless
ARMmite, but if you intend to use it, make sure it is pulled high normally, otherwise when the board is reset it
will go into the download C mode and will not run your BASIC program. EINT1 is also available on the
ARMexpress modules (pin 21), and should also be kept normally high if used.

Each time the ON statement is executed the interrupt will be initialized, so it is possible to change routines
within the program. Multiple interrupts can be used, but they are serviced in the order received, and each
interrupt service routine will complete before the next one is handled (interrupts that occur while one is being
serviced will be handled after the current interrupt is processed).

Interrupt routines should normally be short and simple. The state of the other user BASIC code will be
restored after the interrupt, with the exception of string functions, which should NOT be done inside an
interrupt. PRINT statements use strings, so other than a temporary debug to see if the interrupt occurs, they
should not be inside an interrupt routine.

To disable the interrupt use the following #define

#defineVICIntEnClear *$FFFFF014

#define TIMERoff VICIntEnClear = $20
#define EINT0off VICIntEnClear = $4000
#define EINT1off VICIntEnClear = $8000
#define EINT2off VICIntEnClear = $10000

ON added in version 7.09

The LPC2106 based ARMexpress supports ONLY ON LOW, due to hardware limitations.

ON is a statement that is executed, so if multiple ON statements are in a program the last statement

Page 283

executed will be active command.

Cortex M3 and M0 do not support ON, but use INTERRUPT SUB

Example

IO15up = 0 ' serves to declare IO15up

...
SUB IO15count
 IO15up = IO15up + 1
ENDSUB

...
main:

ON EINT2 RISE IO15count

IO15up = 0
while 1
 if IO15up <> lastIO15count then
 print IO15up
 lastIO15count = IO15up
 endif

...

loop
every20msec:
 checkIO0 = checkIO0 + (IO(0) and 1)
 IO0samples = IO0samples +1
RETURN

...
main:

ON TIMER 20 every20msec

...

PRINT "Percentage of time IO0 is HIGH =", 100*checkIO0 / IO0samples

...

Differences from other BASICs

 VB ???
 no equivalent in PBASIC

See also

 GOTO
 RETURN

Page 284

OR

Syntax

number OR number

Description

Or, at its most primitive level, is a boolean operation, a logic function that takes in two bits and outputs a
resulting bit. If given two bits, this function returns true if either bit is true, and false if both bits are false. The
truth table below demonstrates all combinations of a boolean or operation:
Bit1 Bit2 Result
 0 0 0
 1 0 1
 0 1 1
 1 1 1

This holds true for conditional expressions in ARMbasic. When using "Or" encased in an If block, While loop,
or Do loop, the output will behave quite literally:
IF condition1 OR condition2 THEN expression1

Is translated as:
IF condition1 IS true, OR condition2 IS true, THEN perform expression1

When given two expressions, numbers, or variables that return a number that is more than a single bit, Or is
performed "bitwise". A bitwise operation compares each bit of one number, with each bit of another number,
performing a logic operation for every bit.
The boolean math expression below describes this:
00001111 OR
00011110
-------- equals
00011111

Notice how in the resulting number of the operation, reflects an OR operation performed on each bit of the top
operand, with each corresponding bit of the bottom operand. The same logic is also used when working with
conditions.
Example

numeric_value1 = 15 '00001111
numeric_value2 = 30 '00011110

'Result = 31 = 00011111
PRINT numeric_value1 OR numeric_value2
END

' Using the OR operator on two conditional expressions
numeric_value = 10

IF numeric_value = 5 OR numeric_value = 10 THEN PRINT "Numeric_Value equals 5 or 10"
END

' This will output "Numeric_Value equals 5 or 10" because
' while the first condition of the first IF statement is false, the second is true

Differences from PBASIC

Page 285

 PBASIC OR is always logical, and | is bitwise
See also

 AND
 XOR
 NOT

Page 286

OUT

Syntax

OUT (expression)
Description

When writing to OUT (expression), the pin corresponding to expression will be set a voltage level
corresponding to TRUE or FALSE, non-zero or 0. When setting a pin state with OUT(x) = 0 then the pin
becomes low, any other value and the pin becomes high, so OUT(x) =1 and OUT(x) = -1 both set the pin
high.

The OUT directive does not change the input/output configuration of the pin. Following reset all pins are
inputs, before an OUT () will have an effect on a pin, that pin must be made an output using an OUTPUT
command. The reason for this is to make OUT faster, if the pin direction were changed each OUT, then the
speed of one OUT to the next would be slower.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital IOs, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they will remain
digital IOs until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance OUT(3) corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIO0DIR.

Example

' Set pin 9 as an output
OUTPUT (9)

' Drive pin 9 high
OUT(9) = 1

PRINT "The current value of Output pin 9 is "; OUT(9)

The current value of Output pins is 1

Differences from other BASICs

 no equivalent in Visual BASIC
 equivalent to OUT0..15 in PBASIC

See also

 IN
 IO

Page 287

OUTPUT

Syntax

OUTPUT expression
Description

OUTPUT will set the pin corresponding to expression to an output.

INPUT and OUTPUT were added for PBASIC compatability, same function as DIR(x)= 0.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital IOs, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they will remain
digital IOs until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance OUTPUT 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIO0DIR.

Example

' Set pin 9 as an output
OUTPUT (9)

Differences from other BASICs

 no equivalent in Visual BASIC
 none from PBASIC

See also

 DIR
 INPUT

Page 288

PRINT

Syntax

PRINT [expressionlist] [(, | ;)] ...

Description

Prints expressionlist to screen.

Expressionlist can be constant string, constant numbers, variables, string variables or expressions consisting
ov variables and numbers. Seperated by either , or ;

Using a comma (,) as separator or in the end of the expressionlist will place the cursor in the next column
(every 5 characters), using a semi-colon (;) won't move the cursor. If neither of them are used in the end of
the expressionlist, then a new-line will be printed.

PRINT statements send data out the serial port. There is a 16 byte FIFO in the serial port, once that is filled
BASIC will wait for space to be available.

Example

DIM AB(10) AS STRING
'' new-line"Hello World!"'' no new-line
PRINT "Hello";AB; "!";
PRINT

'' column separator
PRINT "Hello!", "World!"

PRINT "3+4 =",3+4

y=4321
x=1234
PRINT "sum=",x+y

Differences from other BASICs

 none from Visual BASIC
 PBASIC uses DEBUGIN and a non-standard syntax

See also

 DEBUGIN the opposite function that receives user input

Page 289

READ

Syntax

READ {constant,} variable_list

variable_list = variable | array_element | string_element {, variable_list }
Description

Reads data stored by the BASIC application with the DATA command.

The elements of the variable_list must be integer variables, elements of a string, or elements of arrays. Each
element read, will be filled from a 32bit value in the 4K space used to store the DATA statements. All the
DATA statements in the program behave as a single list.

After the last element of a DATA is read, the first element of the following DATA will be read.

The RESTORE statement resets the next-element pointer to the start of the DATA. This allows the user to
alter the order in which the DATA are READ.

If the READ is followed by a constant, then the element will be filled from the nth DATA element where n =
constant.

Example

' Create an array of 5 integers.
DIM h(4)

' Set up to loop 5 times (for 5 numbers... check the data)
FOR read_data = 0 TO 4

 ' Read in an integer.
 READ h(read_data)

 ' Display it.
 PRINT "Number"; read_data;" = "; h(read_data)

NEXT

END

' Block of data.

DATA 3, 234, 4354, 23433, 87643
Differences from other BASICs

 Most classic BASICs contain this construct
 Does not exist in Visual BASIC
 PBASIC allows modifiers for size. In PBASIC the first element always sets the offset into the data

array. This is the case in ARMbasic only if the first element is a constant.
See also

 DATA
 RESTORE

Page 290

RESTORE

Syntax

RESTORE
Description

Sets the next-data-to-read pointer to the first element of the first DATA statement.
Example

' Create an 2 arrays of integers and a 2 strings to hold the data.
DIM h(4)
DIM h2(4)

' Set up to loop 5 times (for 5 numbers... check the data)
FOR read_data1 = 0 TO 4

 ' Read in an integer.
 READ h(read_data1)

 ' Display it.
 PRINT "Bloc 1, number"; read_data1;" = "; h(read_data1)

NEXT

' Set the data read to the beginning
RESTORE

' Print it.
PRINT "Bloc 1 string = " + hs

' Spacers.
PRINT
Print

' Set the data read to the beginning
RESTORE

' Set up to loop 5 times (for 5 numbers... check the data)
FOR read_data2 = 0 TO 4

 ' Read in an integer.
 READ h2(read_data2)

 ' Display it.
 PRINT "Bloc 2, number"; read_data2;" = "; h2(read_data2)

NEXT

DATA 3, 234, 4354, 23433, 87643

DATA 546, 7894, 4589, 64657, 34554

Page 291

Differences from QB

 common to many earlier BASICs
 no equivalent in Visual BASIC
 none from PBASIC

See also

 DATA
 READ

Page 292

RETURN

Syntax

RETURN

inside function-
 RETURN expression | string-expression

Description

RETURN is used to return control back to the statement immediately following a previous GOSUB call. When
used in combination with GOSUB, A GOSUB call must always have a matching RETURN statement, to avoid
stack

If the RETURN is inside a function, an integer or string expression is expected.

RETURN will exit a FUNCTION or SUB even when inside a component statement such as WHILE, FOR,
SELECT ...

If a RETURN is executed without a corresponding GOSUB or CALL, a Prefetch Abort error will stop your
program.

Example

PRINT "Let's Gosub!"
GOSUB MyGosub
PRINT "Back from Gosub!"
END

MyGosub:
PRINT "In Gosub!"
RETURN

Differences from other BASICs

 a subset of the RETURN of Visual BASIC
 none from PBASIC

See also

 GOSUB.

Page 293

REV

Syntax

(value) REV (number of bits)

Description

Function returning a reversed (mirrored) copy of a specified number of bits of a value, starting with the
rightmost bit (LSB).

For instance, 0xFEED REV 4 would return 0xB, a mirror image of the last four bits of the value.(The binary
representation of 0xD being 1101 and 0xB 1011)

Differences from PBASIC

 no equivalent in Visual BASIC
 same as PBASIC

See also

 AND
 XOR
 NOT

Page 294

RIGHT

Syntax

RIGHT(string, characters)
Description

Returns n-characters starting from the right of the string. String may be a constant or variable string.

String functions may not be nested.

A = LEFT("this is a test",5) + RIGHT(B,3) ' valid string operation

A = RIGHT("this "+b,5) ' NOT ALLOWED nested operation

Example

DIM text(20) as string

text = "hello world"
PRINT RIGHT(text, 5) 'displays "world"

Differences from other BASICs

 this function does not exist in PBASIC
 similar function to Visual BASIC

See also

 LEFT

Page 295

RND

Syntax

RND (number)

Description -- added in version 7

This is an LCG random number generator, that takes number in as a seed and produces a 32 bit integer
pseudo-random number.
Example

PRINT RND (33)
PRINT RND (33)
PRINT RND (55)

N = 69

PRINT RND (N)

The output would look like:
632584417
632584417
-1809004169
2103579653

Differences from other BASICs

 none from Visual BASIC
 none from PBASIC

See also

 OR
 XOR
 NOT

Page 296

RUN

Syntax

RUN

Description

RUN will compile the program and write it into Flash Memory. Then it will execute the program which has
been saved.

Now that the program is in Flash it will be executed when the board is either reset or powered on.

BASICtools can STOP a program that is being executed from Flash.

RUN is a command line function, it should NOT be included in a BASIC program. It is equivalent to the RUN
button in the BASICtools. Your BASIC program will start automatically when the ARM is reset.

Example

PRINT "hi there"
RUN
CLEAR
Differences from other BASICs

 same as many BASICs
 no equivalent in Visual BASIC
 no equivalent in PBASIC, done with the editor

See also

 CLEAR

Page 297

SELECT [CASE]

Syntax

SELECT [CASE] expression
[CASE expressionlist]
 [statements]
[CASE ELSE]
 [statements]
ENDSELECT
Description

Select case executes specific code depending on the value of an expression. If the expression matches the
first case then it's code is executed otherwise the next cases are compaired and if one case matches then
its code is executed. If no cases are matched and there is a 'case else' on the end then it wll be executed,
otherwise the whole select case block will be skipped.

Syntax of an expression list:
expression [{TO expression | relational operator expression}][, ...]

example of expression lists:
CASE "A" ' the "A" is equivalent to $41, multi-character strings can not be used in CASE
statements
CASE 5 TO 10
CASE > "e"
CASE 1, 3 TO 10
CASE 1, 3, 5, 7, 9
Example

PRINT "Choose a number between 1 and 10: "
DEBUGIN choice
SELECT choice
CASE 1
 PRINT "number is 1"
CASE 2
 PRINT "number is 2"
CASE 3, 4
 PRINT "number is 3 or 4"
CASE 5 TO 10
 PRINT "number is in the range of 5 to 10"
CASE <= 20
 PRINT "number is in the range of 11 to 20"
CASE ELSE
 PRINT "number is outside the 1-20 range"
ENDSELECT
Differences from other BASICs

 SELECT CASE is used in Visual BASIC
 SELECT is used in PBASIC
 either is allowed in ARMbasic
 Visual BASIC uses an optional IS before relational operators
 ENDSELECT is used to terminate the SELECT in both ARMbasic and PBASIC
 END SELECT (seperate words) are used in Visual BASIC and is allowed in ARMbasic

See also

 IF...THEN

Page 298

STEP

Syntax

FOR iterator = initial_value TO end_value STEP increment

Description

In a FOR statement, STEP specifies the increment of the loop iterator with each loop.
If no STEP value is specified in the FOR loop the default of + 1 is used.
Example

FOR I=10 TO 1 STEP -1

See also

 FOR

Page 299

STOP

Syntax

STOP

Description

Halt execution of the program.

STOP functions like a breakpoint when under control of BASICtools. When the STOP is executed the BASIC
program halts excecution, but allows BASICtools to dump variable values. Also in BASICtools RUN will
resume execution at the statement following STOP.
Example

'If pin 2 is low halt the processor
IF IO(2) = 0 THEN
 PRINT "Processor Stopped"
 PRINT "Press Reset to Continue"
 STOP
ENDIF

Differences from other BASICs

 none from Visual BASIC
 none from PBASIC, though the breakpoint features are not supported

See also

 EXIT

Page 300

STR

Syntax

STR(expression)
Description

STR will convert a expression into a string.

For example, STR(3) will become "3", or STR(333) will become "333".

Incidentally, this is the opposite of the VAL function, which converts a string into a number.

STR is also used in certain routines of the Hardware Library to designate that a series of bytes should be
read or written to a string.

Also in the following case the STR function is implied and is not required.

b$ = 333 + " sent" ' will save the ASCI string "333 sent" into b$

The implied STR will work for simple expressions, but anything complex should use STR(), this would include
any function call, array element fetches.

Example

DIM b$ (10)
a = 8421
b$ = STR(a)
PRINT a, b$ ' will display 8421 8421

Differences from other BASICs

 same function in Visual BASIC
 similar to DEC formatting function in PBASIC

See also

 VAL
 CHR
 HEX
 Hardware Library, Function List

Page 301

STRCOMP

Syntax

STRCOMP(string1, string2)

Description

This compares the two strings returning -1 if string1 would sort before string2. Returning 0 if the two strings
are equal, and 1 if string1 would sort after string2.

String1 and String2 may be constant or variable strings.

String functions may not be nested.

Example

DIM text$(10)

text$ = "BAT"
PRINT STRCOMP(text$, text$) ' will display 0
PRINT STRCOMP(text$, "BAT") ' will display 0)
PRINT STRCOMP(text$, "BOOT") ' will display -1)

PRINT STRCOMP(text$, "BAA") ' will display 1

Differences from other BASICs

 same function as Visual BASIC
 no equivalent in PBASIC

See also

 CHR
 STR
 VAL

Page 302

STRING

Syntax

FUNCTION name [AS INTEGER | AS STRING]

 or

FUNCTION name (parameter list) [AS INTEGER | AS STRING]
 parameter list = parameter [, parameter list]
 parameter = [BYVAL] paramname [AS INTEGER]
 | [BYVAL] paramname(size) AS STRING
 | BYREF paramname AS STRING

 or

DIM symbolname (size) AS STRING

DIM symbolname AS INTEGER

Description

Used as a modifier in parameter declarations for FUNCTIONs or SUBs or DIMs

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 FUNCTION
 SUB
 DIM

Page 303

SUB name (optional parameters)

Syntax

SUB name

 or

SUB name (parameter list)
 parameter list = parameter [, parameter list]
 parameter = [BYVAL] paramname [AS INTEGER]
 | [BYVAL] paramname(size) AS STRING
 | BYREF paramname AS STRING
 | BYREF paramname [AS INTEGER]

Description

GOSUB goes to a label. , but can also go to a defined SUB procedure.

The SUB.. ENDSUB construct allows for a second scope of variables. Scope meaning the region in which
code can see a set of labels. ARMbasic has a global scope and a local scope for any variable declared with
DIM inside an SUB. Local scope variables will be only accessable from within that SUB procedure (the local
scope).

Parameters are assumed to be called BYVAL if not specified. In BYVAL calls, a copy of the parameter is
passed to the SUB procedure. Integer or string parameters may be called BYREF which means a pointer to
the integer/string is passed, and changes to that integer/string can be made by code inside the SUB
procedure.

Code labels for goto/gosub declared within the SUB procedure are also in the local scope. Call to global
labels are allowed within a SUB .. ENDSUB, but that global label must be defined BEFORE the SUB ...
ENDSUB.

Recursive calls with parameters or local variables are not supported. And ENDSUB or END SUB syntax are
allowed.

Program structure:

SUB procedures should be arranged ahead of the MAIN: body of code. In many cases they will be part of
#include files at the beginning of the user ARMbasic code. If SUBs are located at the start of a program a
MAIN: must be used.

SUB procedures can access global variables that have been declared before the SUB, this declaration can
either be implicit or use a DIM.

An implied RETURN is compiled at the ENDSUB, but code may also return to the caller with RETURN

SUBs must be defined before they are called.

Example

SUB sayHello
 DIM I as INTEGER ' this variable is local to the sayHello SUB procedure

 FOR I=1 to 3
 PRINT "Hello"
 NEXT I

Page 304

ENDSUB
...

MAIN:
...
I = 55
PRINT I ' will display 55

GOSUB sayHello

PRINT I ' will still display 55, as this is the global I, different from sayHello local I
....

Differences from other BASICs

 simplification of Visual BASIC
 no equivalent in PBASIC

See also

 DIM
 GOSUB
 ENDSUB
 MAIN:

Page 305

THEN

Description

A component of an IF [...] Then decision statement.
See IF...THEN.

Page 306

TIMER

Syntax

TIMER

Description

TIMER is a free running timer that increments every microsecond. Its it readable and writeable using this
keyword.

Operations that require more precise timing should use the dedicated hardware routines, as interupts that are
occuring for other time functions and serial input may make times using TIMER look longer than actual.

Example

START = TIMER< /EM >
WHILE (TIMER-START < WAIT_MICROSECONDS)
LOOP

Differences from other BASICs

 no equivalent in PBASIC
 no equivalent in Visual BASIC

See also

 MINUTE
 HOUR
 DAY
 MONTH
 YEAR
 WEEKDAY

Page 307

TO

Syntax

FOR iterator intial_value TO ending_value
...
NEXT [iterator]

SELECT case_comparison_value
CASE lower_bound TO upper_bound
...
END SELECT
Description

The TO keyword is used to define a certain numerical range. This keyword is valid only if used with FOR ...
NEXT and SELECT / CASE .

In the first syntax, the TO keyword defines the initial value of the iterator in a FOR statement, and the ending
value.

In the second syntax, the TO keyword defines lower and upper bounds for CASE comparisons.
Example

'' this program uses bound variables along with the TO keyword to create an array, store random

FOR it = minimum_temp_count TO maximum_temp_count

 '' display a message based on temperature using our min/max danger zone bounds
 SELECT array(it)
 CASE min_low_danger TO max_low_danger
 COLOR 11
 PRINT "Temperature" ; it ; " is in the low danger zone at" ; array(it) ; " degrees!"
 CASE min_medium_danger TO max_medium_danger
 COLOR 14
 PRINT "Temperature" ; it ; " is in the medium danger zone at" ; array(it) ; " degrees!"
 CASE min_high_danger TO max_high_danger
 COLOR 12
 PRINT "Temperature" ; it ; " is in the high danger zone at" ; array(it) ; " degrees!"
 CASE ELSE
 COLOR 3
 PRINT "Temperature" ; it ; " is safe at" ; array(it) ; " degrees."
 END SELECT

NEXT it

SLEEP

Differences from other BASICs

 none
See also

 FOR...NEXT
 SELECT CASE

Page 308

UNTIL

Syntax

See DO..UNTIL
Description

UNTIL is used with the DO...LOOP structure. See it for more info.
Example

a = 1
DO
 PRINT "hello"
a = a + 1
LOOP UNTIL a > 10

'This will continue to print "hello" on the screen until the condition (a > 10) is met.

Differences from other BASICs

 LOOP is required with UNTIL in Visual BASIC
 LOOP is optional in ARMbasic

See also

Page 309

VAL

Syntax

VAL(string)
Description

VAL converts a string to a decimal number. For example, VAL("10") will return 10. The function parses the
string from the left and returns the longest number it can read, stopping at the first non-suitable charater it
finds.

Incidentally, this function is the opposite of STR , which converts a number to a string.
Example

DIM a$(20)
a$ = "20xa211"
b = VAL(a$)
PRINT a$, b

20xa211 20

Differences from other BASICs

 None from Visual BASIC
 similar to formatting directives DEC, HEX in PBASIC

See also

 STR
 HEX
 CHR

Page 310

WAIT

Syntax

WAIT (milliseconds)
Description

Delay program execution a number of milliseconds.
1000 milliseconds is one second

Example

Print tick once per second for ever.
WHILE 1
 PRINT "tick"
 WAIT(1000)
LOOP
Differences from other BASICs

 no equivalent in Visual BASIC
 PBASIC has a similar function PAUSE that uses a CPU dependent "tick" value

See also

 SLEEP
 TIMER

Page 311

WHILE...LOOP

Syntax

[DO] WHILEcondition
 [statements]
LOOP
Description

WHILE [...] LOOP will repeat the statements between WHILE and LOOP, while the condition is true.

If the condition isn't true when the WHILE statement begins, none of the statements will be run.

The DO is optional in ARMbasic.

WHILE loops have the lowest overhead of all looping constructs.

Example

WHILE x = 0
 x = 1
LOOP

Differences from other BASICs

 Visual BASIC uses the syntax DO WHILE ... LOOP, which is allowed by ARMbasic
 PBASIC also requires the DO
 Some BASICs use WHILE ... WEND

See also

 DO...LOOP
 EXIT

Page 312

WRITE

Syntax

FUNCTION WRITE (FlashAddr, Source, subblocksize)

Source = arrayname | stringname

subblocksize = 0 | 256* | 512 | 1024 | 2048 | 4096 | 8192*

Description -- added version 7.13

WRITE copies data into the Flash memory space shared with the user code Flash space. Generally space
above 0x4000 is available, but there is no protection for writing over your program. Flash is organized in
sectors, 4K in ARMmite, ARMexpressLITE, 8K sectors in the ARMexpress, the ARMweb has a mix of 4K
and 32K sectors. (details in the NXP User Manual).

Writing consists of erasing the whole sector and then writing a subblock or all.

Erases will erase the entire sector.

subblocksize portions may be written (ARMexpress allows upto 8K but not 256). FlashAddr must be
alligned to subblocksize.

Data is copied from a string or array to the Flash. Only fixed subblocksize sizes are allowed. This function
does not look for 0 terminators when a string is the source.

To force a sector to be erased use a block size of 0. Once a portion is written after an erase, it can not be
written again without being erased.

WRITE assumes that the sector is to be erased when first written, or when the same subblock as the
last call to WRITE is being written. When different subblocks of the same sector are being written, an erase
will only occur when WRITE is called with a subblocksize of 0. The WRITE routine only keeps track of which
sector and sublock were last written, you must manage sectors

These routines call the IAP routines for write, erase and prep commands. More details in the user manual for
the corresponding CPU.

0 is returned on success, Non-zero error code when there is an error refer to IAP section in CPU user
manual for definitions .

Example

' simple example of write and read
DIM A(511) as string
DIM B(511) as string
...

WRITE (&H6000, A, 512) ' this will erase the &H6000 sector, as its the first encountered
WRITE (&H6200, A, 512) ' no erasure is required, as it was erased in the last call

...

WRITE (&H6000, A, 0) ' this forces an erase of sector &H6000, needed as it was the last
sector erased
WRITE (&H6000, A, 512)
...
WRITE (&H6000, A, 512) ' as the same block is being written it will automatically be erased

Page 313

Differences from other BASICs

 Does not exist in Visual BASIC
 PBASIC has a similar function

See also

 FREAD
 Memory Map
 CPU details

Page 314

XOR

Syntax

number XOR number
Description

Xor, at its most primitive level, is a boolean operation, a logic function that takes in two bits and outputs a
resulting bit. If given two bits, this function returns true if ONLY one of the bits are true, and false for any other
combination. The truth table below demonstrates all combinations of a boolean xor operation:
Bit1 Bit2 Result
 0 0 0
 1 0 1
 0 1 1
 1 1 0

This holds true for conditional expressions in ARMbasic. When using "Xor" encased in an If block, While
loop, or Do loop, the output will behave quite literally:
IF condition1 XOR condition2 THEN expression1

Is translated as:
IF condition1 IS only true, OR only condition2 IS true, THEN perform expression1

When given two expressions, numbers, or variables that return a number that is more than a single bit, Xor is
performed "bitwise". A bitwise operation compares each bit of one number, with each bit of another number,
performing a logic operation for every bit.
The boolean math expression below describes this:
00001111 XOR
00011110
-------- equals
00010001

Notice how in the resulting number of the operation, reflects an XOR operation performed on each bit of the
top operand, with each corresponding bit of the bottom operand. The same logic is also used when working
with conditions.
Example

' Using the XOR operator on two numeric values

numeric_value1 = 15 '00001111
numeric_value2 = 30 '00011110

'Result = 17 = 00010001
PRINT numeric_value1 AND numeric_value2
END

' Using the XOR operator on two conditional expressions

numeric_value1 = 10
numeric_value2 = 15

IF numeric_value1 = 10 XOR numeric_value2 = 20 THEN PRINT "Numeric_Value1 equals 10 or
Numeric_Value2 equals 20"
END

' This will output "Numeric_Value1 equals 10 or Numeric_Value2 equals 20"
' because only the first condition of the IF statement is true

Page 315

Differences from PBASIC

 PBASIC XOR is always logical, and ^ is bitwise
See also

 AND
 OR
 NOT

Page 316

Additional Reserved Words

The Future
The ARMexpress is the first in a new generation of ARM-based controllers. The ARMbasic language has
provisions for some of the features for the next members in the family. For this reason a number of words are
reserved for future use.

In order to maintain compatability with future ARMbasic instructions the following words have been reserved.

FLOAT

QUIT

QUITDUMP

QUITNOW

READONLY

WEB

WEBGET

Page 317

Runtime Library

Runtime Library

 Math Functions
 String Functions

Page 318

http://www.coridiumcorp.com

Mathematical Functions

Mathematical Functions
 ABS
 MOD
 RND
 SIN, COS

Page 319

http://www.coridiumcorp.com

ABS

Syntax

ABS (number)

Description

The absolute value of a number is its unsigned magnitude. For example, ABS(-1) and ABS(1) both return 1.
The required number argument can be any valid numeric expression. If number is an uninitialized variable,
zero is returned.
Example

PRINT ABS (-1)
PRINT ABS (42)
PRINT ABS (N)

N = -69

PRINT ABS (N)

The output would look like:
1
42
0
69

Differences from other BASICs

 none from Visual BASIC
 none from PBASIC

See also

 OR
 XOR
 NOT

Page 320

MOD

Syntax

argument1 MOD argument2

Description

MOD is the modulus or "remainder" arthimetic operator. The result of MOD is the integer remainder of
argument1 divided by argument2.
Example

PRINT 47 MOD 7
PRINT 56 MOD 2
PRINT 5 MOD 3

The output would look like:
5
0
2

Differences from other BASICs

 none from Visual BASIC
 PBASIC uses //

See also

Page 321

RND

Syntax

RND (number)

Description -- added in version 7

This is an LCG random number generator, that takes number in as a seed and produces a 32 bit integer
pseudo-random number.
Example

PRINT RND (33)
PRINT RND (33)
PRINT RND (55)

N = 69

PRINT RND (N)

The output would look like:
632584417
632584417
-1809004169
2103579653

Differences from other BASICs

 none from Visual BASIC
 none from PBASIC

See also

 OR
 XOR
 NOT

Page 322

FREQOUT

Library

#include <FREQOUT.bas>

This library has some initialization code that can either be copied into your program or the code can be run
inline as in the following-

initFREQOUT:
#include <FREQOUT.bas>
return

...

main:
 gosub initFREQOUT

C

 COS

F

 FREQOUT

S

 SIN

Interface

 #define SIN(x) sin_tbl(x)
 #define COS(x) sin_tbl(x-64)

' duration is in milliseconds
' freq1 and freq2 in Hz
SUB FREQOUT(pin, duration, freq1, freq2)

Internals

 ARMbasic uses integers, but there may be a need for certain functions that normally use floating point
calculations. One of these is the cosine function, which normally operates on degrees or radians. But for
simplicity and the binary world, these values and the result value have been normalized to fit in a byte value.
but in this case it is expressed as -127 to +127 or the cos() multiplied by 127.

 These SIN and COS functions are identical to the PBASIC versions and are used by FREQOUT. Rather
than degrees or radians there are 256 divisions (360/256 degrees) which returns a value of -127 to +127 which
correspond to -1 to 1 for normal sine and cosine function.

 The SIN function is implemented using string, and accessed a byte at a time to generate the 256 values.
COS is the SIN function shifted 90 degrees or 64 places

Example

#include <FREQOUT.bas>
...

Page 323

'Generate a soothing dual frequency tone on pin 4 for 8 seconds
'using frequncies 2500 and 6000

FREQOUT (4, 8000, 2500, 6000)

Page 324

String Functions

Builtin String Functions
 CHR
 HEX
 LEFT
 LEN
 RIGHT
 STR
 STRCOMP
 VAL

VBSTRING.bas Library (VB style)
 MID
 INSTR
 UCASE
 LCASE

STRING.bas Library (C style)
 MIDSTR
 STRCHR
 STRSTR
 TOLOWER
 TOUPPER

String functions may not be nested. What does this mean?

String functions are built using a string accumulator which is a 256 byte buffer. There is only one string
accumulator due to memory constraints. The general expression evaluation for integers involves a stack, but
it is impractical in the ARMmite to have a string stack. So when a string is built from an expression, it uses
this string accumulator. String FUNCTIONs also use this string accumulator to return the string value. So
string FUNCTIONs can not be used after the first operand in a string expression.

String expressions are parsed left to right, and parenthesis for grouping are not allowed as that is the
equivalent of nesting. However a string expression can have any number of strings being combined into a
single string. So the following is proper-

DIM ast(30) as string
DIM bst(30) as string
DIM cst(30) as string

ast = ast + "abcd" + str(2 + 44 / 33) + str(len(a)) + "zcxv" + chr(13) + "more stuff" + bst

The chr(13) inserts a carriage return into this string so it spans 2 lines. This is proper as strings only have
two limitations. First that they are less that 256 bytes, and they are terminated by a 0 or null character.

Note that the str(2 + 44 / 33) involves the integer evaluation stack and is OK as that is a seperate entity.
Also the str(len(a$)) is valid as that involves a string as stored in memory.

What would not be allowed is something like

ast = "length is " + str(len(cst + bst)) ' THIS IS INVALID NESTING

because cst + bst would have to be evaluated before ast could be built, and there is no room to do that.

Page 325

http://www.coridiumcorp.com

ast = "length is " + str(len(cst) + len(bst)) ' allowed as len is called with simple pointers

User FUNCTIONs

Now with the addition of user defined functions, there is the possibility of a nested string function that the
compiler can not detect. If a string expression calls a user function, and that user function does ANY string
expressions or PRINT statements; then this is a nested string operation. The compiler will not be able to
detect this, and its possible to get unexpected string results or even data abort errors.

ast = user_string_function (1,2,3) ' is OK

ast = str (user_integer_function (1,2,3)) ' is OK

ast = "result of " + user_string_function (1,2,3) ' INVALID string nesting

ast = "result of "+ str(user_integer_function (1,2,3)) ' valid only if no string op or PRINT statement in
user_integer_function

ast = user_string_function (1,2,3) + " returned" ' is OK, as the string function was the first called

ast = str(user_int_function (1,2,3)) + " returned" ' is OK, as the user function was the first called

VB vs C style String Functions

VB accesses the first character by Stringname.Chars(0) In ARMbasic that first character is accessed by
Stringname(0)

But VB's MID ("This is a string",1,3) returns "Thi".

The existing library of string functions was translated from C, which is always 0 based for the first element.
So

MIDSTR ("This is a string",1,3) returns "his"

Page 326

String Comparisons

Syntax

string1 compare_op string2

string1 = string-variable | byref_string_pointer | string_constant
compare_op = > | >= | = | <> | =< | <
string2 = string1_types | string_functions

Description

This compares the two strings returning -1 if string1 satisfies the comparison_op with string2. Returning 0 if
the comparison_op is not true.

String1 and String2 may be constant or variable strings. String2 may also be a FUNCTION of type STRING.

Example

DIM text(10) as STRING

text = "BAT"
PRINT text > "BBB" ' will display 0
PRINT "BBB" <= text ' will display 0
PRINT text < "BOOT" ' will display 1

PRINT text > "BAA" ' will display 1

Differences from other BASICs

 similar to Visual BASIC
 no equivalent in PBASIC

See also

 CHR
 STR
 VAL

Page 327

ASC -- implied function

Syntax

In ARMbasic this is an automatic type conversion

But if you want to do it explicity, in your code add the following do-nothing #define

#define ASC(x) x

Description

ARMbasic allows individual elements of a string to be accessed, and when they are assigned or compared to
integer variable/constants, the ASCII value will be used.

Example

PRINT "the character represented by the ASCII code of 97 is:"; CHR(97) ' will print a

DIM astr(10) as string ' examples of automatic type conversion complimentary to CHR

PRINT astr(0), chr(astr(0)) ' will print 97 a
x = astr(0)
PRINT x ' will print 97
if x = "a" then PRINT "it is a" ' will print it is a
Differences from other BASICs

 does not exist in PBASIC
 same function exists in Visual BASIC

See also

 ASCII table
 HEX
 VAL

Page 328

CHR

Syntax

CHR(expression)
Description

CHR returns a single byte string containing the character represented by the ASCII code passed to it. For
example, CHR(97) returns "a".

Note:
There is no need for a complimentary function, as that type conversion is automatic, see sample code below.

Example

PRINT "the character represented by the ASCII code of 97 is:"; CHR(97) ' will print a

DIM a$(10) ' examples of automatic type conversion complimentary to CHR
a$="asdf"

PRINT a$(0), chr(a$(0)) ' will print 97 a
x = a$(0)
PRINT x ' will print 97
if x = "a" then PRINT "it is a" ' will print it is a
Differences from other BASICs

 does not exist in PBASIC
 same function exists in Visual BASIC/

See also

 STR
 HEX
 VAL
 [ASC]

Page 329

HEX

Syntax

HEX (expression)

Description

This returns the hexadecimal string representation of the integer expression. Hexadecimal values contain 0-9,
and A-F. The size of the result string depends on the integer type passed, it's not fixed.

This may also be used during debuging to change the default base to Hexadecimal, do this by typing just
HEX on the line, opposite of DEC when used this way.

Example

DIM text$(10)

text$ = HEX(4096)
PRINT "0x";text$ ' will display 0x1000

Differences from other BASICs

 same function as Visual BASIC
 similar to PBASIC format directive available in SHIFTIN, SERIN, DEBUGIN

See also

 CHR
 STR
 VAL

Page 330

INSTR ' VB style

Syntax

#include <VBSTRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION INSTR(start , searchee, lookfor)

Description

This FUNCTION written in BASIC searches the string searchee looking for the string lookfor, starting at the
start-th.

If it is found, the position of the first character of lookfor in searchee is returned, otherwise 0.

start is based on 1 being the first character, which is consistant with the InStr VB function, but inconsistant
with the VB searchee.Chars(0) being the first character. The C style STRSTR version of this routine uses 0
as the first character.

Example

#include <VBSTRING.bas>

DIM text(10)

text = "HELLO WORLD"
PRINT INSTR(1, text, "LLO") ' will display 3

Differences from other BASICs

 similar function as Visual BASIC
 no equivalent in PBASIC

See also

 UCASE
 MID

Page 331

LCASE

Syntax

#include <VBSTRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION LCASE(string) as STRING

Description

This FUNCTION written in BASIC shifts the letters of string to lower case .String may be a constant or
variable string.

Example

#include <VBSTRING.bas>

DIM text(10)

text = "HELLO WORLD"
PRINT LCASE(text) ' will display hello world

Differences from other BASICs

 similar function as Visual BASIC
 no equivalent in PBASIC

See also

 UCASE
 INSTR

Page 332

LEFT

Syntax

LEFT(string, characters)
Description

Returns n-characters starting from the left of string. String may be a constant or variable string.

String functions may not be nested.

A$ = LEFT("this is a test",5) + RIGHT(B$,3) ' valid string operation

A$ = LEFT("this "+b$,5) ' NOT ALLOWED nested operation

Example

text$ = "hello world"
PRINT LEFT(text$, 5) 'displays "hello"

Differences from other BASICs

 none from Visual BASIC
 no equivalent in PBASIC

See also

 RIGHT
 LEN

Page 333

LEN

Syntax

LEN(string)

Description

This returns the length of string in characters.String may be a constant or variable string.

String functions may not be nested.

Example

DIM text$(10)

text$ = "0x"+HEX(4096)
PRINT LEN(text$) ' will display 6

Differences from other BASICs

 same function as Visual BASIC
 no equivalent in PBASIC

See also

 CHR
 STR
 VAL

Page 334

MID ' VB style

Syntax

#include <VBSTRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION MID(string , start, length) as STRING

Description

This FUNCTION written in BASIC returning the portion of string from the start character for length characters.

String may be a constant or variable string.

start is based on 1 being the first character, which is consistant with the MID VB function, but inconsistant
with the VB searchee.Chars(0) being the first character. The C style MIDSTR version of this routine uses 0
as the first character.

Extracting or setting a single byte in a string can be done with an index STRING(3) refers to the 4th byte of
the string (starts from 0).

Example

#include <VBSTRING.bas>

DIM text(10)

text = "HELLO WORLD"
PRINT MID(text, 4,5) ' will display LO WO

Differences from other BASICs

 similar function as Visual BASIC
 no equivalent in PBASIC

See also

 UCASE
 INSTR

Page 335

MIDSTR ' C style

Syntax

#include <STRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION MIDSTR(string , start, length) as STRING

Description

This FUNCTION written in BASIC returning the portion of string from the start character for length characters.

String may be a constant or variable string.

MIDSTR is written in C style with 0 being the first character of the string, consistent with VB string.Chars(0).

Extracting or setting a single byte in a string can be done with an index STRING(3) refers to the 4th byte of
the string (starts from 0).

Example

#include <STRING.bas>

DIM text(10)

text = "HELLO WORLD"
PRINT MIDSTR(text, 4,5) ' will display O WOR

Differences from other BASICs

 similar function as Visual BASIC
 no equivalent in PBASIC

See also

 TOUPPER
 STRSTR

Page 336

RIGHT

Syntax

RIGHT(string, characters)
Description

Returns n-characters starting from the right of the string. String may be a constant or variable string.

String functions may not be nested.

A = LEFT("this is a test",5) + RIGHT(B,3) ' valid string operation

A = RIGHT("this "+b,5) ' NOT ALLOWED nested operation

Example

DIM text(20) as string

text = "hello world"
PRINT RIGHT(text, 5) 'displays "world"

Differences from other BASICs

 this function does not exist in PBASIC
 similar function to Visual BASIC

See also

 LEFT

Page 337

Single Byte access

Syntax

someString(index)

Description

A string is just an array of bytes, terminated by a 0. Strings are limited to 256 characters (no bounds
checking). So individual bytes can be accessed like individual elements in an array.

Extracting or setting a single byte in a string can be done with an index STRING(3) refers to the 4th byte of
the string (starts from 0).

Example

DIM text(10) as string

text(0) = chr("H") ' single character strings like "H" are treated like a character constant
text(1) = chr("E")
text(2) = chr("L")
text(3) = text(2) ' copy the previous character
text(4) = text(3) + 3 ' expressions are OK too, the result is truncated to 8 bits
text(5) = 0

PRINT text ' will display HELLO

Differences from other BASICs

 same as Visual BASIC
 same as PBASIC

See also

 UCASE
 INSTR

Page 338

Single Byte access

Syntax

someString(index)

Description

A string is just an array of bytes, terminated by a 0. Strings are limited to 256 characters (no bounds
checking). So individual bytes can be accessed like individual elements in an array.

Extracting or setting a single byte in a string can be done with an index STRING(3) refers to the 4th byte of
the string (starts from 0).

Example

DIM text(10) as string

text(0) = chr("H") ' single character strings like "H" are treated like a character constant
text(1) = chr("E")
text(2) = chr("L")
text(3) = text(2) ' copy the previous character
text(4) = text(3) + 3 ' expressions are OK too, the result is truncated to 8 bits
text(5) = 0

PRINT text ' will display HELLO

Differences from other BASICs

 same as Visual BASIC
 same as PBASIC

See also

 UCASE
 INSTR

Page 339

STR

Syntax

STR(expression)
Description

STR will convert a expression into a string.

For example, STR(3) will become "3", or STR(333) will become "333".

Incidentally, this is the opposite of the VAL function, which converts a string into a number.

STR is also used in certain routines of the Hardware Library to designate that a series of bytes should be
read or written to a string.

Also in the following case the STR function is implied and is not required.

b$ = 333 + " sent" ' will save the ASCI string "333 sent" into b$

The implied STR will work for simple expressions, but anything complex should use STR(), this would include
any function call, array element fetches.

Example

DIM b$ (10)
a = 8421
b$ = STR(a)
PRINT a, b$ ' will display 8421 8421

Differences from other BASICs

 same function in Visual BASIC
 similar to DEC formatting function in PBASIC

See also

 VAL
 CHR
 HEX
 Hardware Library, Function List

Page 340

STRCHR ' C style

Syntax

#include <STRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION STRCHR(string , char)

Description

This FUNCTION written in BASIC searches string looking for the first instance of char .String may be a
constant or variable string.
If char is not found -1 is returned, otherwise the position of char.

STRCHR is written in C style with 0 being the first character of the string, consistent with VB string.Chars(0).

Example

#include <STRING.bas>

DIM text(10)

text = "HELLO WORLD"
PRINT STRCHR(text, "W") ' will display 6

Differences from other BASICs

 similar function as Visual BASIC
 no equivalent in PBASIC

See also

 TOUPPER
 STRSTR

Page 341

STRCOMP

Syntax

STRCOMP(string1, string2)

Description

This compares the two strings returning -1 if string1 would sort before string2. Returning 0 if the two strings
are equal, and 1 if string1 would sort after string2.

String1 and String2 may be constant or variable strings.

String functions may not be nested.

Example

DIM text$(10)

text$ = "BAT"
PRINT STRCOMP(text$, text$) ' will display 0
PRINT STRCOMP(text$, "BAT") ' will display 0)
PRINT STRCOMP(text$, "BOOT") ' will display -1)

PRINT STRCOMP(text$, "BAA") ' will display 1

Differences from other BASICs

 same function as Visual BASIC
 no equivalent in PBASIC

See also

 CHR
 STR
 VAL

Page 342

STRSTR ' C style

Syntax

#include <STRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION STRSTR(searchee, lookfor)

Description

This FUNCTION written in BASIC searches the string searchee looking for the string lookfor.

If it is found, the position of the first character of lookfor in searchee is returned, otherwise -1.

STRSTR is written in C style with 0 being the first character of the string, consistent with VB string.Chars(0).

Example

#include <STRING.bas>

DIM text(10)

text = "HELLO WORLD"
PRINT STRSTR(text, "LLO") ' will display 2

Differences from other BASICs

 similar function as Visual BASIC
 no equivalent in PBASIC

See also

 TOUPPER
 STRCHR

Page 343

TOLOWER

Syntax

#include <STRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION TOLOWER(string) as STRING

Description

This FUNCTION written in BASIC shifts the letters of string to lower case .String may be a constant or
variable string.

Example

#include <STRING.bas>

DIM text(10)

text = "HELLO WORLD"
PRINT TOLOWER(text) ' will display hello world

Differences from other BASICs

 similar function as Visual BASIC
 no equivalent in PBASIC

See also

 TOUPPER
 STRSTR

Page 344

TOUPPER

Syntax

#include <STRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION TOUPPER(string) as STRING

Description

This FUNCTION written in BASIC upshifts the letters of string .String may be a constant or variable string.

Example

#include <STRING.bas>

DIM text(10)

text = "hello world"
PRINT TOUPPER(text) ' will display HELLO WORLD

Differences from other BASICs

 similar function as Visual BASIC
 no equivalent in PBASIC

See also

 TOLOWER
 STRSTR

Page 345

UCASE

Syntax

#include <VBSTRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION UCASE(string) as STRING

Description

This FUNCTION written in BASIC upshifts the letters of string .String may be a constant or variable string.

Example

#include <VBSTRING.bas>

DIM text(10)

text = "hello world"
PRINT UCASE(text) ' will display HELLO WORLD

Differences from other BASICs

 similar function as Visual BASIC
 no equivalent in PBASIC

See also

 LCASE
 INSTR

Page 346

VAL

Syntax

VAL(string)
Description

VAL converts a string to a decimal number. For example, VAL("10") will return 10. The function parses the
string from the left and returns the longest number it can read, stopping at the first non-suitable charater it
finds.

Incidentally, this function is the opposite of STR , which converts a number to a string.
Example

DIM a$(20)
a$ = "20xa211"
b = VAL(a$)
PRINT a$, b

20xa211 20

Differences from other BASICs

 None from Visual BASIC
 similar to formatting directives DEC, HEX in PBASIC

See also

 STR
 HEX
 CHR

Page 347

Version 7 Hardware Library

With Version 7, most of the builtin firmware hardware routines have been replaced by ARMbasic routines that
can be accessed by #include <filename>.

Version 7 is more Visual BASIC like, and frees up space for more user code (20K vs 12K in the ARMmite).

The Welcome message shows the firmware version level of the ARMexpress Family device. This is
displayed when the device is STOPped in the BASICtools or when reset and no user program has been
loaded.

Hardware Library
 Date and Time Functions
 Function List
 Hardware Specs
 Interrupts
 Logic Scope
 Mathematical Functions
 Pin Controls

Page 348

http://www.coridiumcorp.com

* (ARM peripheral access)

Syntax

* variable

* constant

* (expression) ' added in version 8.04 of the compiler

Description

The C pointer syntax is used to give direct access to the ARM peripheral registers.

This gives the programmer the ability to directly control the ARM hardware. Details on what the registers do
can be found in the NXP User Manuals for the corresponding chip (LPC2103 for ARMmite, ARMexpress LITE,
PRO, LPC2106 for ARMexpress, LPC2138 for ARMweb, and LPC1751/6 for the PROplus and SuperPRO)

Examples of programming the registers can be found in the BASIClib directory which contains sub-programs
that control various hardware functions.

Example

' from the HWPWM.bas library

'* ---- Timer 2 --
#define T2_TCR * &HE0070004
#define T2_TC * &HE0070008
#define T2_PR * &HE007000C
#define T2_MCR * &HE0070014
#define T2_MR0 * &HE0070018
#define T2_MR1 * &HE007001C
#define T2_MR2 * &HE0070020
#define T2_MR3 * &HE0070024

 T2_PR = prescale
 T2_TCR = TxTCR_COUNTER_ENABLE ' Timer1 Enable

 T2_MR3 = cycletime -1
 T2_MCR = 0x400 ' rollover when count reaches MR3
Differences from other BASICs

 No equivalent in Visual BASIC
 no direct equivalent in PBASIC, CONFIGPIN is a similar function

See also

 Hardware Library Functions

Page 349

Date and Time Functions

The ARMmite USB has a provision to add a battery to keep these time functions running when power is
removed. This is not the case for the ARMexpress, ARMexpress LITE, or ARMmite Wireless.

Date and Time Functions
 DAY
 HOUR
 MINUTE
 MONTH
 SECOND
 SLEEP
 TIMER
 WAIT
 WEEKDAY
 YEAR

Page 350

http://www.coridiumcorp.com

DAY

Syntax

#include <RTC.bas> ' source in /Program Files/Coridium/BASIClib

#include <RTC17.bas> ' for the PROplus and SuperPRO LPC175x

FUNCTION DAY(value) ' when called with 0, the current day is returned, otherwise set the current day

Description

Function setting or returning the day of the month.

When called with a non-zero value, the DAY is changed.
Range 1 to 28, 29, 30, or 31
(depending on the month and whether it is a leap year).

Example

#include <RTC.bas>
...
DAY (14)

PRINT "This is "; MONTH(0); "/"; DAY(0); "/"; YEAR(0), "at"; HOUR(-1); ":"; MINUTE(-1); ":"; SECOND(-1)
The output would look like:
This is 4/14/2006 at 13:15:30

Page 351

HOUR

Syntax

#include <RTC.bas> ' source in /Program Files/Coridium/BASIClib

#include <RTC17.bas> ' for the PROplus and SuperPRO LPC175x

FUNCTION HOUR(value) 'When called with -1 the current value for HOUR is returned.

Description

Function setting or returning the hour.

When called with a value >= 0, the HOUR is changed.
Range 0 to 23.

Example

#include <RTC.bas>
...
HOUR (13)

PRINT "This is "; MONTH(0); "/"; DAY(0); "/"; YEAR(0), "at"; HOUR(-1); ":"; MINUTE(-1); ":"; SECOND(-1)
The output would look like:
This is 4/14/2006 at 13:15:30

Page 352

MINUTE

Syntax

#include <RTC.bas> ' source in /Program Files/Coridium/BASIClib

#include <RTC17.bas> ' for the PROplus and SuperPRO LPC175x

FUNCTION MINUTE(value) 'When called with -1 the current value for MINUTE is returned.

Description

Function setting or returning the day of the month.

When called with a value >= 0, the MINUTE is changed.
Range 0 to 59

Example

#include <RTC.bas>
...

MINUTE (15)

PRINT "This is "; MONTH(0); "/"; DAY(0); "/"; YEAR(0), "at"; HOUR(-1); ":"; MINUTE(-1); ":"; SECOND(-1)
The output would look like:
This is 4/14/2006 at 13:15:30

Page 353

MONTH

Syntax

#include <RTC.bas> ' source in /Program Files/Coridium/BASIClib

#include <RTC17.bas> ' for the PROplus and SuperPRO LPC175x

FUNCTION MONTH(value) ' call with 0 or less to return the present MONTH, >0 will set the MONTH

Description

Function setting or returning the month.

When called with a non-zero value, the MONTH is changed.
Range 1 to 12.

Example

#include <RTC.bas>
...
MONTH (4)

PRINT "This is "; MONTH(0); "/"; DAY(0); "/"; YEAR(0), "at"; HOUR(-1); ":"; MINUTE(-1); ":"; SECOND(-1)
The output would look like:
This is 4/14/2006 at 13:15:30

Page 354

SECOND

Syntax

#include <RTC.bas> ' source in /Program Files/Coridium/BASIClib

#include <RTC17.bas> ' for the PROplus and SuperPRO LPC175x

FUNCTION SECOND(value) 'When called with -1 the current value for SECOND is returned.

Description

Function setting or returning the current SECOND.

When called with a value >= 0, the SECOND is changed.
Range 0 to 59

Example

#include <RTC.bas>
...
SECOND (30)

PRINT "This is "; MONTH(0); "/"; DAY(0); "/"; YEAR(0), "at"; HOUR(-1); ":"; MINUTE(-1); ":"; SECOND(-1)
The output would look like:
This is 4/14/2006 at 13:15:30

Page 355

SLEEP

Syntax

#include <RTC.bas> ' source in /Program Files/Coridium/BASIClib

#include <RTC17.bas> ' for the PROplus and SuperPRO LPC175x

SLEEP (seconds)

Description

Delay program execution a number of seconds.
Example

#include <RTC.bas>

...

FOR I=0 TO 7
 OUTPUT I
 LOW I ' set each pin as output and low
NEXT I

FOR I=0 TO 7
 SLEEP (1)
 HIGH I ' set each pin HIGH one after the other every second
NEXT I

Differences from other BASICs

 no equivalent in Visual BASIC
 none from PBASIC

See also

 WAIT

Page 356

TIMER

Syntax

TIMER

Description

TIMER is a free running timer that increments every microsecond. Its it readable and writeable using this
keyword.

Operations that require more precise timing should use the dedicated hardware routines, as interupts that are
occuring for other time functions and serial input may make times using TIMER look longer than actual.

Example

START = TIMER< /EM >
WHILE (TIMER-START < WAIT_MICROSECONDS)
LOOP

Differences from other BASICs

 no equivalent in PBASIC
 no equivalent in Visual BASIC

See also

 MINUTE
 HOUR
 DAY
 MONTH
 YEAR
 WEEKDAY

Page 357

WAIT

Syntax

WAIT (milliseconds)
Description

Delay program execution a number of milliseconds.
1000 milliseconds is one second

Example

Print tick once per second for ever.
WHILE 1
 PRINT "tick"
 WAIT(1000)
LOOP
Differences from other BASICs

 no equivalent in Visual BASIC
 PBASIC has a similar function PAUSE that uses a CPU dependent "tick" value

See also

 SLEEP
 TIMER

Page 358

WEEKDAY

Syntax

#include <RTC.bas> ' source in /Program Files/Coridium/BASIClib

#include <RTC17.bas> ' for the PROplus and SuperPRO LPC175x

FUNCTION WEEKDAY(value) 'When called with -1 the current value for WEEKDAY is returned.

Description

Function setting or returning the day of the week.

When called with zero or greater value, the WEEKDAY is changed.
0 corresponding to Sunday through 6 corresponding to Saturday

Example

#include <RTC.bas>
...
DIM dayname(15) as string
...
SECOND (30)
MINUTE (15)
HOUR (13)
DAY (14)
MONTH (4)
YEAR (2006)

SELECT WEEKDAY(-1)
CASE 0
 dayname = "Sunday"
CASE 1
 dayname = "Monday"
CASE 2
 dayname = "Tuesday"
CASE 3
 dayname = "Wednesday"
CASE 4
 dayname = "Thursday"
CASE 5
 dayname = "Friday"
CASE 6
 dayname = "Saturday"
CASE ELSE
 dayname = "not possible"
ENDSELECT

PRINT "This is "; dayname, MONTH(0); "/"; DAY(0); "/"; YEAR(0), "at"; HOUR(-1); ":"; MINUTE(-1); ":";
SECOND(-1)
The output would look like:
This is Friday 4/14/2006 at 13:15:30

Page 359

YEAR

Syntax

#include <RTC.bas> ' source in /Program Files/Coridium/BASIClib

#include <RTC17.bas> ' for the PROplus and SuperPRO LPC175x

FUNCTION YEAR(value) 'When called with 0 the current value for YEAR is returned.

Description

Function setting or returning the year.

When called with a non-zero value, the YEAR is changed.
Range 1 to 4095.

Example

#include <RTC.bas>
...
YEAR (2006)

PRINT "This is "; MONTH(0); "/"; DAY(0); "/"; YEAR(0), "at"; HOUR(-1); ":"; MINUTE(-1); ":"; SECOND(-1)
The output would look like:
This is 4/14/2006 at 13:15:30

Page 360

Flash Access

Flash Control Functions
 FREAD
 WRITE

Page 361

http://www.coridiumcorp.com

FREAD

Syntax

SUB FREAD (FlashAddr, Destination, size)

Destination = arrayname | stringname

size in bytes

Description -- added version 7.13

The builtin subroutine FREAD copies data stored in the Flash memory to the Destination array, for size
bytes. When a string is used, it is treated like a byte array, not a 0 terminated string

Example

' simple example of write and read
DIM A(511) as string
DIM B(511) as string
...

WRITE (&H6000, A, 512) ' this will erase the &H6000 sector, as its the first encountered
WRITE (&H6200, A, 512) ' no erasure is required, as it was erased in the last call

FREAD (&H6200, B, 512)
...

WRITE (&H6000, A, 0) ' this forces an erase of sector &H6000, needed as it was the last sector
erased
WRITE (&H6000, A, 512)

...

WRITE (&H6000, A, 512) ' as the same block is being written it will automatically be erased
WRITE (&H6000, A, 512)

Differences from other BASICs

 Does not exist in Visual BASIC
 PBASIC has a similar function

See also

 WRITE
 Memory Map
 CPU details

Page 362

WRITE

Syntax

FUNCTION WRITE (FlashAddr, Source, subblocksize)

Source = arrayname | stringname

subblocksize = 0 | 256* | 512 | 1024 | 2048 | 4096 | 8192*

Description -- added version 7.13

WRITE copies data into the Flash memory space shared with the user code Flash space. Generally space
above 0x4000 is available, but there is no protection for writing over your program. Flash is organized in
sectors, 4K in ARMmite, ARMexpressLITE, 8K sectors in the ARMexpress, the ARMweb has a mix of 4K
and 32K sectors. (details in the NXP User Manual).

Writing consists of erasing the whole sector and then writing a subblock or all.

Erases will erase the entire sector.

subblocksize portions may be written (ARMexpress allows upto 8K but not 256). FlashAddr must be
alligned to subblocksize.

Data is copied from a string or array to the Flash. Only fixed subblocksize sizes are allowed. This function
does not look for 0 terminators when a string is the source.

To force a sector to be erased use a block size of 0. Once a portion is written after an erase, it can not be
written again without being erased.

WRITE assumes that the sector is to be erased when first written, or when the same subblock as the
last call to WRITE is being written. When different subblocks of the same sector are being written, an erase
will only occur when WRITE is called with a subblocksize of 0. The WRITE routine only keeps track of which
sector and sublock were last written, you must manage sectors

These routines call the IAP routines for write, erase and prep commands. More details in the user manual for
the corresponding CPU.

0 is returned on success, Non-zero error code when there is an error refer to IAP section in CPU user
manual for definitions .

Example

' simple example of write and read
DIM A(511) as string
DIM B(511) as string
...

WRITE (&H6000, A, 512) ' this will erase the &H6000 sector, as its the first encountered
WRITE (&H6200, A, 512) ' no erasure is required, as it was erased in the last call

...

WRITE (&H6000, A, 0) ' this forces an erase of sector &H6000, needed as it was the last
sector erased
WRITE (&H6000, A, 512)
...
WRITE (&H6000, A, 512) ' as the same block is being written it will automatically be erased

Page 363

Differences from other BASICs

 Does not exist in Visual BASIC
 PBASIC has a similar function

See also

 FREAD
 Memory Map
 CPU details

Page 364

Version 7 -- Hardware Function List

B

 BAUD

 BAUD0

 BAUD1

C

 COUNT

F

 FREQOUT

 FREAD

H

 HWPWM

I

 I2CIN

 I2COUT

O

 ON

 OWIN

 OWOUT

P

 PULSIN

 PULSOUT

 PWM

T

 RCTIME

 RXD

 RXD0

 RXD1

S

 SERIN

 SERINtimeout

 SEROUT

 SHIFTIN

 SHIFTOUT

 SPIBI

 SPIIN

 SPIOUT

T

 TXD

 TXD0

 TXD1

W

 WRITE

Page 365

FREQOUT

Library

#include <FREQOUT.bas>

This library has some initialization code that can either be copied into your program or the code can be run
inline as in the following-

initFREQOUT:
#include <FREQOUT.bas>
return

...

main:
 gosub initFREQOUT

C

 COS

F

 FREQOUT

S

 SIN

Interface

 #define SIN(x) sin_tbl(x)
 #define COS(x) sin_tbl(x-64)

' duration is in milliseconds
' freq1 and freq2 in Hz
SUB FREQOUT(pin, duration, freq1, freq2)

Internals

 ARMbasic uses integers, but there may be a need for certain functions that normally use floating point
calculations. One of these is the cosine function, which normally operates on degrees or radians. But for
simplicity and the binary world, these values and the result value have been normalized to fit in a byte value.
but in this case it is expressed as -127 to +127 or the cos() multiplied by 127.

 These SIN and COS functions are identical to the PBASIC versions and are used by FREQOUT. Rather
than degrees or radians there are 256 divisions (360/256 degrees) which returns a value of -127 to +127 which
correspond to -1 to 1 for normal sine and cosine function.

 The SIN function is implemented using string, and accessed a byte at a time to generate the 256 values.
COS is the SIN function shifted 90 degrees or 64 places

Example

#include <FREQOUT.bas>
...

Page 366

'Generate a soothing dual frequency tone on pin 4 for 8 seconds
'using frequncies 2500 and 6000

FREQOUT (4, 8000, 2500, 6000)

Page 367

COS

Syntax

#include <FREQOUT.bas>

FUNCTION COS (expression) ' declared in FREQOUT.bas

Description

ARMbasic uses integers, but there may be a need for certain functions that normally use floating point
calculations. One of these is the cosine function, which normally operates on degrees or radians. But for
simplicity and the binary world, these values and the result value have been normalized to fit in a byte value.
So rather than taking an argument of 0..359 or 0..2 p , the argument is 0-255 which is equal to the number of
degrees times 0.7103 (256/360). The result would normally be between -1 and 1, but in this case it is
expressed as -127 to +127 or the cos() multiplied by 127.

Example

#include <FREQOUT.bas>

PRINT "Please enter an angle in degrees: ";
DEBUGIN a
r = a * 256 / 360 'Convert the degrees to "binary radians"
PRINT ""
PRINT "The cosine of a" ; a; " degree angle is"; COS (r)
END

The output would look like:
Please enter an angle in degrees: 30

The cosine of a 30 degree angle IS 111

Differences from other BASICs

 Floating point routine in Visual BASIC
 The () around expression are enforced in ARMbasic, but not PBASIC

See also

 SIN

Page 368

FREQOUT

Syntax

#include <FREQOUT.bas>

SUB FREQOUT (pin, milliseconds, freq1, freq2) ' declared in FREQOUT.bas

Description

Generate a sine-wave signal on pin for milliseconds.
A single frequency or mixed dual frequncy tone may be generated. Set freq2 to 0 for a single frequency.
The IO direction of the pin will be set to output.
The output pin might be connected to a speaker or audio amplifier.

The sine wave signal is generated using pulse width modulation, for more details see that link.

A sample filter to make this signal compatible with an audio amp would be similar to that below

Example

#include <FREQOUT.bas>

'Generate a soothing dual frequency tone on pin 4 for 8 seconds
'using frequncies 2500 and 6000 Hz

FREQOUT (4, 8000, 2500, 6000)

Differences from other BASICs

 no equivalent in Visual BASIC
 none from PBASIC

See also

 PWM

Page 369

http://en.wikipedia.org/wiki/Pulse-width_modulation
http://en.wikipedia.org/wiki/Pulse-width_modulation

SIN

Syntax

#include <FREQOUT.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION SIN (number) ' declared in FREQOUT.bas

Description

ARMbasic uses integers, but there may be a need for certain functions that normally use floating point
calculations. One of these is the sine function, which normally operates on degrees or radians. But for
simplicity and the binary world, these values and the result value have been normalized to fit in a byte value.
So rather than taking an argument of 0..359 or 0..2 p , the argument is 0-255 which is equal to the number of
degrees times 0.7103 (256/360). The result would normally be between -1 and 1, but in this case it is
expressed as -127 to +127 or the sin() multiplied by 127.
Example

PRINT "Please enter an angle in degrees: ";
DEBUGIN a
r = a * 256 / 360 'Convert the degrees to Radians
PRINT ""
PRINT "The sine of a" ; a; " degree angle is"; SIN (r)
END

The output would look like:
Please enter an angle in degrees: 30

The sine of a 30 degree angle IS 64
Differences from otber BASICs

 SIN is a floating point routine in Visual BASIC
 () are enforced in ARMbasic not PBASIC

See also

 COS

Page 370

HWPWM

This function is available on ARMmite, ARMmite Wireless, ARMexpress LITE and ARMmite PRO.

Library

#include <HWPWM.bas>

#include <HWPWM17.bas> ' for the PROplus and SuperPRO LPC17xx based boards.

H

 HWPWM

Interface

' channels are 1-8
' cycletime and hightime are in microseconds

SUB HWPWM (channel, cycletime, hightime)

Cycletime should be the same for all channels, and will be set to the last value programmed.

If TIMER interrupts are used, then only 4 hardware PWM channels are available.

ARMmite and Wireless ARMmite version

The ARMmite supports up to 8 channels of hardware driven PWM. The IO direction of the pin will be set to
output. Once programmed these will continue to generate the specified PWM until re-programmed or reset.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds and
represent the amount of time during the cycle that the corresponding outputs are high. It is assumed, but not
enforced that cycletimes for all channels will be the same.

 channel1 IO(0)
 channel2 IO(1)
 channel3 IO(2)
 channel4 IO(3)
 channel5 IO(4)
 channel6 IO(9)
 channel7 IO(10)

 channel8 IO(11)

ARMmite PRO version

The ARMmite PRO also supports up to 8 channels of hardware driven PWM. The IO direction of the pin will
be set to output. Once programmed these will continue to generate the specified PWM until re-programmed
or reset.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds and
represent the amount of time during the cycle that the corresponding outputs are high. It is assumed, but not
enforced that cycletimes for all channels will be the same.

 channel1 IO(0)

Page 371

 channel2 IO(1)
 channel3 IO(8)
 channel4 IO(5)
 channel5 IO(14)
 channel6 IO(10)
 channel7 IO(11)

 channel8 IO(3)

ARMexpress LITE version

The ARMexpress LITE supports up to 6 channels of hardware driven PWM. The IO direction of the pin will be
set to output. Once programmed these will continue to generate the specified PWM until re-programmed or
reset. 2 of the channels are not available on the pins.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds and
represent the amount of time during the cycle that the corresponding outputs are high. It is assumed, but not
enforced that cycletimes for all channels will be the same.

 channel1 IO(5)
 channel2 IO(6)
 channel3 IO(3)
 channel4 not available
 channel5 IO(14)
 channel6 not available
 channel7 IO(13)

 channel8 IO(15)

SuperPRO version

The PROplus and SuperPRO support up to 6 channels of hardware driven PWM. The IO direction of the pin
will be set to output. Once programmed these will continue to generate the specified PWM until
re-programmed or reset.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds and
represent the amount of time during the cycle that the corresponding outputs are high. It is assumed, but not
enforced that cycletimes for all channels will be the same.

 channel1 P2.0
 channel2 P2.1
 channel3 P2.2
 channel4 P2.3
 channel5 P2.4
 channel6 P2.5
The LPC17xx series processors also have an additional 6 channels designed to drive motors. See details in
the Motor PWM Control chapter of the NXP LPC17xx User Manual. Also these pins can be re-assigned as
selected by the PINSEL registers.

Example

#include <HWPWM.BAS>
...

Page 372

'generate 1KHz with 750 and 100 uSec high signals on pins 1,2

HWPWM (2,1000,750)
HWPWM (3,1000,100)

'250 Hz with 1000, 500, 100 uSec high and LOW signals on pins 0,1,2,3

HWPWM (1,4000,1000)
HWPWM (2,4000,500)
HWPWM (3,4000,100)
HWPWM (4,4000,0)

Page 373

HWPWM

Syntax

#include <HWPWM.bas> ' source in /Program Files/Coridium/BASIClib

SUB HWPWM (channel, cycletime, hightime)

Description --- available on ARMmite and ARMexpress LITE but not on the original ARMexpress

ARMmite and Wireless ARMmite version

The ARMmite supports up to 8 channels of hardware driven PWM. The IO direction of the pin will be set to
output. Once programmed these will continue to generate the specified PWM until re-programmed or reset.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds and
represent the amount of time during the cycle that the corresponding outputs are high. If the value is -1, then
that IO is left as a digital IO.

 hightime1 IO(0)
 hightime2 IO(1)
 hightime3 IO(2)
 hightime4 IO(3)
 hightime5 IO(4)
 hightime6 IO(9)
 hightime7 IO(10)

 hightime8 IO(11)

ARMexpress LITE version

The ARMexpress LITE supports up to 6 channels of hardware driven PWM. The IO direction of the pin will be
set to output. Once programmed these will continue to generate the specified PWM until re-programmed or
reset. The format of the command uses 8 channel assignments, but 2 of the channels are not available on
the pins.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds and
represent the amount of time during the cycle that the corresponding outputs are high. If the value is -1, then
that IO is left as a digital IO.

 hightime1 IO(5)
 hightime2 IO(6)
 hightime3 IO(3)
 hightime4 not available
 hightime5 IO(14)
 hightime6 not available
 hightime7 IO(13)

 hightime8 IO(15)

PROplus SuperPRO LITE version

The PROplus/SuperPRO supports up to 6 channels of hardware driven PWM. The IO direction of the pin will
be set to output. Once programmed these will continue to generate the specified PWM until re-programmed

Page 374

or reset. Use the <HWPWM17.bas> include file.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds and
represent the amount of time during the cycle that the corresponding outputs are high. If the value is -1, then
that IO is left as a digital IO.

 hightime1 P2(0)
 hightime2 P2(1)
 hightime3 P2(2)
 hightime4 P2(3)
 hightime5 P2(4)
 hightime6 P2(5)
Example

#include <HWPWM.BAS>
...

'generate 1KHz with 750 and 100 uSec high signals on pins 1,2

HWPWM (2,1000,750)
HWPWM (3,1000,100)

'250 Hz with 1000, 500, 100 uSec high and LOW signals on pins 0,1,2,3

HWPWM (1,4000,1000)
HWPWM (2,4000,500)
HWPWM (3,4000,100)
HWPWM (4,4000,0)

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 * peripheral access
 FREQOUT
 PWM

Page 375

I2C

Library

#include <I2C.bas>

#include <I2C17.bas> ' use this for PROplus and SuperPRO

I

 I2CIN

 I2COUT

Interface

SUB I2CIN (DATApin, CLKpin, addr, OUTcnt, BYREF OUTlist as string, INcnt, BYREF INlist as string)

FUNCTION I2COUT (DATApin, CLKpin, addr, OUTcnt, BYREF OUTlist as string)

#define I2Cspeed100 ' add this statement before the #include <I2C.bas> for 100 Kb shift rate
#define I2Cspeed50 ' for 50 Kb shift rate
#define I2CslaveCLKstretch ' trial code to support slave clock stretching (unverified on a slave that
stretches clocks)

Description

These libraries are written for single master operation of the ARM talking to possible multiple slaves selected
by address.

I2CIN will send OUTcnt bytes from OUTlist and then receives INlist bytes as i2c serial data on CLKpin and
DATApin from the i2c device at addr. OUTcnt may be -1 and OUTlist empty. If OUTcnt is 0, then the string
will be sent until a 0, CR or LF character is found in OUTlist .

INcnt bytes will be received. If INcnt is 0, then the string will be filled with bytes until a 0, CR or LF character
is received. Note that no bounds checking is performed on the input, and if a 0, CR, or LF is never received
then this routine will hang. As there is no bounds checking its possible to overwrite other variables, if less
than 256 bytes have been allocated for the InputList string.

I2COUT will send OUTcnt bytes from OUTlist bytes as i2c serial data on CLKpin and DATApin to the i2c
device at addr. If OUTcnt is 0, then the string will be sent until a 0, CR or LF character is found in OUTlist. If
the i2c deviced does not respond 0 is returned by I2COUT, otherwise 1.

The data rate is 300Kb.

Example

#include <I2C.bas>
...

DIM shortMessage(20) as STRING
DIM shortResponse(20) as STRING

' test the EEPROM 24LC02 on pins 0 == SDA and 1 == SCL

Page 376

shortMessage(0)= 0 ' address into EEPROM
shortMessage(1)= 11 ' data
shortMessage(2)= 22
shortMessage(3)= 33
shortMessage(5)= 44
shortMessage(6)= 55
shortMessage(7)= 66

present = I2COUT (0, 1, 0xA0, 8, shortMessage)
if present = 0 then print "NO i2c device ***"

WAIT(10) ' allow time for data to be written
I2CIN(0, 1, 0xA0, 1,shortMessage, 7, shortResponse)

' now do I2CIN as seperate operations

I2COUT (0, 1, 0xA0, 1, shortMessage) ' send just the address and offset
I2CIN(0, 1, 0xA0, -1,"", 7, shortResponse)

Page 377

I2CIN

Syntax

#include <I2C.bas> ' source in /Program Files/Coridium/BASIClib

SUB I2CIN (DATApin, CLKpin, addr, OUTcnt, BYREF OUTlist as string, INcnt, BYREF INlist as string)
Description

I2CIN will send OUTcnt bytes from OUTlist and then receives INlist bytes as i2c serial data on CLKpin and
DATApin from the i2c device at addr. OUTcnt may be -1 and OUTlist empty. If OUTcnt is 0, then the string
will be sent until a 0, CR or LF character is found in OUTlist .

If INcnt is 0, then the string will be filled with bytes until a 0, CR or LF character is received. Note that no
bounds checking is performed on the input, and if a 0, CR, or LF is never received then this routine will
hang. As there is no bounds checking its possible to overwrite other variables, if less than 256 bytes have
been allocated for the InputList string.

Data is shifted in at 280 Kbits/sec. See the #defines to change this rate.

Example

#include <I2C.bas>
...
DIM shortMessage(20) as STRING
DIM shortResponse(20) as STRING
...

' test the EEPROM 24LC02 on pins 0 == SDA and 1 == SCL
shortMessage(0)= 0 ' address into EEPROM

I2CIN(0, 1, 0xA0, 1,shortMessage, 7, shortResponse)

Differences from other BASICs

 PBASIC output formatting not supported
 no equivalent in Visual BASIC

See also

 I2COUT
 I2C Support

Page 378

I2COUT

Syntax

#include <I2C.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION I2COUT (DATApin, CLKpin, addr, OUTcnt, BYREF OUTlist as string)

Description

I2COUT will send OUTcnt bytes from OUTlist bytes as i2c serial data on CLKpin and DATApin to the i2c
device at addr. If OUTcnt is 0, then the string will be sent until a 0, CR or LF character is found in OUTlist. If
the i2c deviced does not respond 0 is returned by I2COUT, otherwise 1.

I2COUT returns a 1 if an I2C device responds, else 0.

The data rate is 280Kb. See the #defines to change this rate.

Example

#include <I2C.bas>
...

DIM shortMessage(20) as STRING
...

' test the EEPROM 24LC02 on pins 0 == SDA and 1 == SCL
shortMessage(0)= 0 ' address into EEPROM
shortMessage(1)= 11 ' data
shortMessage(2)= 22
shortMessage(3)= 33
shortMessage(5)= 44
shortMessage(6)= 55
shortMessage(7)= 66

present = I2COUT (0, 1, 0xA0, 8, shortMessage)
if present = 0 then print "NO i2c device ***"

Differences from other BASICs

 PBASIC output formatting not supported
 PBASIC regADDR and secondADDR are done in the OutputList
 no equivalent in Visual BASIC

See also

 I2CIN
 I2C Support

Page 379

OneWire

Library

#include <ONEWIRE.bas>

O

 OWIN

 OWOUT

Interface

SUB OWIN (pin, OUTcnt, BYREF OUTlist as string, INcnt, BYREF INlist as string)

FUNCTION OWOUT (pin, OUTcnt, BYREF OUTlist as string)

Description

OWIN begins with a RESET/Presence sequence on the designated pin.

Then OUTcnt bytes from OUTlist will be transfered to the device to select the command. OUTcnt may be -1
and OUTlist empty. If OUTcnt is 0, then OUTlist bytes will be sent until a value of 0 is found (the 0 will not be
sent). An empty OUTlist can be represented by "".

Following that the INcnt bytes will be read back from the device and saved in INlist .

If INcnt is 0, then the string will be filled with bytes until a 0, CR or LF character is received. Note that no
bounds checking is performed on the input, and if a 0, CR, or LF is never received then this routine will
hang. As there is no bounds checking its possible to overwrite other variables, if less than 256 bytes have
been allocated for the InputList string.

OWOUT begins with a RESET/Presence sequence on the designated Pin.

If a one-wire device responds OWOUT will return 1, else 0.

Following that the OUTcnt bytes from OUTlist will be sent to the device. OUTlist can be a constant string.

The bit order for the 1-Wire device is assumed to be LSB (bit 0) first. The REV function can be used to
change the bit order.

Example

#include <ONEWIRE.bas>
...

DIM message(20) as string
DIM response(20) as string

message = chr(&Hcc)+chr(&Hf)+chr(6)+chr(&Haa)+chr(&H55)

 ' write to the scratch pad of a DS2430
present = owout (7,5,message)
print present

message = chr(&Hcc)+chr(&Hf)+chr(6)

Page 380

print present
owin (7, 3, message, 2, response)
print hex(response(0)),hex(response(1))

Page 381

OWIN

Syntax

#include <ONEWIRE.bas> ' source in /Program Files/Coridium/BASIClib

SUB OWIN (pin, OUTcnt, BYREF OUTlist as string, INcnt, BYREF INlist as string)

Description

OWIN begins with a RESET/Presence sequence on the designated Pin.

Then OUTcnt bytes will be transfered to the device to select the command. OUTcnt may be 0, with an empty
string "".

Following that the INcnt bytes InputList will be read back from the device.If INcnt eqals 0, then the string will
be filled with bytes until a 0, CR or LF character is received. Note that no bounds checking is performed on
the input, and if a 0, CR, or LF is never received then this routine will hang. As there is no bounds checking
its possible to overwrite other variables, if less than 256 bytes have been allocated for the InputList string..

The bit order for the 1-Wire device is assumed to be LSB (bit 0) first. The REV function can be used to
change the bit order.

Example

#include <ONEWIRE.bas>

DIM outbytes(10) as string
DIM inbytes(10) as string

 ' write to the scratch pad of a DS2430
outbytes(0)=$cc
outbytes(1)=$f
outbytes(2)=$6
outbytes(3)=$be
outbytes(4)=$41

present = owout (7 ,5, outbytes)
print present

outbytes(0)=$cc
outbytes(1)=$aa
outbytes(2)=$6

owin (7, 3, outbytes, 2, inbytes)
print hex(inbytes(0)),hex(inbytes(1))

Differences from other BASICs

 no equivalent in Visual BASIC
 simplified from PBASIC

See also

 OWOUT

Page 382

OWOUT

Syntax

#include <ONEWIRE.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION OWOUT (pin, OUTcnt, BYREF OUTlist as string)

Description

OWOUT begins with a RESET/Presence sequence on the designated Pin.

If a one-wire device responds the FUNCTION OWOUT will return 1, else 0.

Following that OUTcnt bytes from the OUTlist will be sent to the device. If OUTcnt is 0, then bytes will be
sent from OUTlist until a 0 is found. (the 0 is NOT sent).

The bit order for the 1-Wire device is assumed to be LSB (bit 0) first. The REV function can be used to
change the bit order.

Example

#include <ONEWIRE.bas>

DIM outbytes(10) as string

 ' write to the scratch pad of a DS2430
outbytes(0)=$cc
outbytes(1)=$f
outbytes(2)=$6
outbytes(3)=$be
outbytes(4)=$41

present = owout (7 ,5, outbytes)
print present

Differences from other BASICs

 no equivalent in Visual BASIC
 simplified than PBASIC

See also

 OWIN

Page 383

PULSE timing

Library

#include <PULSE.bas>

C

 COUNT

P

 PULSIN

 PULSOUT

 PWM

R

 RCTIME

Interface

' duration in microseconds
' timeperiod in milliseconds
' duty 0-255

FUNCTION COUNT (pin, timeperiod)
FUNCTION PULSIN (pin, level)
SUB PULSOUT (pin, duration)
SUB PWM (pin, duty, timeperiod)
FUNCTION RCTIME (pin, state)

Description

COUNT the number of pulses low-high-low or high-low-high on pin over a timeperiod of milliseconds, returning
the FUNCTION value.

PULSIN measures an input pulse on pin at level, returning the value in microseconds. The IO direction of pin
will be set to input. If pin is already at level when PULSIN is called it will wait to a transition to the opposite
level. PULSIN will wait 1 second for pin to go to level. The minimum pulse that can be measured is 1
microseconds. If pin does not go to level or remains at level longer than 1 second 0 is returned..

PULSOUT will generate an output pulse on pin for duration microseconds. The IO direction of pin will be set
to output. The level of the output will be switched, driven for duration microseconds, then switched back to its
initial level. The minimum pulse period is 1 microseconds.

PWM will generate a pulse corresponding to an analog signal on pin for timeperiod in milliseconds with a duty
cycle of 0 to 255. A duty cycle of 255 corresponds to an output value of 100%. The IO direction of the pin will
be set to output, the PWM pulse train is output, and then the pin is set to tristate (input). If the pin is
connected to an RC filter, then the voltage will stay on the capacitor for a period of time determined by the
load.

RCTIME will measure the time which pin remains at level, returning the value in microseconds(us). The
minimum time measured is 1 microseconds. If pin is not at level when RCTIME is called -1 is returned. If pin
remains at level longer than 1 second 0 is returned.

Page 384

COUNT

Syntax

#include <PULSE.bas>

FUNCTION COUNT (pin, milliseconds)

Description

Count the number of pulses low-high-low or high-low-high on pin over a duration of milliseconds, returning the
value to variable.
Example

#include <PULSE.bas>
'Report the number of transition cycles on pin 7 during a 10 second interval

ct = COUNT (7, 10000)
PRINT "Pin 7 transitioned "; ct; " times"

Pin 7 transitioned 3 times

Differences from other BASICs

 no equivalent in Visual BASIC
 different syntax from PBASIC, and times in milliseconds rather than "ticks"

See also

 RCTIME
 Hardware Pulse Routines

Page 385

PULSIN

Syntax

#include <PULSE.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION PULSIN (pin, level)

Description

Measure an input pulse on pin at level, returning the value to variable.

The IO direction of pin will be set to input.

If pin is already at level when the function is called it will wait to a transition to the opposite level.

The function will wait 1 second for pin to go to level. The length of time is measured in microseconds(us).
The minimum pulse that can be measured is 1 microseconds. If pin does not go to level or remains at level
longer than 1 second variable is set to 0.
Example

#include <PULSE.bas>

'Wait for pin 7 to go high then low.
'Print the number of microseconds pin 7 was high.

tim = PULSIN (7, 1)
PRINT "Pin 7 pulse high for "; tim; " us"

Differences from other BASICs

 no equivalent in Visual BASIC
 Times are measured in microseconds rather than CPU dependent ticks in PBASIC

See also

 RCTIME
 COUNT
 Hardware Pulse Routines

Page 386

PULSOUT

Syntax

#include <PULSE.bas> ' source in /Program Files/Coridium/BASIClib

SUB PULSOUT (pin, microseconds)

Description

Generate an output pulse on pin for microseconds.

The IO direction of pin will be set to output. The level of the output will be switched, driven for microseconds,
then switched back to its initial level. The minimum pulse period is 1 microseconds.

Example

#include <PULSE.bas>

' Generate a 1 second high pulse on pin 4.
LOW 4
PULSOUT (4, 1000000)

Differences from other BASICs

 no equivalent in Visual BASIC
 measures time in microseconds rather than CPU dependent ticks in PBASIC

See also

 PULSIN
 Hardware Pulse Routines

Page 387

PWM

Syntax

#include <PULSE.bas> ' source in /Program Files/Coridium/BASIClib

SUB PWM (pin, duty, milliseconds)

Description

Generate an analog signal on pin for milliseconds with a duty cycle of 0 to 255.
A duty cycle of 255 corresponds to an output value of 100%.

The IO direction of the pin will be set to output, the PWM pulse train is output, and then the pin is set to
tristate (input). If the pin is connected to an RC filter, then the voltage will stay on the capacitor for a period of
time determined by the load.

Example

#include <PULSE.bas>

 ' Generate a 1.65 volt (half of 3.3V) on pin 4 for 6 seconds.

PWM (4, 127, 6000)

Differences from other BASICs

 no equivalent in Visual BASIC
 duration in PBASIC is CPU dependent and measured in ticks

See also

 HWPWM
 FREQOUT
 PULSOUT
 Hardware Pulse Routines

Page 388

RCTIME

Syntax

#include <PULSE.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION RCTIME (pin, level)

Description

Measure the time which pin remains at level, returning the value to variable.
The length of time is measured in microseconds(us). The minimum time measured is 1 microseconds.
If pin is not at level when the function is called variable is set to 1.
If pin remains at level longer than 1 second variable is set to 0.
Example

#include <PULSE.bas>

INPUT 7

'... some procedure which has set input pin 7 to low or 0 volts

tim = RCTIME (7, 0)
PRINT "Pin 7 low for "; tim; " us"

'... function waits for input pin 7 to go to high state

Pin 7 low for 50 us

Differences from other BASICs

 no equivalent in Visual BASIC
 results in microseconds rather than CPU dependent ticks in PBASIC

See also

 PULSIN
 Hardware Pulse Routines

Page 389

BIt Banged Serial

Library

#include <SERIAL.bas>

This library has some initialization code that can either be copied into your program or the code can be run
inline as in the following-

code without a main:

#include <SERIAL.bas>
... user code

code with a main:

initSerial:
#include <SERIAL.bas>
return
...
main:
 gosub initSerial

B

 BAUD

R

 RXD

S

 SERIN

 SERINtimeout

 SEROUT

T

 TXD

Interface

DIM BAUD(16)
SERINtimeout = 500000 ' timeout for bit-banged serial input in microseconds -- this is the 0.5 second
default value

FUNCTION RXD(pin)
SUB TXD(pin, ch)

FUNCTION SERIN (pin, baud, posTrue, INcnt, BYREF INlist as string)
SUB SEROUT(pin, baud, posTrue, OUTcnt, BYREF OUTlist AS STRING)

Description

SERIN receives INlist bytes as asynchronous serial data on pin at a baudrate. PosTrue if set to 0 then the
data is inverted.

Page 390

INcnt is the number of bytes that will be received. If INcnt is 0, then the string will be filled with bytes until a
0, CR or LF character is received. Note that no bounds checking is performed on the input, and if a 0, CR, or
LF is never received then this routine will hang. As there is no bounds checking its possible to overwrite
other variables, if less than 256 bytes have been allocated for the InputList string.

SERIN will timeout after 0.5 seconds and return -1 and place 255 in the next item in the INlist before the
timeout. These routines are "bit-banged" by the processor, so the processor is consumed during these
operations. Interupts are also disabled during each byte for these operations. The hardware UART0 can be
used see RXD0 or DEBUGIN . The timeout can be changed with SERINtimeout.

Baudrates can be upto 115.2 Kbaud for all pins on transmit. Receive rates to 57Kb

DIM choice(10) as STRING

SERIN(1,9600,0, choice) ' read a UserCode CR/LF terminated

SELECT VAL (choice)
 CASE 123 ...

SEROUT sends a string of characters out on pin as an asynchronous data stream. baud and posTrue set
the parameters for the transmission. OUTcnt is the number of bytes that will be transmitted. If OUTcnt is 0,
then OUTlist will be sent until a 0 is encountered (the 0 is not sent).

ch = RXD(pin) ' read a character from pin as an asynchronous stream (BAUD must have been set before
use)

RXD is a bit banged routine, so that the CPU will wait upto 0.5 seconds for a character to be received. The
timeout can be changed with SERINtimeout.

TXD(pin, "A") ' send an "A" to pin as an asynchronous serial stream

Page 391

BAUD

Syntax

#include <SERIAL.bas>

DIM BAUD(pin) ' declared inside SERIAL.bas

Description

BAUD (pin) will set the baudrate for the pin that will be later used by either RXD or TXD functions.

Baudrates can be upto 115.2 Kbaud for transmit, 57Kbaud for receive.

Example

BAUD(2) = 19200 ' set the baud rate for serial I/O on pin 2

BAUD(1) = BAUD(2) ' set the baud rate for pin 1 the same as that for pin 2

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 TXD
 RXD

Page 392

RXD

Syntax

#include <SERIAL.bas>

RXD (pin)

Description

RXD (pin) will receive a single byte of data that is shifted as an asynchronous serial stream. This function is
similar to SERIN, but has less overhead and only receives a single byte. The baudrate for the pin should be
set before using RXD, that is done using the BAUD(pin) function.

RXD will return 0-255 if there was data present. RXD will timeout after 0.5 seconds and return -1
($FFFFFFFF) if there is no serial stream detected on pin .

These routines are "bit-banged" by the processor, so the processor is consumed during these operations.
Interupts are also disabled during each byte for these operations.

As of version 6.21 the 0.5 second timeout can be changed by SERINtimeout.

Baudrates can be upto 57 Kbaud for all pins.

Example

#include <SERIAL.bas>

BAUD(1) = 9600 ' set the baud rate for serial I/O on pin 1

' Wait for serial input on pin 1
DO
 MyByte = RXD(1)
UNTIL MyByte >= 0

Differences from other BASICs

 no equivalent in Visual BASIC
 preferred alternate to SERIN of PBASIC

See also

 BAUD
 TXD
 SERIN

Page 393

SERIN

Syntax

#include <SERIAL.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION SERIN (pin, baud, posTrue, INcnt, BYREF INlist as string)

Description

SERIN receives INcnt bytes into the INlist string as asynchronous serial data on pin at a baudrate. Data is
positive TRUE PosTrue if set to 1, else the the data is inverted.

If INcnt is 0, then the string will be filled with bytes until a 0, CR or LF character is received. Note that no
bounds checking is performed on the input, and if a 0, CR, or LF is never received then this routine will
hang. As there is no bounds checking its possible to overwrite other variables, if less than 256 bytes have
been allocated for the InputList string.

SERIN will timeout after 0.5 seconds and return -1 and place 255 in the next item in the INlist before the
timeout. These routines are "bit-banged" by the processor, so the processor is consumed during these
operations. Interupts are also disabled during each byte for these operations. The hardware UART0 can be
used see RXD0 or DEBUGIN . The timeout can be changed with SERINtimeout.

Baudrates can be upto 115.2 Kbaud for all pins on transmit. Receive rates to 57Kb

Example

' Read serial stream for 1 byte from pin 1 saving to MyByte, negative true
SERIN (1, 19200, 0, 1,MyByte)
PRINT HEX(MyByte)
' In this case we are reading an open loop device
' that is continuously sending CR terminated strings on the serial line
' to ensure we read a complete line first sync up by looking for a CR character
io(15)=0 ' flag that we are sync'ing up
while 1
 serin (3,19200, 1, 1, a$)
 if a$(0) = 10 then exit
loop

io(15)=1 ' and that sync is complete
while 1
 serin (3,19200,1, 0, a$)
 print a$
loop

Differences from other BASICs

 no equivalent in Visual BASIC
 simplified from PBASIC

See also

 SEROUT

Page 394

SEROUT

Syntax

#include <SERIAL.bas> ' source in /Program Files/Coridium/BASIClib

SUB SEROUT(pin, baud, posTrue, OUTcnt, BYREF OUTlist AS STRING)

Description

SEROUT sends a string of characters out on pin as an asynchronous data stream. baud and posTrue set
the parameters for the transmission. If OUTcnt is 0, then OUTlist will be sent until a 0 is encountered (the 0
is not sent).

Baudrates can be upto 115.2 Kbaud for all pins

Example

#include <SERIAL.bas>

DIM a$(20)

a$ = "123"
SEROUT (3, 1200, 0, 3, a$) ' sends out 123 at 1.2Kbaud, negative true

Differences from other BASICs

 no equivalent in Visual BASIC
 simplified from PBASIC

See also

 SERIN

Page 395

TXD

Syntax

#include <SERIAL.bas> ' source in /Program Files/Coridium/BASIClib

SUB TXD(pin, ch)

Description

TXD (pin, ch) will send a single byte of data that is shifted out as an asynchronous serial stream on pin. This
function is similar to SEROUT, but is a more efficient implementation. The baudrate for the pin should be set
before using TXD, that is done using the BAUD(pin) array.

TXD will transmit 0-255 as a single byte of data with an added START bit and trailing STOP bit. As this
function is done by the CPU (often referred to as bit-banging, the program will stay at this instruction until the
shifting is completed. So the processor is consumed during these operations. Interupts are also disabled
during each byte for these operations.

Example

DIM A$(10)
BAUD(2) = 19200 ' set the baud rate for serial I/O on pin 2

...

A$ = "Hello World"
GOSUB PRINTSTR

...

' Send a string of characters serially out pin 2
PRINTSTR:
 I=0
 WHILE A$(I)
 TXD(2,A$(I))
 I=I+1
 LOOP

 RETURN

Differences from other BASICs

 no equivalent in Visual BASIC
 SEROUT in PBASIC

See also

 BAUD
 RXD
 SEROUT

Page 396

Hardware Serial

UART0 and UART1 support is built into the BASIC compiler. UART1 and BAUDx support added in 7.13
firmware.

B

 BAUD0

 BAUD1

D

 DEBUGIN

P

 PRINT

R

 RXD0

 RXD1

T

 TXD0

 TXD1

Interface

DEBUGIN variable | string

PRINT [expressionlist] [(, | ;)] ...

FUNCTION RXD0
FUNCTION RXD1

SUB TXD0 (expr)
SUB TXD1 (expr)

SUB BAUD0 (expr)
SUB BAUD1 (expr)

Description

DEBUGIN gives the programmer a way to accept strings or numbers from the USB serial port. In many
BASICs this uses INPUT, but in ARMbasic INPUT is used to control the direction of one of the IO pins. So a
simplified replacement of the normal BASIC INPUT has been added, called DEBUGIN.

DEBUGIN has a limited edit capacity: it allows to erase characters using the backspace key. If a better user
interface is needed, a custom input routine should be used.

PRINT will send strings or numbers to the debug serial port (UART0), which may be displayed in BASICtools,

Page 397

or can be interpreted by a user program running on the PC. Simple formating is accomplished by seperating
expressions with a comma (for TAB) or semicolon for no space seperation. A semicolon at the end of a
PRINT suppresses carriage return.

RXD0 uses the hardware UART, so the CPU is not tied up. Also when RXD0 is read and no data is available
-1 is returned immediately, RXD0 uses interupts and has a buffer of 256 characters that are filled by interrupt
running in the background.

TXD0 uses the hardware serial port to send data out the USB debug port. Data is transfered into a 16 byte
FIFO, when that FIFO is full the CPU will wait until space is available.

On the ARMexpress/ARMexpress LITE these routines are all limited to 19.2Kb due to the level translators for
RS-232. If the connection to the ARMexpress/LITE is short (less than a couple inches), then higher baud
rates can be used.

Added in version 7.13 --

BAUD0 will set the baud rate for TXD0, RXD0, the default is 19.2Kbaud.

BAUD1 will set the baud rate for TXD1, RXD1 and will enable that serial channel (in ARMmite these pins are
general purpose IOs IO(0)switches to RXD1 and IO(1) switches to TXD1.

RXD1 uses the hardware UART, so the CPU is not tied up. Also when RXD1 is read and no data is available
-1 is returned immediately, RXD1 uses interupts and has a buffer of 256 characters that are filled by interrupt
running in the background.

TXD1 uses the hardware serial port to send data out the IO(1) on the ARMmite. Data is transfered into a 16
byte FIFO, when that FIFO is full the CPU will wait until space is available.

Example

' simple example of serial write and read
BAUD0 (2400) ' change the default baud rate
...
TXD0("X")

ch = RXD0
WHILE ch < 0 ' wait for a character to come in
 ch = RXD0
LOOP
...

Differences from other BASICs

 Visual BASIC
 PBASIC has similar functions, DEBUGIN allows a string to be printed before input

Page 398

BAUD0 BAUD1

Syntax

SUB BAUD0(rate)

SUB BAUD1(rate)

Description -- added in version 7.13

BAUD0 (rate) will set the baudrate for the SIN/SOUT pins, that will be later used by PRINT, DEBUGIN, RXD0
or TXD0 functions.

BAUD1 (rate) will set the baudrate for the IO(0) IO(1) pins on the ARMmite, that will be later used by either
RXD1 or TXD1 functions. On reset these pins are configured as general purpose IOs, and a call to BAUD1 will
configure them as UART1. The ARMexpressLITE uses pins IO5 and IO6 for UART1.

Baudrates for the LPC21xx and LPC23xx based boards are 15000/(n*16) in Kbaud

Baudrates for the LPC17xx based boards are 25000/(n*16) in Kbaud. n is an integer

The ARMexpress/ARMexpressLITE is limited to 19.2 Kbaud by the level translators on SIN/SOUT when
connecting to cables. Onboard connections for the ARMexpress/ARMexpressLITE may run faster.

All boards except the ARMexpress support fractional baud rate generation. This is not part of the built in
firmware, but can be engaged by writing directly to those registers. Details in theYahoo Forum or the NXP
User Manuals .

Example

BAUD1(19200) ' set the baud rate and enable serial I/O on IO(0) IO(1)

BAUD0(9600) ' set the baud rate for SIN and SOUT

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 TXD0
 RXD0
 TXD1
 RXD1

Page 399

http://tech.groups.yahoo.com/group/ARMexpress/message/2495

BAUD0 BAUD1

Syntax

SUB BAUD0(rate)

SUB BAUD1(rate)

Description -- added in version 7.13

BAUD0 (rate) will set the baudrate for the SIN/SOUT pins, that will be later used by PRINT, DEBUGIN, RXD0
or TXD0 functions.

BAUD1 (rate) will set the baudrate for the IO(0) IO(1) pins on the ARMmite, that will be later used by either
RXD1 or TXD1 functions. On reset these pins are configured as general purpose IOs, and a call to BAUD1 will
configure them as UART1. The ARMexpressLITE uses pins IO5 and IO6 for UART1.

Baudrates for the LPC21xx and LPC23xx based boards are 15000/(n*16) in Kbaud

Baudrates for the LPC17xx based boards are 25000/(n*16) in Kbaud. n is an integer

The ARMexpress/ARMexpressLITE is limited to 19.2 Kbaud by the level translators on SIN/SOUT when
connecting to cables. Onboard connections for the ARMexpress/ARMexpressLITE may run faster.

All boards except the ARMexpress support fractional baud rate generation. This is not part of the built in
firmware, but can be engaged by writing directly to those registers. Details in theYahoo Forum or the NXP
User Manuals .

Example

BAUD1(19200) ' set the baud rate and enable serial I/O on IO(0) IO(1)

BAUD0(9600) ' set the baud rate for SIN and SOUT

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 TXD0
 RXD0
 TXD1
 RXD1

Page 400

http://tech.groups.yahoo.com/group/ARMexpress/message/2495

RXD0

Syntax

FUNCTION RXD0 as INTEGER
Description

RXD0 will receive a single byte of data that is shifted as an asynchronous serial stream. This function is
similar to SERIN, but is a more efficient implementation.

RXD0 will return 0-255 if there was data present. or -1 ($FFFFFFFF) if there is no serial stream available on
SIN. The hardware UART is used, so the CPU is not tied up, and bytes are buffered up to 256 bytes being
received by an interrupt routine

ARMexpress and ARMexpressLITE-

Data is received on the SIN pin. SIN and SOUT are always negative true. UART0 of the LPC2103/06

SIN and SOUT are limited by the level translators.

ARMmite--

Pin labeled RXD0 on the schematic, UART0 of the LPC2103. Data is always positive true.

Baudrates can be upto 115.2 Kbaud.

Example

' Wait for serial input on pin UART0
DO
 MyByte = RXD0
UNTIL MyByte >= 0

Differences from other BASICs

 no equivalent in Visual BASIC
 preferred alternate to SERIN of PBASIC

See also

 TXD0
 BAUD0

Page 401

RXD1

Syntax

FUNCTION RXD1 as INTEGER
Description -- added in Version 7.13

RXD1 will receive a single byte of data that is shifted as an asynchronous serial stream.

RXD1 will return 0-255 if there was data present. or -1 ($FFFFFFFF) if there is no serial stream available. The
hardware UART is used, so the CPU is not tied up, and bytes are buffered up to 256 bytes being received by
an interrupt routine.

ARMmite--

Pin labeled IO0 on the schematic, UART1 of the LPC2103.

ARMexpress LITE

Pins labeled IO5

Data is positive true. Baudrates can be upto 115.2 Kbaud.

Example

BAUD1 = 19200 ' set baud rate and enable channel
...

' Wait for serial input on pin UART1
DO
 MyByte = RXD1
UNTIL MyByte >= 0

Differences from other BASICs

 no equivalent in Visual BASIC
 preferred alternate to SERIN of PBASIC

See also

 TXD1
 BAUD1

Page 402

TXD0

Syntax

SUB TXD0 (char)
Description

The data is transmitted on the SOUT pin on the ARMexpress, ARMexpressLITE. It is the serial line
connected to the USB port on the ARMmite, or the wireless serial port for the ARMmite Wireless. On the
ARMweb it is serial debug port. (labeled TXD0 on the schematic, UART0 of the LPC21xx)

The hardware serial port is used, so the CPU is not tied up. So when a byte is sent it is placed into the
UART0 FIFO, but if the 16 byte FIFO is full then the CPU will wait until space is available.

The compiler is also backward compatable with the syntax -- TXD0 = char

Example

DIM A$(10)

...

A$ = "Hello World"
GOSUB PRINTSTR

...

' Send a string of characters serially out UART0
PRINTSTR:
 I=0
 WHILE A$(I)
 TXD0 (A$(I))
 I=I+1
 LOOP

 RETURN

Differences from other BASICs

 no equivalent in Visual BASIC
 preferred alternate to SEROUT of PBASIC

See also

 BAUD0
 RXD0
 Hardware Serial Support

Page 403

TXD1

Syntax

SUB TXD1 (char)
Description -- added in version 7.13

The data is transmitted on the IO(1) pin on the ARMmite.

On the ARMexpress LITE data is transmited on pin labeled IO6

Data is positive true.

The hardware UART1 port is used, so the CPU is not tied up. So when a byte is sent it is placed into the
FIFO, but if the 16 byte FIFO is full then the CPU will wait until space is available.

Example

DIM A$(10)

...
BAUD1 = 19200 ' set baud rate and enable channel

...

A$ = "Hello World"
GOSUB PRINTSTR1

' Send a string of characters serially out UART0
PRINTSTR1:
 I=0
 WHILE A$(I)
 TXD1 (A$(I))
 I=I+1
 LOOP

 RETURN

Differences from other BASICs

 no equivalent in Visual BASIC
 preferred alternate to SEROUT of PBASIC

See also

 BAUD1
 RXD0
 Hardware Serial Support

Page 404

SHIFTIN, SHIFTOUT

Library

#include <SHIFT.bas>

S
 SHIFTIN
 SHIFTOUT

Inteface

DIM shiftValues(MAXshiftARRAY) ' values to be shifted in or out

DIM shiftCounts(MAXshiftARRAY) ' bit counts for each value (0 assumed to be 8 bits), 1-32 allowed

' cnt is the number of elements
SUB SHIFTOUT (OUTpin, CLKpin, LSBfirst, cnt)
SUB SHIFTIN (INpin, CLKpin, LSBfirst, cnt)

Description

LSBfirst selects the bit order for the SHIFT routines.

A #define is used to set clock mode #define SHIFTclkNEGATIVE will invert the normally low clock. To use
a normally high clock this #define must be placed before the #include <SHIFT.bas>

Another #define can be used to sample data before the clock, #define SHIFTpreSample. The default case is
to sample data after each clock.

SHIFTIN can be used for devices that are not covered by SPI, I2C or 1-Wire. Data is shifted in on INpin, and
a positive clock is sent on CLKpin for each bit.

While most other hardware functions use bytes, SHIFTIN is oriented for bit control. The shiftCounts of each
shiftValues defines the number of bits that will be shifted out (1 - 32). If a shiftCounts is 0, it is assumed to
be 8.

Data is shifted in at 300 Kbits/sec.

SHIFTOUT can be used for devices that are not covered by SPI, I2C or 1-Wire. Data is shifted out on OUTpin
, and a positive clock is sent on CLKpin for each bit.

While most other hardware functions use bytes, SHIFTOUT is oriented for bit control. The shiftCounts of
each shiftValues defines the number of bits that will be shifted out (1 - 32). If shiftCounts is 0, it is assumed
to be 8.

 Mode = 0 data is shifted out MSB first
 Mode = 1 data is shifted out LSB first

NOTE*** these shift modes are compatable with SHIFTIN, BUT not the same as PBASIC

Data is shifted out of the device at 300 Kbits/sec.

Example

#include <SHIFT.bas>

Page 405

...

' use SHIFTIN/OUT to control an SPI EN28J60 connected on pins 3,4 -- 6 as CS

shiftValues(0) = 2
shiftCounts(0) = 3

shiftValues(1) = &H1b
shiftCounts(1) = 5

shiftValues(2) = y
shiftCounts(2) = 8

io(6)=0 ' used asCS
shiftout (3,4,1,3) ' set reg &H1B to y
io(6)=1

shiftValues(0) = reg
shiftCounts(0) = 8

io(6)=0
shiftout (3,4,1,1) 'select the register
shiftin (5,4,0,1) 'and read it back
x = shiftValues(0)
io(6)=1

Here is an example for a device (93LC46) which is byte oriented except for the commands. So the
commands are sent with SHIFTOUT, and data transfered with SPIIN or SPIOUT. CS is manually controlled in
this example (it is also positive true).

#include <SHIFT.bas>
#include <SPI.bas>
...

DIM inlist(20) as string
DIM outlist(20) as string

' mixed SPI, SHIFT example for a 93LC46 connected to pins 11-14

high 14 ' CS to 93LC46
shiftValues(0) = $260
shiftCounts(0) = 10
SHIFTOUT(12,13,0,1) ' write enable
low 14

shiftValues(0) = $280 ' count still 10
outlist(0) = $41
high 14
SHIFTOUT(12,13,0,1) ' set write to address 0
SPIOUT (-1, 13, 12, 0, 1, outlist) ' send a byte of data
low 14

wait(20) ' allow for write time

high 14
shiftValues(0) = $300
SHIFTOUT(12,13,0,1) ' read addr 0
SPIIN (-1, 11, 13, 12, 0, -1, "", 10, inlist) ' read 10 bytes of data
low 14

Page 406

SHIFTIN

Syntax

#include <SHIFT.bas> ' source in /Program Files/Coridium/BASIClib

SUB SHIFTIN (INpin, CLKpin, LSBfirst, cnt)

Description

SHIFTIN can be used for devices that are not covered by SPI, I2C or 1-Wire. Data is shifted in on INpin, and
a positive clock is sent on CLKpin for each bit.

Data and shift counts are stored in 2 arrays defined in the #include file

 DIM shiftValues(MAXshiftARRAY) ' values to be shifted in or out

 DIM shiftCounts(MAXshiftARRAY)

While most other hardware functions use bytes, SHIFTIN is oriented for bit control. The shiftCounts of each
shiftValues defines the number of bits that will be shifted out (1 - 32). If a shiftCounts is 0, it is assumed to
be 8.

Data is shifted in at 300 Kbits/sec.

Example

#include <SHIFT.bas>
...

' use SHIFTIN/OUT to control an SPI EN28J60 connected on pins 3,4 -- 6 as CS

shiftValues(0) = 2
shiftCounts(0) = 3

shiftValues(1) = $1b
shiftCounts(1) = 5

shiftValues(2) = y
shiftCounts(2) = 8

io(6)=0 ' used asCS
shiftout (3,4,1,3) ' set reg $1B to y
io(6)=1

shiftValues(0) = reg
shiftCounts(0) = 8

io(6)=0
shiftout (3,4,1,1) 'select the register
shiftin (5,4,0,1) 'and read it back
x = shiftValues(0)
io(6)=1

Differences from other BASICs

 no equivalent in Visual BASIC
 similar to PBASIC

Page 407

See also

 SHIFTOUT
 Hardware SHIFT
 SPIIN

Page 408

SHIFTOUT

Syntax

#include <SHIFT.bas> ' source in /Program Files/Coridium/BASIClib

SUB SHIFTOUT (OUTpin, CLKpin, LSBfirst, cnt)

Description

SHIFTOUT can be used for devices that are not covered by SPI, I2C or 1-Wire. Data is shifted out on OUTpin
, and a positive clock is sent on CLKpin for each bit.

While most other hardware functions use bytes, SHIFTOUT is oriented for bit control. The shiftCounts of
each shiftValues defines the number of bits that will be shifted out (1 - 32). If shiftCounts is 0, it is assumed
to be 8.

 Mode = 0 data is shifted out MSB first
 Mode = 1 data is shifted out LSB first

NOTE*** these shift modes are compatable with SHIFTIN, BUT not the same as PBASIC

Data is shifted out of the device at 300 Kbits/sec.

Example

#include <SHIFT.bas>
#include <SPI.bas>
...

DIM inlist(20) as string
DIM outlist(20) as string

' mixed SPI, SHIFT example for a 93LC46 connected to pins 11-14

high 14 ' CS to 93LC46
shiftValues(0) = $260
shiftCounts(0) = 10
SHIFTOUT(12,13,0,1) ' write enable
low 14

shiftValues(0) = $280 ' count still 10
outlist(0) = $41
high 14
SHIFTOUT(12,13,0,1) ' set write to address 0
SPIOUT (-1, 13, 12, 0, 1, outlist) ' send a byte of data
low 14

wait(20) ' allow for write time

high 14
shiftValues(0) = $300
SHIFTOUT(12,13,0,1) ' read addr 0
SPIIN (-1, 11, 13, 12, 0, -1, "", 10, inlist) ' read 10 bytes of data
low 14

Differences from other BASICs

Page 409

 none from Visual BASIC
 simplified from PBASIC

See also

 SHIFTIN
 Hardware SHIFT
 SPIIN

Page 410

SPI

Library

#include <SPI.bas>

S

 SPIBI

 SPIIN

 SPIOUT

Interface

optional #defines-
 SPIclkNEGATIVE
 SPIpreSample
 TERMINATE_ON_0_ONLY -- ignore CR,LF as special characters

SUB SPIIN (CSpin, INpin, CLKpin, OUTpin, LSBfirst, OUTcnt, BYREF OUTlist as STRING, INcnt, BYREF
INlist as STRING)

SUB SPIOUT (CSpin, CLKpin, OUTpin, LSBfirst, OUTcnt, BYREF OUTlist AS STRING)

SUB SPIBI (CSpin, INpin, CLKpin, OUTpin, LSBfirst, BIcnt, BYREF OUTlist as STRING, BYREF INlist as
STRING)

Description

These libraries are written for the ARM being the master, with possible multiple slaves selected by different
CS lines.

LSBfirst selects the bit order for the SPI routines.

A #define is used to set clock mode #define SPIclkNEGATIVE will invert the normally low clock. To use a
normally high clock this #define must be placed before the #include <SPI.bas>

Another #define can be used to sample data before the clock, #define SPIpreSample. The default case is to
sample data after each clock.

SPIIN supports the loosely defined serial protocol used by a variety of manufacturers. The desired device is
selected by asserting CSpin LOW. If there is no CSpin , the value should be set to -1.

In the simplest case, INpin is used to input data clocked by CLKpin, to fill the INlist. (OUTcnt will be 0 and
OUTlist empty)

In bi-directional cases, OUTcnt bytes of OUTlist will be output on OUTpin before reading the INlist. OUTcnt
may be -1 and OUTlist empty. If OUTcnt is 0, then OUTlist bytes will be sent until a value of 0 is found (the 0
will not be sent). An empty OUTlist can be represented by "".

It is also allowable to have INpin equal to OUTpin, in which case that pin will be driven for the OUTlist and
then converted to an input for INlist.

INlist will be filled with INcnt bytes. If INcnt is 0 then the INlist will be filled with bytes until a 0, CR or LF
character is received. Note that no bounds checking is performed on the input, and if a 0, CR, or LF is never
received then this routine will hang.

Page 411

Data is shifted in MSB first and each element of the InputList is filled with a byte of data. The LSBfirst can be
used to change the bit order.

Data is shifted in at 330 Kbits/sec

SPIOUT supports the loosely defined serial protocol used by a variety of manufacturers. The desired device
is selected by asserting CS_pin LOW. If there is no CS_pin, the value should be set to -1.

In the simplest case, out_pin is used to output data clocked by clk_pin, from the OutputList.

OutputList can contain a list of constants, variables, "constant-string" or stringame$ without a count. The
latter will send out bytes starting from stringname$(0) until a 0 byte is read. The 0 is not shifted out, if that is
required either a count should be specified so as to include the 0.

Data is shifted out MSB first and each element of the OutputList is treated as a byte. The LSBfirst can be
used to change the bit order.

Data is shifted out at 300 Kbits/sec

SPIBI supports the loosely defined serial protocol used by a variety of manufacturers. The desired device is
selected by asserting CS_pin LOW. If there is no CS_pin , the value should be set to -1.

SPIBI will shift out1, out2, out3 bytes out on out_pin while reading 3 or more bytes into the InputList from
in_pin. For each bit the clk_pin will be pulsed. Data is shifted in/out MSB first. The LSBfirst can be used to
change the bit order.

Data is shifted in/out at 220 Kbits/sec

Example

#include <SPI.bas>
,,,

DIM shortResponse(20) as string

 ' microMega FPU uses MSB first -- positive clock

shortResponse=
chr(&HFF)+chr(&HFF)+chr(&HFF)+chr(&HFF)+chr(&HFF)+chr(&HFF)+chr(&HFF)+chr(&HFF)+chr(&HFF)+chr
(&HFF)
 SPIOUT (-1,14,15, 0, 11, shortResponse) ' reset FPU
 WAIT (10)

 shortResponse= chr(&HF0)
 SPIOUT (-1,14,15, 0, 1, shortResponse) ' sync FPU
 save_time = TIMER
 while ((TIMER - save_time) < 15) ' wait 15 uSec
 loop
 SPIIN (-1,14,15, 0, 0,"", 1, shortResponse) ' get 1 byte status back

 if (shortResponse(0) <> &H5C) then
 print " No FPU found", status
 end
 endif
 print "FPU found"
 shortResponse= chr(&HF3)
 SPIOUT (-1,14,15, 0, 1, shortResponse) ' get version
 INPUT (14) ' allow FPU to drive this bidirectional line
 while (IN(14)) ' wait for FPU to drive that line low
 loop

Page 412

 shortResponse= chr(&HF2)
 SPIOUT (-1,14,15, 0, 1, shortResponse) ' get string
 save_time = TIMER
 while ((TIMER - save_time) < 15) ' wait 15 uSec
 loop
 SPIIN (-1,14,15, 0, 0,"", 0, shortResponse) ' get a 0 terminated string back

 print "version = "; shortResponse;

For an example of an SPI device that uses non-byte oriented command see SHIFTIN, SHIFTOUT example.

Page 413

SPIBI

Syntax

#include <SPI.bas> ' source in /Program Files/Coridium/BASIClib

SUB SPIBI (CSpin, INpin, CLKpin, OUTpin, LSBfirst, BIcnt, BYREF OUTlist as STRING, BYREF INlist as
STRING)

Description

SPIBI supports the loosely defined serial protocol used by a variety of manufacturers. The desired device is
selected by asserting CS_pin LOW. If there is no CS_pin , the value should be set to -1.

SPIBI will shift out1, out2, out3 bytes out on out_pin while reading 3 or more bytes into the InputList from
in_pin. For each bit the clk_pin will be pulsed. Data is shifted in/out MSB first. The LSBfirst can be used to
change the bit order.

Data is shifted in/out at 220 Kbits/sec

Example

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 SPIOUT
 SPI Support

Page 414

SPIIN

Syntax

#include <SPI.bas> ' source in /Program Files/Coridium/BASIClib

SUB SPIIN (CSpin, INpin, CLKpin, OUTpin, LSBfirst, OUTcnt, BYREF OUTlist as STRING, INcnt, BYREF
INlist as STRING)

Description

SPIIN supports the loosely defined serial protocol used by a variety of manufacturers. The desired device is
selected by asserting CSpin LOW. If there is no CSpin , the value should be set to -1.

In the simplest case, INpin is used to input data clocked by CLKpin, to fill the INlist. (OUTcnt will be 0 and
OUTlist empty)

In bi-directional cases, OUTcnt bytes of OUTlist will be output on OUTpin before reading the INlist. OUTcnt
may be -1 and OUTlist empty. If OUTcnt is 0, then OUTlist bytes will be sent until a value of 0 is found (the 0
will not be sent). An empty OUTlist can be represented by "".

It is also allowable to have INpin equal to OUTpin, in which case that pin will be driven for the OUTlist and
then converted to an input for INlist.

INlist will be filled with INcnt bytes. If INcnt is 0 then the INlist will be filled with bytes until a 0, CR or LF
character is received. Note that no bounds checking is performed on the input, and if a 0, CR, or LF is never
received then this routine will hang.

Data is shifted in MSB first and each element of the InputList is filled with a byte of data. The LSBfirst can be
used to change the bit order.

Data is shifted in at 330 Kbits/sec

Example

 #include <SPI.bas>

FUNCTION Fpu_ReadWord
 Fpu_ReadDelay
 str$(0) = 0
 SPIIN(FpuCS, FpuIn, FpuClk, FpuOut, 0, 0, str$, 2, str$)
 return (str$(0)<<8) + str$(1)
END FUNCTION

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 SPIOUT
 SPI Support

Page 415

SPIOUT

Syntax

#include <SPI.bas> ' source in /Program Files/Coridium/BASIClib

SUB SPIOUT (CSpin, CLKpin, OUTpin, LSBfirst, OUTcnt, BYREF OUTlist AS STRING)

Description

SPIOUT supports the loosely defined serial protocol used by a variety of manufacturers. The desired device
is selected by asserting CS_pin LOW. If there is no CS_pin, the value should be set to -1.

In the simplest case, out_pin is used to output data clocked by clk_pin, from the OutputList.

OutputList can contain a list of constants, variables, "constant-string" or stringame$ without a count. The
latter will send out bytes starting from stringname$(0) until a 0 byte is read. The 0 is not shifted out, if that is
required either a count should be specified so as to include the 0.

Data is shifted out MSB first and each element of the OutputList is treated as a byte. The LSBfirst can be
used to change the bit order.

Data is shifted out at 300 Kbits/sec

Example

#include <SPI.bas>

SUB Fpu_Write(bval1)
 str$(0) = bval1
 SPIOUT(FpuCS, FpuClk, FpuOut, 0, 1, str$)
END SUB

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 SPIIN
 SPI Support

Page 416

Interrupts (version 7.30 and later)

Pin Control Functions
 ADDRESSOF
 INTERRUPT
 INTERRUPT SUB
 ON

Page 417

http://www.coridiumcorp.com

ADDRESSOF

Syntax

ADDRESSOF variable_name

 or

ADDRESSOF subroutine_name

Description

ADDRESSOF will return the address of a variable or subroutine.

Example

sub print1111
 print 1111
endsub

main:
 fpointer = ADDRESSOF print1111

 call (fpointer)
Differences from other BASICs

 similar to VB
 no equivalent in PBASIC

See also

 CALL

Page 418

INTERRUPT

Syntax

INTERRUPT expression
Description

INTERRUPT will disable interrupts if expression is 0. And it will enable interrupts if expression is non-zero.
The default case is to have interrupts enabled.

Use this routine with caution, such as generating fixed time signals, or doing synchronous input. Do NOT
disable interrupts around large sections of the program. Serial input will stop functioning and characters may
be lost if interrupts are off for too long.

Example

' read a synchronous byte from a device with ready on pin 0, clock pin 1 and data on pin 2

FUNCTION ReadBit
 WHILE IN(1)=0 ' wait for clock to go high
 RETURN IN(2) AND 1
END FUNCTION

...

WHILE IN(0) ' wait for ready signal
LOOP

INTERRUPT 0
BIT0 = ReadBit
BIT1 = ReadBit
BIT2 = ReadBit
BIT3 = ReadBit
BIT4 = ReadBit
BIT5 = ReadBit
BIT6 = ReadBit
BIT7 = ReadBit
INTERRUPT 1

VALUE = BIT0 + (BIT1<<1) + (BIT2<<2)+ (BIT3<<3)+ (BIT4<<4)+(BIT5<<5)+ (BIT6<<6)+ (BIT7<<7)
Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 ON

Page 419

INTERRUPT SUB

Syntax

INTERRUPT SUB name
Description

INTERRUPT SUB indicates to the compiler this SUB will be used as an interrupt routine.

The address of the interrupt sub can be loaded into the interrupt hardware using the ADDRESSOF operator.

This requires firmware 7.30 or later and compiler version 7.44 or later.

This will be the way interrupts will be supported on Cortex M0,M3 parts, the ON construct will be maintained
for backward compatibility, but will not be expanded.

Example

' ARM7 -- LPC21xx of ARMmite, PRO, ARMweb
' Test EINT0 on PWM02
' For ARMmite connect PWM02 to P17
' The program will poll for a "0" or "1" on RXD0
' Receiving a "0" will clear output P17, a "1" will set the output
' triggering an EINT0 interrupt

#define LPC2103

#include "LPC21xx.bas"

dim e0 as integer
dim s0 as integer
dim rx as integer

INTERRUPT SUB EINT0IRQ
 *SCB_EXTINT = 1 ' Clear interrupt
 *VICVectAddr = 0 ' Acknowledge Interrupt
 e0 = e0 + 1
ENDSUB

SUB ON_EINT0(rise_edge, dothis)
 ' Setup MUST be done before enabling the interrupt
 *PCB_PINSEL1 = *PCB_PINSEL1 or psfEINT0 ' select pin function
 *SCB_EXTINT = 1 ' clear interrupt
 *SCB_EXTMODE = *SCB_EXTMODE or 1 ' enable edge mode

 if rise_edge
 *SCB_EXTPOLAR = *SCB_EXTPOLAR or 1 ' trigger on rise edge
 else
 *SCB_EXTPOLAR = *SCB_EXTPOLAR & &HFFFFFFFE ' trigger on fall edge (default)
 endif

 *VICVectAddr4 = dothis ' set function of VIC 4
 *VICVectCntl4 = &H2e ' use it for EINT0 Interrupt:
 *VICIntEnable = &H4000 ' enable EINT0 Interrupt:

 *VICVectAddr = 0 ' Acknowledge all Interrupts
ENDSUB

Page 420

main:

print "EINT0 Interrupt Test"
print "Enter 0 to clear EINT0 input, 1 to set input"

ON_EINT0(1, ADDRESSOF EINT0IRQ) 'set up for rising edge

e0 = 0
s0 = 0
rx = 0
OUTPUT 12
OUT(12) = 0

WHILE (1)
 rx = RXD0
 if rx > 0 then
 TXD0 = rx
 if rx = "0" then OUT(12) = 0
 if rx = "1" then OUT(12) = 1
 endif

 if s0 <> e0 then
 s0 = e0
 print "Received EINT0 "
 endif
LOOP
' Cortex M3 example -- PROplus SuperPRO

' Test EINT0 on C10 (P2.10)
' For ARMmite connect C10 to P18
' The program will poll for a "0" or "1" on RXD0
' Receiving a "0" will clear output P18, a "1" will set the output
' triggering an EINT0 interrupt

#include "LPC17xx.bas"

dim e0 as integer
dim s0 as integer
dim rx as integer

INTERRUPT SUB EINT0IRQ
 SCB_EXTINT = 1 ' Clear interrupt
 e0 = e0 + 1
ENDSUB

SUB ON_EINT0(rise_edge, dothis)
 PCB_PINSEL4 = &H00100000 ' EINT0 on P2.10
 SCB_EXTMODE = SCB_EXTMODE or 1 ' Enable edge mode
 SCB_EXTINT = 1 ' Clear interrupt
 if rise_edge
 SCB_EXTPOLAR = SCB_EXTPOLAR or 1 ' trigger on rise edge
 else
 SCB_EXTPOLAR = SCB_EXTPOLAR & &HFFFFFFFE ' trigger on fall edge (default)
 endif
 EINT0_ISR = dothis or 1 'set function of VIC
 VICIntEnable = VICIntEnable or (1<<18) '&H00040000 'Enable interrupt
ENDSUB

Page 421

main:
 print "EINT0 Interrupt Test"
 print "Enter 0 to clear EINT0 input, 1 to set input"

 ON_EINT0(0, ADDRESSOF EINT0IRQ) 'set up for rising edge

 e0 = 0
 s0 = 0
 rx = 0
 OUTPUT 18
 OUT(18) = 0

 WHILE (1)
 rx = RXD0
 if rx > 0 then
 TXD0 = rx
 if rx = "0" then OUT(18) = 0
 if rx = "1" then OUT(18) = 1
 endif

 if s0 <> e0 then
 s0 = e0
 print "Received EINT0 "
 endif

 LOOP

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 ON

Page 422

ON (version 7.30 and later on ARM7 parts)

For PROplus and SuperPRO see INTERRUPT SUB

Syntax

ON TIMER msec label

 or

ON EINT0|EINT1|EINT2 RISE|FALL|HIGH|LOW label

Description

These statements will initialize interrupt service routines so that when the interrupt occurs the code at label
will be executed. Label must have been pre-defined and can either be a SUB (without parameters) or code
beginning with a label: and ending in a RETURN. The interrupt response time is approximately 3 usec. Other
interrupts may make this time longer.

TIMER interrupts will occur every msec milliseconds. msec may be a variable or constant, expressions are
not allowed. The value for msec must be greater than 1. If TIMER interrupts are used, then only 4 hardware
PWM channels are available.

EINT0 and EINT2 are 2 pins that will interrupt when the defined event occurs. RISE and FALL are the
preferred method and will generate interrupts on rising or falling edges on those 2 pins. HIGH and LOW are
supported, but if the pin remains in that state interrupts will be continuously generated.

EINT1 is connected to the RTS line of the PC, and is normally high, so it can be used by a program on the
PC to interrupt the ARMmite, rather than having to reset the board. This pin is available on the wireless
ARMmite, but if you intend to use it, make sure it is pulled high normally, otherwise when the board is reset it
will go into the download C mode and will not run your BASIC program. EINT1 is also available on the
ARMexpress modules (pin 21), and should also be kept normally high if used.

Each time the ON statement is executed the interrupt will be initialized, so it is possible to change routines
within the program. Multiple interrupts can be used, but they are serviced in the order received, and each
interrupt service routine will complete before the next one is handled (interrupts that occur while one is being
serviced will be handled after the current interrupt is processed).

Interrupt routines should normally be short and simple. The state of the other user BASIC code will be
restored after the interrupt, with the exception of string functions, which should NOT be done inside an
interrupt. PRINT statements use strings, so other than a temporary debug to see if the interrupt occurs, they
should not be inside an interrupt routine.

To disable the interrupt use the following #define

#defineVICIntEnClear *$FFFFF014

#define TIMERoff VICIntEnClear = $20
#define EINT0off VICIntEnClear = $4000
#define EINT1off VICIntEnClear = $8000
#define EINT2off VICIntEnClear = $10000

ON added in version 7.09

The LPC2106 based ARMexpress supports ONLY ON LOW, due to hardware limitations.

ON is a statement that is executed, so if multiple ON statements are in a program the last statement

Page 423

executed will be active command.

Cortex M3 and M0 do not support ON, but use INTERRUPT SUB

Example

IO15up = 0 ' serves to declare IO15up

...
SUB IO15count
 IO15up = IO15up + 1
ENDSUB

...
main:

ON EINT2 RISE IO15count

IO15up = 0
while 1
 if IO15up <> lastIO15count then
 print IO15up
 lastIO15count = IO15up
 endif

...

loop
every20msec:
 checkIO0 = checkIO0 + (IO(0) and 1)
 IO0samples = IO0samples +1
RETURN

...
main:

ON TIMER 20 every20msec

...

PRINT "Percentage of time IO0 is HIGH =", 100*checkIO0 / IO0samples

...

Differences from other BASICs

 VB ???
 no equivalent in PBASIC

See also

 GOTO
 RETURN

Page 424

Logic Scope

Logic Scope
 Timed Samples
 User Defined Sampling
 Stand Alone Analyzer

Page 425

http://www.coridiumcorp.com

Timed sampling with Logic Scope
Timing setup

 The ARMexpress/mite can sample the upto 32 data lines at nearly 1 MHz rates in BASIC. The software
library LogicScope.bas is used to coordinate this sampling. Other sample rates that are multiples of 40uSec
are also supported.

 While sampling data the CPU is consumed gathering the 400 samples and then sending them to the PC,
at which point processing of the user program can continue.

Example

Example
#include <LogicScope.bas> ' call in support for LogicScope functions
#include <HWPWM.bas>
...

' user code to generate the stimulus -- the ScopeDemo engages the HWPWM

HWPWM (1,200,10)
HWPWM (2,200,20)
HWPWM (3,200,40)
HWPWM (4,200,80)
HWPWM (5,200,16)
HWPWM (6,200,32)
HWPWM (7,200,40)
HWPWM (8,200,45)

 ...

while 1
 call doLogicScope (50,0,0) ' 50 uSec, and trigger on any state (mask =0, trigger =0)
 stop ' stop needed only to handshake with the PC for continuous tracing
loop
keyw ords: Logic Scope

Page 426

User sampling with Logic Scope
Random sampling setup

 LogicScope is setup to display 400 samples of 16 IOlines. The user can generate these samples by
sprinkling the sample call into their program.

 The sample data call is completed in less than 3 uSec, except on the 400th sample where the data is sent
to the PC. If you don't have 400 samples, but want to see the data in the sample buffer call the
FlushScopeSamples routine.

Example

Example

#include <LogicScope.bas> ' call in support for LogicScope functions

#define DoSample CALL doScopeSample ' use this version to watch code
'#define DoSample ' use this version to remove
LogficScope watch

...

CALL setupLogicScope ' initialize the sampling routine

...

' user code for a custom serial interface

for i=0 to 8
 x = (x << 1) or (IN(3) and 1)
 DoSample
next i

...

CALL FlushScopeSamples ' view any data in the buffer

keyw ords: Logic Scope

Page 427

Stand Alone Logic Scope

 The ARMmite is a flexible solution to capture the logic state of your project. The ability to program the
control of sampling in BASIC can be a powerful tool. Using a second ARMmite means that the timing of your
code will not be affected when using LogicScope.

Board under test setup

 ..

Analyzer board setup

 ..

Page 428

ARMmite sampling data from ARMexpress/ ARMexpress LITE evaluation board

keyw ords: Logic Scope

Page 429

Pin Control Functions

Pin Control Functions
 AD
 BYTEBUS -- ARMweb only
 DIR
 HIGH
 IN
 INPUT
 IO
 LOW
 OUT
 OUTPUT
 Port P0..P4

Page 430

http://www.coridiumcorp.com

AD

Syntax

FUNCTION AD (expression)

Description --- not available on the original ARMexpress

ARMmite and ARMmite PRO version

AD will return 0..65472 that corresponds to the voltage on the pin corresponding to expression . The value
returned will have the top 10 bits of significance followed by bits 5..0 will be 0. 0 would be read for 0V and
65472 for 3.3V.

An analog conversion on pin expression is performed when this builtin FUNCTION is called. This process
takes less than 6 usec.

Dual Use AD pins

On reset or power up the AD pins are configured as AD inputs. To change those to digital IOs, the user must
individually specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that
they will remain digital IOs until the next reset or power up.

ARMexpress LITE version

The ARMexpress LITE supports up to 6 channels of AD converters.

On the ARMexpress LITE and ARMweb these pins are configured as digital IOs at reset, but will be switched
to AD operation when AD(x) is read.

 AD(0) IO(7)
 AD(1) IO(10)
 AD(2) IO(8)
 AD(3) not available
 AD(4) not available
 AD(5) IO(9)
 AD(6) IO(11)

 AD(7) IO(12)

Stand-Alone Compilers

Because the hardware is not compatible between LPC types, this must be implemented as a FUNCTION in
BASIC and is not part of the firmware.

Example

voltage = AD (0) ' this will read the voltage on pin 0

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 IO
 DIR
 OUTPUT

Page 431

BYTEBUS (ARMweb only)

Syntax

BYTEBUS (control)
Description

BYTEBUS reads or writes the 8 bit + 2 control lines on Port1 of the LPC2138. The control field sets the state
of the 2 control lines, with the intention of line 0 being used as a R/W line and line 1 being used as a CS line-

 0 -- set control line 0 low, and pulse line 1 low
 1 -- set control line 0 high, and pulse line 1 low
 2 -- set control line 0 low, and pulse line 1 high
 3 -- set control line 0 high, and pulse line 1 high

 4 -- use the 10 lines as a block of inputs or outputs (added in version 7 firmware)

For 0-3:

 The pulsewidth on line 1 is 250 nsec for write, and 550 nsec for read.

 Back to back operations occur 2.4 usec apart for writes, 2 usec for read.

None of these lines are driven on reset, and should be biased with resistors if devices connected to this bus
require it.

Example

'write to byte bus - negative true CS and W
BYTEBUS(0) = $A5

'read from byte bus - negative true CS, R-notW line
x = BYTEBUS(1)

block control added in version 7 firmware-
'write to 10 pins as a block
BYTEBUS(4) = $2A5

'read from 10 pins as a block
x = BYTEBUS(4)

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 HIGH

Page 432

DAC

Syntax

DACsetup()

DACout(expression)

Description

Control of the DAC is done by writing directly to the registers. Details can be found in the User manual of the
appropriate part, links in the Hardware Section .

Rather than having built in functions in BASIC, this will be done by subroutines . Samples of those
subroutines are below

Example

On the SuperPRO:

#define PCB_PINSEL1 *(&H4002C004)
#define PCB_PINMODE1 *(&H4002C044)

#define DACR *(&H4008C000) ' or use #include <LPC17xx.bas>

sub DACsetup
 PCB_PINSEL1 = PCB_PINSEL1 and (not (3<<20)) or (2<<20) ' enable DAC output
 PCB_PINMODE1 = PCB_PINMODE1 or (2<<20) ' disable pullups
endsub

sub DACout(value)
 DACR = value << 6
endsub

main:
DACsetup

for i= 0 to 1023
 DACout(i)
 wait(10)
 next i
On the ARMweb or DINkit:

#define PCB_PINSEL1 *(&HE002C004)

#define DACR *(&HE006C000) ' or use #include <LPC21xx.bas>

sub DACsetup
 PCB_PINSEL1 = PCB_PINSEL1 and (not (3<<18)) or (2<<18) ' enable DAC output
endsub

sub DACout(value)
 DACR = value << 6
endsub

main:
DACsetup

Page 433

for i= 0 to 1023
 DACout(i)
 wait(10)
 next i

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 OUT
 IN
 @ ' dump memory

Page 434

DIR

Syntax

DIR (expression)
Description

DIR (expression) can be used to set or read the direction of the 16 configurable pins. If DIR (expression) is 1
then the corresponding pin is an output. If the value is 0 then that pin is an input.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital IOs, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they will remain
digital IOs until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance DIR 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIO0DIR.

Example

' Set pin 4 as an input
DIR(4) = 0

' Set pin 12 as an output
DIR(12) = 1

Differences from other BASICs

 no equivalent in Visual BASIC
 equivalent to DIR0..15 in PBASIC

See also

 INPUT
 OUTPUT

Page 435

HIGH

Syntax

HIGH expression
Description

HIGH will set the pin corresponding to expression to a positive value (3.3V) and then set it to an output.

HIGH and LOW have been added for PBASIC compatablity.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in theHardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance HIGH 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands.

Example

SUB DIRS (x) ' similar to PBASIC keyword
 DIM i AS INTEGER

 FOR i = 0 to 15
 DIR(i) = x and (1 << i)
 NEXT i
END SUB

main:

DIRS (&H00FF) ' set pins 0 to 7 to output

FOR I=0 TO 7
 WAIT (1000)
 HIGH I ' set each pin HIGH one after the other every second
NEXT I

Differences from other BASICs

 no equivalent in Visual BASIC
 none from PBASIC

See also

 LOW

Page 436

IN

Syntax

IN (expression)
Description

When reading from IN (expression), -1 or 0 will be returned corresponding to the voltage level on the pin
numbered expression. Why -1 and 0? The main reason is that operations of operators like NOT are assumed
to be bitwise until there is a Boolean operation in the expression, and NOT 0 is equal to -1.

This directive does not change the input/output configuration of the pin.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital IOs, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they will remain
digital IOs until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in theHardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond to the port assigned by NXP, for instance IN(3) corresponds to P0.3

For port pins after port 0, use the P1 .. P4 commands .

Example

' Set pin 9 as an input
INPUT (9)

' Assume an external device has driven pin 9 high

PRINT "The current value of Input pin 9 is "; IN(9) AND 1

The current value of Input pins is 1

Differences from other BASICs

 no equivalent in Visual BASIC
 equivalent to IN0..15 PBASIC

See also

 OUT
 IO

Page 437

INPUT

Syntax

INPUT expression
Description

INPUT will set the pin corresponding to expression to an input.

INPUT and OUTPUT were added for PBASIC compatability, same function as DIR(x)= 0.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital IOs, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they will remain
digital IOs until the next reset or power up.

Making a pin an INPUT will also tri-state that pin.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance INPUT 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIO0DIR.

Example

INPUT (0) ' this will make pin 0 an input

Differences from other BASICs

 INPUT gets a value from the user in some BASICs, in ARMbasic get a value from the debug serial port
with DEBUGIN

 none from PBASIC
See also

 DIR
 OUTPUT
 DEBUGIN

Page 438

IO

Syntax

IO (expression)
Description

IO is a more complex way to access or control the pins. When IO (expression) is read, the pin
corresponding to expression is converted to an input and the value on that pin is returned.

When assiging a value to IO(expression), then pin expression is converted to an output and the logic value is
written to the pin, 0 writes a low level any other value sets the pin high. When read IO returns a 0 or -1. Why
-1 and 0? The main reason is that operations of operators like NOT are assumed to be bitwise until there is a
Boolean operation in the expression, and NOT 0 is equal to -1. When setting a pin state with IO(x) = 0 then
the pin becomes low, any other value and the pin becomes high, so IO(x) =1 and IO(x) = -1 both set the pin
high.

Using IO simplifies pins that are being used as both inputs and outputs. As it also sets direction it will be
slower than IN, OUT, HIGH or LOW.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital IOs, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they will remain
digital IOs until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance IO(3) corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIO0DIR.

Example

' Set pin 9 as an output and drive it high
IO(9) = 1

IO(9) = NOT IN(9) ' invert pin DO NOT USE IO(9) as that would be ambiguous for controlling the direction of
the pin

' Set pin 8 as an input and reads its value
x = IO(8)

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 OUT
 IN

Page 439

LOW

Syntax

LOW expression
Description

LOW will set the pin corresponding to expression to a low value (0V) and then set it to an output.

HIGH and LOW have been added for PBASIC compatablity.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance LOW 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIO0DIR.

Example

SUB OUTS (x) ' similar to PBASIC keyword
 DIM i AS INTEGER

 FOR i = 0 to 15
 OUT(i) = x and (1 << i)
 NEXT i
END SUB

SUB DIRS (x) ' similar to PBASIC keyword
 DIM i AS INTEGER

 FOR i = 0 to 15
 DIR(i) = x and (1 << i)
 NEXT i
END SUB

main:

DIRS (&H00FF) ' set pins 0 to 7 to output
OUTS (255) ' and then set them hign or to 3.3 V

FOR I=0 TO 7
 WAIT (1000)
 LOW (I) ' set each pin LOW one after the other every second
NEXT I

Differences from other BASICs

 no equivalent in Visual BASIC
 none from PBASIC

See also

 HIGH
 IO

Page 440

OUT

Syntax

OUT (expression)
Description

When writing to OUT (expression), the pin corresponding to expression will be set a voltage level
corresponding to TRUE or FALSE, non-zero or 0. When setting a pin state with OUT(x) = 0 then the pin
becomes low, any other value and the pin becomes high, so OUT(x) =1 and OUT(x) = -1 both set the pin
high.

The OUT directive does not change the input/output configuration of the pin. Following reset all pins are
inputs, before an OUT () will have an effect on a pin, that pin must be made an output using an OUTPUT
command. The reason for this is to make OUT faster, if the pin direction were changed each OUT, then the
speed of one OUT to the next would be slower.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital IOs, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they will remain
digital IOs until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance OUT(3) corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIO0DIR.

Example

' Set pin 9 as an output
OUTPUT (9)

' Drive pin 9 high
OUT(9) = 1

PRINT "The current value of Output pin 9 is "; OUT(9)

The current value of Output pins is 1

Differences from other BASICs

 no equivalent in Visual BASIC
 equivalent to OUT0..15 in PBASIC

See also

 IN
 IO

Page 441

OUTPUT

Syntax

OUTPUT expression
Description

OUTPUT will set the pin corresponding to expression to an output.

INPUT and OUTPUT were added for PBASIC compatability, same function as DIR(x)= 0.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital IOs, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they will remain
digital IOs until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance OUTPUT 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIO0DIR.

Example

' Set pin 9 as an output
OUTPUT (9)

Differences from other BASICs

 no equivalent in Visual BASIC
 none from PBASIC

See also

 DIR
 INPUT

Page 442

PORT P0..P4

Syntax

Pn (expression) ' where n is 0 through 4
Description

Px allows you to read or write individual pins using the NXP assigned port and pin number. When Pn (
expression) is read, the logic state of the pin corresponding to expression is returned.

When assigning a value to Pn(expression), then pin expression is set to that value if that pin has been
assigned to be an output by writing to FIOxDIR.

When read Pn(x) returns a 0 or -1. Why -1 and 0? The main reason is that operations of operators like NOT
are assumed to be bitwise until there is a Boolean operation in the expression, and NOT 0 is equal to -1.
When setting a pin state with Pn(x) = 0 then the pin becomes low, any other value and the pin becomes high,
so Pn(x) =1 and Pn(x) = -1 both set the pin high.

These pin numbers correspond to the port pin assignments from NXP.

This feature is part of the compiler and requires version 8.04c or later. It has not been added to the on-chip
compiler of the ARMweb.

Example

On the SuperPRO and PROplus:

#define FIO1DIR *&H2009C020 ' or use #include <LPC17xx.bas>

' Set pin 9 as an output and drive it high
FIO1DIR = FIO1DIR or (1<<9)
P1(9) = 1

P1(9) = NOT (P1(9) and (1 <<9)) ' invert pin P1.9 -- works as you can always read the state of a pin

' read value of P1.8
x = P1(8)

' change bit 9 back to an input
FIO1DIR = FIO1DIR and NOT(1<<9)
On the ARMweb or DINkit:

#define FIO1DIR *&H3FFFC020 ' or use #include <LPC21xx.bas>
#define SCB_SCS *&HE01FC1A0

SCB_SCS = 3 ' required to enable port1 for firmware before 7.47

' Set pin 9 as an output and drive it high
FIO1DIR = FIO1DIR or (1<<9)
P1(9) = 1

P1(9) = NOT (P1(9) and (1 <<9)) ' invert pin P1.9 -- works as you can always read the state of a pin

' read value of P1.8
x = P1(8)

Page 443

' change bit 9 back to an input
FIO1DIR = FIO1DIR and NOT(1<<9)

Differences from other BASICs

 no equivalent in Visual BASIC
 no equivalent in PBASIC

See also

 OUT
 IN
 @ ' dump memory

Page 444

Miscellaneous

Miscellaneous
 PreProcessor
 Debugging

Page 445

http://www.coridiumcorp.com

Data Abort

Prefetch Abort

Undefined Routine

Description

Data Aborts are generated when a user's BASIC program accesses non-existant memory. One way is
accessing an array with an index that is larger than available RAM space. Another is using a pointer for
hardware access, but with a value that does not correspond to a valid location.

Prefetch aborts indicate an attempt to access an instruction from non-existant memory. Prefetch aborts can
occur when RETURNing when a sub/function had not been called.

Undefined Routine, which indicates a call or return to non-existant code. This error will occur if you RETURN
when there has not been a GOSUB, the equivalent of a return stack underflow. This also may occur when
interrupts are used with firmware prior to version 7.30

The number reported (in hex) is the program address where the illegal access was detected.

Page 446

Hardware Specs

Hardware Specs
 ARMmite Pin Diagram
 ARMmite PRO Pin Diagram
 PROplus SuperPRO Pin Diagram
 ARMweb Pin Diagram
 DIN rail Pin Diagram
 ARMexpress LITE Pin Diagram
 ARMexpress Pin Diagram

 Schematics
 Suggested RS232 connection

 Power On behavior
 USB use
 USB with MatLab or legacy Serial Programs
 TTL and other interfacing
 Power
 Timing
 SPI,Microwire
 Using the I2C Bus
 ARM Peripheral Use

Page 447

http://www.coridiumcorp.com

ARMmite Pin Description

24 pins available to the user, 8 of which can be analog inputs

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7
IO8
IO9
IO10
IO11

IO14
IO15

P0.9
P0.8
P0.30
P0.21
P0.20
P0.29
P0.4
P0.5
P0.6
P0.7
P0.13
P0.19

P0.16
P0.15

RXD1
TXD1

EINT0
EINT2

PWM1
PWM2
PWM3
PWM4
PWM5

PWM6
PWM7
PWM8

Input/Outputs -- user controlled

0-3.3V level

4mA drive when configured as Outputs

5V tolerant - use limiting resistor when connecting to a 5V supply

IO15 connected to LED

IO12
IO13

P0.18
P0.17

Input/Outputs -- user controlled

Open drain 4mA pulldown when configured as Outputs

5V tolerant

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

P0.22
P0.23
P0.24
P0.10
P0.11
P0.12
P0.25
P0.26

IO16
IO17
IO18
IO19
IO20
IO21
IO22
IO23

10 bit A/D inputs

may also be used as digital Input/Outputs IO(16-23) -- user controlled

when used as analog lines, voltage levels should not exceed 3.3V

Dual Use AD pins

On reset or power up the AD pins are configured as AD inputs. To change those to digital IOs, the user must
individually specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they
will remain digital IOs until the next reset or power up.

PWM pins

All pins can be used for the software PWM function, and 8 pins can be used for the hardware driven HWPWM
function.

Battery Real Time Clock

The ARMmite board is designed to accept a Panasonic ML2020/H1C rechargeable Lithium battery at position
BT1. This battery powers the real time clock of the LPC2103. The contents of RAM is not kept alive while
running on battery, and the CPU restarts the user program in Flash when power is restored. This battery is
designed to maintain power for a few days without power, and will recharge fully in about 1 day.

Power connection

Power when not being supplied by a USB connection uses a 2.1mm barrel connector (Cui PJ-002A). Diodes
allow both USB and seperate power to be connected simultaneously. If you are using an unregulated wall

Page 448

transformer, you must check the open circuit voltage and it MUST be less than 12V.

Pin spacing

The spacing in the prototype area is 0.1" and the terminal strip row on the right side is designed for 3.5mm
terminal strips.

REV 3

Page 449

When USB power is not used, a 5-12V supply is required. If 5V is required for some portion of your circuit, it
is suggested that a regulated 5V supply be used for input power. These are available from SparkFun.

Page 450

http://www.sparkfun.com/commerce/product_info.php?products_id=8269

A push button switch and pullup resistor can also be mounted (connected to IO(2)). The optional battery for
the real time clock (Panasonic ML2020) can be mounted on the back of the PCB. The VL2020/HFN will also
work, though it is more expensive and has less power.

Page 451

__

REV 2

Page 452

Page 453

suggested terminal strip On Shore Tech ED550/12DS or equivalent 3.5mm pitch connector (available at
Digikey)

Page 454

ARMmite PRO Pin Description

The ARMmite PRO is footprint and pin compatible with the Arduino PRO. In addition it has an onboard 5V
regulator so it is compatible with 5V shield boards.

BASIC or C programs can be downloaded using the installed test connector using the USB dongle contained
in Coridium's evaluation kit or using the SparkFun USB Basic Breakout board or FTDI cable from
MakerShed . More details on these connections here.

Pins available to the user, 7 of which can be analog inputs

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7
IO8
IO9
IO10
IO11
IO12
IO13
IO14

P0.9
P0.8
P0.27
P0.19
P0.28
P0.21
P0.5
P0.29
P0.30
P0.16
P0.7
P0.13
P0.4
P0.6
P0.20

RXD1
TXD1

EINT0

PWM1
PWM2

PWM8

PWM4

PWM3

PWM6
PWM7

PWM5

Input/Outputs -- user controlled

0-3.3V level

4mA drive when configured as Outputs

5V tolerant - use limiting resistor when connecting to a 5V supply

IO15 P0.15 EINT2 IO15 connected to LED -- no other connection

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7*

P0.22
P0.23
P0.24
P0.10
P0.11
P0.12
P0.25
P0.26

IO16
IO17
IO18
IO19
IO20
IO21
IO22
IO23

10 bit A/D inputs

may also be used as digital Input/Outputs IO(16-23) -- user controlled

when used as analog lines, voltage levels should not exceed 3.3V

AD6 connected to Arduino AREF pin
AD7 connected to a via

Dual Use AD pins
On reset or power up the AD pins are configured as AD inputs. To change those to digital IOs, the user must
individually specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they
will remain digital IOs until the next reset or power up.
The LPC2103 does not support an external reference for the A/D converters, so the Arduino AREF pin is
connected to a seventh converter, AD(6).
PWM pins

All pins can be used for the software PWM function, and 8 pins can be used for the hardware driven HWPWM
function.

Digital IO connections
REV4

Page 455

http://www.sparkfun.com/commerce/product_info.php?products_id=8772
http://www.makershed.com/ProductDetails.asp?ProductCode=TTL232R

The major change for rev 4 is to add a parallel connection for the 8 IOs IO(8)-IO(13), GND and IO(22) that is
on 0.1" centers in relation to the other connections.
In addition the loadC jumper was rotated 90 degrees to make room for this extra connection. And it is also
easier to add a battery to the board, by making 1 cut, and adding a diode, resistor and battery (details
below).
REV 3

Page 456

Picture is for the Rev 3 production board. On the Rev 1, IO(23) is available on the via next to AD(5)/IO(21).

Analog connections

Picture is for the Rev 3 production board. On the Rev 1, AD(7) is available on a via next to AD(5).

Page 457

Dual Serial Ports
Where the Arduino has only a single serial port, the ARMmite PRO has 2 UARTs. The second UART is
connected to IO pins 0 and 1. This allows it to be used simultaneously with the first UART acting as a debug
port. In the Arduino, the debug port is connected to these 2 IOs. To allow for this connection as well, the
ARMmite PRO has 2 shorting bridges that can be shorted to make this connection.

Power connections

The board is shipped with a 2mm power jack compatible with a JST PHR/S2B or SparkFun PRT8671 or
various battery packs from SparkFun.
Pads for a Cui PJ-002A or SparkFun PRT-119 power connector are available in the lower left hand corner.
For both battery and 6V input, 2 pin 0.1" spaced holes are available for wires or headers. When using the
battery connector, total current draw for the board must be limited to 200mA. If you want to use more
currrent, you should install a jumper around the D2 diode (holes are available above D2).
Diode steering allows power to be supplied from a barrel connector from a 6V unregulated source, 5V USB
test connector, or the battery connector. Because of the Schottky diodes, all 3 power sources can be
connected simultaneously. If you are using an unregulated wall transformer, you must check the open circuit
voltage and it MUST be less than 12V.

When the 6V source is used, 5V Arduino shields can be powered from the ARMmite PRO.

The schematic describes this circuit

Page 458

http://search.digikey.com/scripts/dksearch/dksus.dll?pname&site=us;lang =en&wt.mc_id=Dxn_US_T091_Catlink;name=455-1165-ND
http://www.sparkfun.com/commerce/product_info.php?products_id=8671
http://www.sparkfun.com/commerce/product_info.php?products_id=119

The full schematic can be seen here

Power connections details

The 3.3V regulator can supply 50 mA, with most being used by the LPC2103. The 3.3V connection next to

Page 459

RESn on the lower power connector is only connected if the shorting pads are shorted (NOT the factory
default).
The analog GND should be used to connect to the GND of analog inputs. Digital and Analog GNDs are
connected together with a small trace, but to minimize noise you should use the analog GND only for analog
signals.
Vdrive connection (added in rev 2)
A connection for the Vdrive has been added so it is easy to use an ARMmite PRO to do data logging to a
USB Flash. So all that is required is a Vdrive and a 2mm header .

Jumpers and test connector for Program Download

The USB Dongle from Coridium will supply 5V from the USB to power the ARMmite PRO. It also controls the
RESET and BOOT signals to automatically load C or BASIC programs using MakeItC or BASICtools.

When using the SparkFun FTDI Basic Breakout Board, a limited amount of power can be supplied from the
BBB, but this is limited to 50 mA and after diode drops, its about 2.8V to the LPC2103. In practice this will
run, but it is outside the part specifications, so it should be limited in use.

Also with the SparkFun FTDI Basic Breakout Board to load a C program, the LOAD C jumper needs to be
installed, then removed to run the program. BASIC programs can be loaded and controlled using the
SparkFun board, with no additional steps/jumpers.

Page 460

http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=768-1003-ND
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=S5800-08-ND

An alternative is to use a 2 pin header with a shorting block (pictured below)

Real Time Clock Oscillator

The ARMmite PRO uses ceramic resonator, which has a 1% accuracy. But there is a provision to load a 32
KHz cyrstal and 2 cap to use that for the Real Time Clock.

Page 461

The crystal should be a 32.768 KHz can type, and depending on the rating the capacitors are 0603 size
18-27pF.

If you install this, include the following at the start of your program.

 #define RTC_CCR * &HE0024008
 RTC_CCR = &H11 ' clock the RTC with the 32 KHz crystal

Rev 4 version of the board makes it easier to add a battery. First cut the trace indicated below, then install a
Schottky Diode, 180 ohm resistor and Panasonic ML2020H as shown below. The VL2020/HFN will also
work, though it is more expensive and has less power.

Page 462

Page 463

Wireless ARMmite Pin Description

24 pins available to the user, 8 of which can be analog inputs

Refer to the Getting started section for details on selecting your wireless components.

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7
IO8
IO9
IO10
IO11

IO14
IO15

RXD1
TXD1

EINT0
EINT2

PWM1
PWM2
PWM3
PWM4
PWM5

PWM6
PWM7
PWM8

Input/Outputs -- user controlled

0-3.3V level

4mA drive when configured as Outputs

5V tolerant - use limiting resistor when connecting to a 5V supply

IO15 connected to LED

IO12
IO13

Input/Outputs -- user controlled

Open drain 4mA pulldown when configured as Outputs

5V tolerant

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

IO16
IO17
IO18
IO19
IO20
IO21
IO22
IO23

10 bit A/D inputs

may also be used as digital Input/Outputs IO(16-23) -- user controlled

when used as analog lines, voltage levels should not exceed 3.3V

Dual Use AD pins

On reset or power up the AD pins are configured as AD inputs. To change those to digital IOs, the user must
individually specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they
will remain digital IOs until the next reset or power up.

PWM pins

All pins can be used for the software PWM function, and 8 pins can be used for the hardware driven HWPWM
function.

Page 464

Jumpers

The wireless ARMmite default baud setting is 19.2Kb, and the default setting for the BlueSmiRF and Xbee
modules are 9600 baud. While the defaults can be changed for these wireless modules, there is a potential
"chicken and egg" problem getting there. So if the 9600 baud jumper is connected on RESET, the ARMmite
will come up at that baud rate.

The wireless connections do not have sufficient control lines such that RESET can be controlled from the PC,
as well as the RTS line which is used to load C programs. So the BASICtools and MakeItC will prompt you
to add a jumper or push the reset button where appropriate.

Page 465

Power

The wireless ARMmite primary power supply is 3.3V. This voltage is available for user circuitry at 3 pins in
the prototype area. There is also a pad that is connected to the input power.

Input power for the wireless ARMmite require 5V or greater. It may be a regulated 5V supply or an
un-regulated 6V supply. But it all cases it should not exceed 12V DC. IF YOU ARE USING A BlueSMiRF,
this input power is applied directly to the BlueSmiRF and it must not exceed 6V . If you are using an
unregulated wall transformer, check the open circuit voltage and make sure it is within these limits.

Page 466

If the all the connections are made to the USB breakout board then 5V can be supplied from the USB. That
is also available at the USB 5V pad. When using power from the USB, it should be the only connection for
power (do not connect the 5-6V power).

Page 467

suggested terminal strip On Shore Tech ED550/12DS or equivalent 3.5mm pitch connector (available at
Digikey)

Page 468

ARMexpress LITE Pin Diagram

The ARMexpress LITE is pin compatible with the Parallax BASIC Stamp. BASIC Stamp is a registered
trademark of Parallax Inc.

/SOUT 1 Serial Output, RS-232 compatable (active low)

/SIN 2 Serial Input, RS-232 compatable (active low)

ATN 3 connect to DTR with RS-232, when HIGH reset the Node (active high)

/RES 22 TTL level RESET (open collector with 2.7K pullup) (active low)

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7
IO8
IO9
IO10
IO11
IO12
IO13
IO14
IO15

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

PWM3

PWM1, RXD1
PWM2, TXD1
AD0
AD2
AD5
AD1
AD6
AD7
PWM7
PWM5
PWM8

Input/Outputs -- user controlled

0-3.3V level

4mA drive when configured as Outputs

5V tolerant - use limiting resistor when connecting to a 5V supply

EINT2
EINT0

GND 4,23 Ground (0V)

VDD 24 Power 5-12V input power

Page 469

Alt-VDD 21 Alternate 5V input power (for Parallax compatability)
DO NOT exceed 5V on this pin
connection to pin 24 is preferred
this pin is pulled low during download of a C program

Dual Use AD pins

On reset or power up the AD pins are configured as digital IOs on the ARMexpress LITE. When the BASIC
accesses these pins they are changed to analog inputs. After that they will remain analog inputs until the
next reset or power up.

PWM pins

All pins can be used for the software PWM function, and 6 pins can be used for the hardware driven HWPWM
function (HWPWM channels 4 and 6 are not connected).

Page 470

ARMexpress Pin Diagram

The ARMexpress is pin compatible with the Parallax BASIC Stamp. BASIC Stamp is a registered trademark
of Parallax Inc.

/SOUT 1 Serial Output, RS-232 compatable (active low)

/SIN 2 Serial Input, RS-232 compatable (active low)

ATN 3 connect to DTR with RS-232, when HIGH reset the Node (active high)

/RES 22 TTL level RESET (open collector with 2.7K pullup) (active low)

IO0
IO1
IO2
IO3
IO4
IO51

IO61

IO7
IO8
IO9
IO10
IO11
IO12
IO13
IO14
IO15

5
6
7
8
9
10

11

12
13
14
15
16
17
18
19
20

note 1
note 1

EINT2
EINT0

Input/Outputs -- user controlled

0-3.3V level

4mA drive when configured as Outputs

5V tolerant - use limiting resistor when connecting to a 5V supply

GND 4,23 Ground (0V)

VDD 24 Power 5-12V input power

Page 471

Alt-VDD 21 Alternate 5V input power (for Parallax compatability)
DO NOT exceed 5V on this pin
connection to pin 24 is preferred
this pin is pulled low during download of a C program

1These pins (IO5 an IO6) are open-drain, when configured as outputs can only pull down.

Page 472

ARMweb Pin Description

Rev 4 and 5

32 pins available to the user, 5 of which can be analog inputs, and one dedicated analog input

With Rev 4 the pin numbering for the ARMweb will reflect the assignment native to the LPC2138. The revision
of the board is etched on the backside of the board.

IO7
IO8
IO9
IO10
IO11**
IO12
IO13
IO15
IO17
IO18
IO19
IO20
IO21
IO22
IO23
IO25
--
IO27
IO28
IO29
IO30
IO31++

TXD1
RXD1

AD4, DAout
AD5
AD0
AD1
AD2
AD3

IO7 is connected to LED and PUSHBTTON
as an input the push button is 0 when pressed

**IO11 is open drain when an output (i.e. can not pull up)

IO15 also controls LED (when low, the LED will be lit)

Input/Outputs -- user controlled
0-3.3V level, 4mA drive when configured as Outputs

5V tolerant - use limiting resistor when connecting to a 5V supply

AD5 is always an analog input, IO26 does not exist

10 bit A/D inputs
when used as analog lines, voltage levels should not exceed 3.3V

++IO31 is always an output

B0
B1
B2
B3
B4
B5
B6
B7
RW
CS

BYTEBUS

Input/Outputs -- user controlled

0-3.3V level, 5 volt tolerant, 4ma drive when outputs

this functions as a byte-wide bus with control of RW and CS

Dual Use AD pins

On reset or power up the AD pins are configured as IO inputs. To change those to analog IOs, the user must
individually read them as AD(x) commands. After that they will remain analog inputs until the next reset or
power up.

PWM pins -- not yet implimented

All pins can be used for the software PWM function, and <TBD> pins can be used for the hardware driven
HWPWM function.

Battery Real Time Clock

The ARMweb board is designed to accept a Panasonic ML2020/H1C rechargeable Lithium battery at position
BT1. This battery powers the real time clock of the LPC2138. The contents of RAM is not kept alive while
running on battery, and the CPU restarts the user program in Flash when power is restored. This battery is
designed to maintain power for a few days without power, and will recharge fully in about 1 day.

LED

Page 473

On the beta units, this is connected to IO(16) not 15. On later units while the LED is connected to IO(7), the
silkscreen shows it as connected to IO(15), and the example programs for the ARMmite and ARMexpress
use IO(15). So firmware on the board allows IO(15) to also control the LED.

U6 has duplicate connections for IO(17)-IO(20). U6 is designed to accept a ULN2803.

The bottom proto area connects neighboring pairs of pins. In the top proto area near C23, neighboring triplets
of pins are connected horizontally.

In addition the ARMweb can be ordered in larger quantities with a switching power supply, which replaces U4,
C1 and C9 with U1, D2, L4, C1 and C9

Pin spacing

The spacing in the prototype area is 0.1" and the terminal strip row on the right side is designed for 3.5mm
terminal strips.

Rev 2,3

31 pins available to the user, 6 of which can be analog inputs

The revision of the board is etched on the backside of the board.

IO0
IO1
IO2
IO3
IO4

IO6
IO7
IO8
IO9
IO10
IO11
IO12
IO13
IO14++

AD0
AD1
AD2
AD3
AD4
AD5

Input/Outputs -- user
controlled

0-3.3V level

4mA drive when configured
as Outputs

5V tolerant - use limiting
resistor when connecting
to a 5V supply

10 bit A/D inputs

when used as analog
lines, voltage levels should

Page 474

not exceed 3.3V

++IO14 is always an output

AD5 is always an analog
input, IO5 does not exist

IO15 Input/Outputs -- user
controlled

controls LED (when low,
the LED will be lit)
as an input also connects
to the push button (0 when
pressed)

IO16
IO17
IO18**
IO19
IO20

 Input/Outputs -- user
controlled

0-3.3V level, 5 volt tolerant,
4mA drive when output

**IO18 is open drain when
an output (i.e. can not pull
up)

BUS0
BUS1
BUS2
BUS3
BUS4
BUS5
BUS6
BUS7
BUS-RW
BUS-CS

Input/Outputs -- user
controlled

0-3.3V level, 5 volt tolerant,
4ma drive when outputs

this functions as a
byte-wide bus with control
of RW and CS

Page 475

Page 476

DIN rail Pin Description

USB connection shown. Details on the enclosure at OKW enclosures .

The ethernet version is software compatible with the ARMweb, refer to those pages for more information.

The USB version uses the standalone ARMbasic compiler on the PC.

Rev 1

25 pins available to the user, 6 of which can be analog inputs, 8 high current drivers, 3 digital IOs, and 8
flexible IOs

The LPC2138 is used with 512K Flash and 32K of SRAM.

Optional connections to USB, 10Mb Ethernet, or RS-485 (with optional isolation)

Page 477

http://www2.okw.com/okw-static/drawings-pdf/00010390.pdf

 picture shown without screw terminals for clarity

Power Inputs
Board 7-40V DC. This voltage is reduced with a switching regulator for the 3.3V internal board supply.

High Current Driver (ULN2803) 5-50V. This can be a seperate supply from the Board input power, or can be
the same supply. It is a required connection for relay drivers to provide a path for current when the relay coil
is turned off, it does not have to be the power supply for the board in this case, but it can be.

For volume customers the power supply can be stuffed to accept a regulated 3.3V supply directly, this is
done by omitting the switching power supply and adding an appropriate ferrite bead at L5.

Schematic
The schematic is too large to include on this page, but is downloaded into the /Program
files/Coridium/Schematic directory. Is also available here..

Enclosure

OKW B6704100 The kits include custom cutouts for either Ethernet or USB connections. Mechanical
drawing for the enclosure is here ,

All the following options can be configured by the user, by optionally stuffing the through-hole components in
the DIN rail kit. Coridium will configure boards when 10 or more are ordered.

Page 478

http://focus.ti.com/lit/ds/symlink/uln2803a.pdf
http://www.coridiumcorp.com/files/Schematics/DINbase.pdf
http://www.okwenclosures.com/products/okw/railtec-c/zoom/zB6704100.jpg
http://www2.okw.com/okw-static/drawings-pdf/00006710.pdf

6 AD pins
These may configured for 4-20 mA sensors, with resistor dividers, or as digital inputs. These inputs have
diode clamps to 3.3V and GND.

4-20mA sensor --

 load 150 ohm SIP into R17

suggested components
 Bourns 4600X Bussed SIP resistor
 Bourns 4100R Isolated DIP resistor

A/D resistor divider --

 load R15 DIP resistor and R14 SIP with appropriate values

 AD = Vin * R14/(R14+R15)

 Source impedance to AD should be less than 10K.

digital IO --

Page 479

 load R15 with 100 or 1K

digital IO (pulldown)--

 load R15 with 100, R14 with 10K

digital IO (pullup) --

Page 480

 load R15 with 100, R14 with 10K

High Current Drivers
These may use a high sink current driver, or configured as digital IOs with optional pullups or pulldowns

High Current drive --

 This driver can sink a surge current of 500mA upto 50V, this driver is a ULN2803 .

suggested components
 TI ULN2803AN
 Toshiba ULN2803APG
 STmicro ULN2803A

digital IO --

digital IO (pulldown) --

Page 481

http://focus.ti.com/lit/ds/symlink/uln2803a.pdf

digital IO (pullup) --

Flexible IOs
These may be configured as 8 digital IOs (with and without pullup/pulldown), opto-isolated inputs or outputs,
or differential inputs or outputs. They are arranged in 2 groups of 4 so that there can be 2 opto-isolated input
and 2 opto-isolated outputs.

opto-isolated input --

Page 482

suggested components
 Liteon LTV-827
 Fairchild MCT9001
 Toshiba TLP621-2

opto-isolated output --

same components as above, rotated 180 degrees

bidirectional RS-422 driver --

Page 483

suggested components
 National DS75176BN
 TI SN75176AP

bidirectional RS-422 driver with termination --

suggested components
 Bourns 4600 Isolated SIP resistor

digital IO --

Page 484

digital IO (pulldown) --

digital IO (pullup) --

3 digital IOs
These may be configured as staight thru, or with pullups or pulldowns

digital IO --

 shown with 100 ohm series

Page 485

digital IO (pulldown) --

 shown with 10K pulldown and 100 series

digital IO (pullup) --

 shown with 10K pullup and 100 series

RTC options
Rev 3

This revision adds the diode and resistor needed for charging an ML2020 battery. That battery can be
mounted on the backside of the board as illustrated below

Page 486

Rev 2

To connect a battery, remove R23, and use the Vbat via to connect, a resistor-Schottky diode-battery
connection (suggested schematic below)

GND and 3.3V are available on either side of C7

Page 487

A 32 KHz crystal (such as the Citizen CMR200TB32.768KDZFTR) can be connected at Y2, with the
two 22pF startup caps on the bottom/circuit side of the board.

Page 488

SuperPRO Pin Description

PROplus Pin Description

The SuperPRO is footprint and pin compatible with the Arduino PRO. In addition it has an onboard 5V
regulator so it is compatible with 5V shield boards.

BASIC or C programs can be downloaded using the installed test connector using the USB dongle contained
in Coridium's evaluation kit or using the SparkFun USB Basic Breakout board or FTDI cable from
MakerShed . More details on these connections here.

Digital IO connections -- rev 5
The rev 5 adds a parallel connection for pins that are on 0.1" centers. This artwork is also shared with the
PROplus version of the board.
The SuperPRO uses an LPC1756 and has 5V and 3.3V supplies.
The simpler PROplus uses an LPC1751 and has only the 3.3V supply.
Port pins can be controlled with the P0..P4 keywords. Port 0 pins can be accessed with the originalIN,
OUT... keywords . More details on the GPIOs can be found in the NXP User Manual.

Digital IO connections -- rev 4

Page 489

http://www.sparkfun.com/commerce/product_info.php?products_id=8772
http://www.makershed.com/ProductDetails.asp?ProductCode=TTL232R

Special purpose pins

The LPC1756 supports a number of dedicated functions. Those include 4 UARTs, USB, 2 SSPs, 1 SPI, 2
CAN, 2 I2C, I2S, 2 multi-channel PWMs, Quadrature Encoder, dedicated motor control PWM, interrupts,
timer counter capture and match.

In addition most can be configured with pullups and default to pullups following reset.

Details can be found in NXP's User manual.
Analog connections
4 A/D converters are readily available. 2 more are available, but share the pins with UART0 -- what was NXP
thinking, I have no idea.
1 10 bit DAC is available shared with AD(3) available on the SuperPRO (not on PROplus)
On reset or power up the AD pins are configured by software as AD inputs. To change those to digital IOs,
the user must write to the appropriate PINSEL register.
The LPC1756 does support an external reference for the A/D converters, but to use the Arduino AREF pin a
jumper is required (details on the schematic)
update
The LPC17xx series chips AD converter are sensitive to high frequency noise on the analog GND (Vssa) or
on the AD inputs themselves. A symptom that will show up is bits in any bit position turned on/off when the
conversion is done. This makes it hard to average out, but conversion can be voted on, choosing 2/3
conversions that agree within a few bits. The occurance of these errors is in less than 1% of the conversions,
unless your setup is very noisy.
Another option is to change the analog GND connection on the board. Do this by cutting the trace on the
back side between GND under the crystal and the GND connected to Vssa (shown on the picture below)

Page 490

Then connect digital GND to analog GND using a ferrite bead, a convenient place to do this is on the front
side as shown below.

Pin limitations
P0.29 and P0.30 direction control must be done in parallel, they can be both outputs or both inputs, but not
mixed.
Power connections -- SuperPRO
The board is shipped with a 2mm power jack compatible with a JST PHR/S2B or SparkFun PRT8671 or
various battery packs from SparkFun.
Pads for a Cui PJ-002A or SparkFun PRT-119 power connector are available in the lower left hand corner.

Page 491

http://search.digikey.com/scripts/dksearch/dksus.dll?pname&site=us;lang =en&wt.mc_id=Dxn_US_T091_Catlink;name=455-1165-ND
http://www.sparkfun.com/commerce/product_info.php?products_id=8671
http://www.sparkfun.com/commerce/product_info.php?products_id=119

For both battery and 6V input, 2 pin 0.1" spaced holes are available for wires or headers. When using the
battery connector, total current draw for the board must be limited to 200mA. If you want to use more
currrent, you should install a jumper around the D2 diode (holes are available above D2).
Diode steering allows power to be supplied from a barrel connector from a 6V unregulated source, 5V USB
test connector, or the battery connector. Because of the Schottky diodes, all 3 power sources can be
connected simultaneously. If you are using an unregulated wall transformer, you must check the open circuit
voltage and it MUST be less than 12V.

When the 6V source is used, 5V Arduino shields can be powered from the SuperPRO.

The schematic below describes this circuit on the SuperPRO

Power connections -- PROplus
The board is shipped with a 2mm power jack compatible with a JST PHR/S2B or SparkFun PRT8671 or
various battery packs from SparkFun.
Pads for a Cui PJ-002A or SparkFun PRT-119 power connector are available in the lower left hand corner.
For both battery and 6V input, 2 pin 0.1" spaced holes are available for wires or headers. When using the
battery connector, total current draw for the board must be limited to 200mA. If you want to use more
currrent, you should install a jumper around the D2 diode (holes are available above D2).
Diode steering allows power to be supplied from a barrel connector from a 6V unregulated source, 5V USB
test connector, 5V from a shield or the battery connector. Because of the Schottky diodes, all 3 power
sources can be connected simultaneously. If you are using an unregulated wall transformer, you must check
the open circuit voltage and it MUST be less than 12V.

The PROplus only has the 3.3V regulator, so it cannot supply power to a 5V shields.

The schematic below describes this circuit on the PROplus

Page 492

http://search.digikey.com/scripts/dksearch/dksus.dll?pname&site=us;lang =en&wt.mc_id=Dxn_US_T091_Catlink;name=455-1165-ND
http://www.sparkfun.com/commerce/product_info.php?products_id=8671
http://www.sparkfun.com/commerce/product_info.php?products_id=119

The full schematic can be seen here

Power connections details

Page 493

The 3.3V regulator can supply 50 mA, with most being used by the LPC2103. The 3.3V connection next to
RESn on the lower power connector is only connected if the shorting pads are shorted (NOT the factory
default).
The analog GND should be used to connect to the GND of analog inputs. Digital and Analog GNDs are
connected together with a small trace, but to minimize noise you should use the analog GND only for analog
signals.

Jumpers and test connector for Program Download

The USB Dongle from Coridium will supply 5V from the USB to power the ARMmite PRO. It also controls the
RESET and BOOT signals to automatically load C or BASIC programs using MakeItC or BASICtools.
Remember, if you load a C program, it will erase the BASIC firmware and you will not be able to load BASIC
programs after that.

When using the SparkFun FTDI Basic Breakout Board, a limited amount of power can be supplied from the
BBB, but this is limited to 50 mA and after diode drops, its about 2.8V to the LPC2103. In practice this will
run, but it is outside the part specifications, so it should be limited in use.

Also with the SparkFun FTDI Basic Breakout Board to load a C program, the LOAD C jumper needs to be
installed, then removed to run the program. BASIC programs can be loaded and controlled using the
SparkFun board, with no additional steps/jumpers.

Page 494

An alternative is to use a 2 pin header with a shorting block (pictured below)

Real Time Clock Oscillator

The RTC oscillator of the LPC17xx parts is not currently reliable see their errata sheet . Until that has been
resolved, probably with a new revision of the chip, that feature is not available in either the SuperPRO or
PROplus.

A 32 KHz crystal and diode for battery backup with an optional ML2020 rechargeable Li battery.

A Panasonic ML2020H rechargeable battery may be added to keep the real time clock running when power is
removed. The battery is mounted on the back of the board as shown below. The VL2020/HFN will also work,
though it is more expensive and has less power.

Page 495

http://ics.nxp.com/support/documents/microcontrollers/pdf/errata.lpc1756.pdf
http://ics.nxp.com/support/documents/microcontrollers/pdf/errata.lpc1756.pdf

Page 496

Schematics

PDF copies of the schematics are copied into the Program Files/Coridium/Schematics directory when you
install either the BASIC or C tools.

Or you can follow these links to PDF schematics on the Coridium website.

 ARMmite schematic
 ARMmite rev 2 schematic

 ARMmite PRO schematic
 PROplus schematic
 Super PRO schematic

 USB dongle schematic
 ARMexpress LITE schematic
 ARMexpress schematic

 ARMexpress Eval PCB
 ARMweb schematic

 ARMweb rev 3 schematic
 DINkit schematic

 DINkit USB board
 DINkit Ethernet board

DXF files are mechanical drawings of the boards, they are also available from these links or in the
Schematics directory.

 ARMmite mechanical
 ARMmite PRO mechanical
 ARMweb mechanical
 SuperPRO PROplus mechanicals

Page 497

http://www.coridiumcorp.com/files/Schematics/ARMmiteSCH.pdf
http://www.coridiumcorp.com/files/Schematics/ARMmite2SCH.pdf
http://www.coridiumcorp.com/files/Schematics/ARMproSCH.pdf
http://www.coridiumcorp.com/files/Schematics/superSCH.pdf
http://www.coridiumcorp.com/files/Schematics/superSCH.pdf
http://www.coridiumcorp.com/files/Schematics/Dongle2.pdf
http://www.coridiumcorp.com/files/Schematics/ARMexpLITE.pdf
http://www.coridiumcorp.com/files/Schematics/ARMexp.pdf
http://www.coridiumcorp.com/files/ARMexpEVAL.pdf
http://www.coridiumcorp.com/files/Schematics/ARMweb.pdf
http://www.coridiumcorp.com/files/Schematics/ARMweb3.pdf
http://www.coridiumcorp.com/files/Schematics/DINbase.pdf
http://www.coridiumcorp.com/files/Schematics/DINusb.pdf
http://www.coridiumcorp.com/files/Schematics/DINeth.pdf
http://www.coridiumcorp.com/files/Schematics/ARMmite3.DXF
http://www.coridiumcorp.com/files/Schematics/ARMpro.DXF
http://www.coridiumcorp.com/files/Schematics/ARMweb4.DXF
http://www.coridiumcorp.com/files/Schematics/superpro5.DXF

Memory Maps

 ARMmite ARMexpress LITE, ARMmite PRO, PROplus

 ARMexpress

Page 498

 SuperPRO

Page 499

ARMweb and DINkit/Ethernet

Page 500

DINkit (USB) and Stand-alone compiler

User code starts loading at &H3000.

Strings and DATA statements are stored in the last Flash Block, which depends on the Memory Map of the
device (details in the NXP User Manuals). In the DINkit the last Flash block is from &H7C000 to &H7CFFF

LPC2103 products - ARMmite, ARMmite PRO and ARMexpress LITE

20.48K is available for code, DATA statements and string constants.

5.12K is available for data (1280 words)

LPC2106 ARMexpress

106.49K is available for code, DATA statements and string constants.

62.5K is available for data (15K words)

LPC2138 ARMweb, DINkit (Ethernet)

131K is available for code, DATA statements and string constants.

Page 501

5.12K is available for data (1280 words)

DATA Memory Allocation

Local variables for FUNCTIONs and SUBs are allocated from global memory. This allows for a smaller stack
size and faster calls to FUNCTIONs and SUBs. The ARMmite has only 8K total and has no stack overflow
checking.

Page 502

Power On Behavior

Initial Power on conditions

On power up all pins are tri-stated on the ARMexpress, ARMweb, PRO or ARMmite. On the SuperPRO and
PROplus, pins are also tri-stated, but all have a weak pullup resistor.

Following reset, the board waits 0.5 seconds for an ESC character, which if received stops the user program
from running. If no ESC is received the user program starts.

Restarting the program

If the user has entered a BASIC program into the ARMexpress/ ARMmite, that program will be started when
the power is applied, or restarted when RESET is asserted either with the pushbutton, or from the
BASICtools program via asserting the DTR line (low on ARMmite, high on ARMexpress).

If the user program ends by getting to the last statement of the program or executing an END instruction, the
ARMexpress/ARMmite will await either input on the debug serial port, or a RESET.

Reset and Boot for PRO boards

For the PRO, PROplus and SuperPRO boards when connecting a PC to a board that is running, the reset
and boot control signals will be toggled by the PC. This is a function of Windows and the Drivers. This will
reset the board or possibly put it into a load program state. To avoid this you can disconnect the Reset or
Boot signals from the USB dongle, either by cutting pins or making an adapter using a 6 pin female header
with long pins(available from SparkFun).

The above shows both RESET and BOOT signals disconnected.

Break operation or STOP

If the user code is running, it can be stopped by a RESET condition. This will normally restart the user code,
but there is a short window (500 msec) where the ARMexpress/ARMmite will wait to see if there is input on
the serial debug port. If the character received on the serial port is ESCAPE (27) or CTL-C (3) then the user
program is prevented from running and the ARMexpress/ARMmite is ready to be reprogrammed.

BASIC Boot Loader serial commands

When the user program is not running or not at a STOP, the BASIC bootloader is functioning.

There are 2 versions of this bootloader, the one on the ARMweb, and then all the others. The ARMweb has a
full compiler ready to compile BASIC programs line by line. This can be used with the TclTerm terminal
emulator or the web interface of the ARMweb. when running BASICtools programs are compiled on the PC
and downloaded to the ARMmite, ARMexpress or ARMweb. The ARMweb also supports the commands
used by all the others, and these are used to load and control BASIC programs-

Page 503

http://www.sparkfun.com/commerce/product_info.php?products_id=9280

 :20.... Coridium hex format line, copy this data into the code buffer
 :00000001FF write the code buffer into the appropriate Flash space
 ARM responds by sending XOFF, writing the Flash, then sends XON followed by +
 ? get vectors for ARMbasic compiler running on the PC
 ^ launch any user program contained in the Flash space
 @HHHH dump memory starting at HHHH which is a hex value without a preceding $
 @ dump memory starting from last address + 32
 "message echo message back
 ! reserved
 ctl-C or ESC on reset run the BASIC bootloader rather than the User program

At a STOP the ARMexpress/mite will respond to ^ run or @ dump-memory commands which are used in the
BASICtools variables page.

Page 504

CPU details

 These are links to detailed documentation for the CPUs used in the ARMexpress and ARMmite products.
These files are at the NXP website. The links may move so if they are broken here, search their site
www.nxp.com

LPC2103 used in the ARMmite, ARMexpress LITE and ARMmite PRO

 LPC2103 data sheet

 LPC2103 User manual

LPC2106 used in the ARMexpress

 LPC2106 data sheet

 LPC2106 User manual

LPC2138 used in the ARMweb

 LPC2138 data sheet

 LPC2138 user manual

LPC1756 used in the Super PRO and LPC1751 used in the PROplus

 LPC1756 data sheet

 LPC1756 user manual

Page 505

http://www.nxp.com/acrobat/datasheets/LPC2101_02_03_3.pdf
http://www.nxp.com/acrobat/usermanuals/UM10161_3.pdf
http://www.nxp.com/acrobat/datasheets/LPC2104_2105_2106_7.pdf
http://www.nxp.com/acrobat/usermanuals/UM10275_1.pdf
http://www.nxp.com/acrobat_download/datasheets/LPC2131_32_34_36_38_4.pdf
http://www.nxp.com/acrobat_download/usermanuals/UM10120_1.pdf
http://www.nxp.com/documents/data_sheet/LPC1759_58_56_54_52_51.pdf
http://www.nxp.com/documents/user_manual/UM10360.pdf

Serial Configuration

 Though we recommend using BASICtools to talk to the ARMexpress, here are settings for other terminal
programs.

Baudrate

 19.2 kbaud, 8 bit, No Parity, 1 stop bit

End of Line

 expects a LF (line feed),

 CR is currently ignored.

Voltage Levels

 /SOUT, /SIN and ATN (pins 1,2,3) will accept either TTL or RS-232 levels. ATN when high resets the
ARMexpress, and ATN should not be allowed to float. It should either be connected directly to DTR, or some
TTL signal that is LOW or Ground. The /SOUT driver relies on either /SIN or ATN being low to generate the
low going voltage. This allows for full-duplex serial operation.

Handshaking

 XON/XOFF (software handshaking) is used only during programming of the Flash. When downloading a
large program, a pause is required when the current amount of code in the buffer exceeds 8k (about 5-600
lines). That buffer will be written to Flash which takes between 0.5 and 1 second (2103 writes 4K blocks and
the 2106 writes 8K blocks).

 This XON/XOFF is still sent, but a + character is also sent back at the completion of the write Flash
Block. And BASICtools now pauses waiting for the +, before sending more data, not relying on the
XON/XOFF control in the lower level driver. It was found that especially on the 2106 when not using USB,
that the serial driver would drop characters and end up corrupting downloaded code. This is also why you
see ...*+*+ during the programming process. The ... indicates the start, the * when BASICtools determines
a Flash block will be written, and the + when the ARMexpress/mite responds with the block being completed.

Break operation or STOP

 If the user code is running, it can be stopped by a RESET condition. This will normally restart the user
code, but there is a short window (200 msec, 500 msec on Wireless) where the ARMexpress/mite will wait to
see if there is input on the serial debug port. If the character received on the serial port is ESCAPE (27) or
CTL-C (3) then the user program is prevented from running and the ARMexpress/mite is ready to be
reprogrammed. Or the user can restart the program by typing RUN or using the RUN button in BASICtools.

Program Running Signaling

 When the user code starts running, an SOH (\1) character is sent, and when the user code stops an EOTX
(\4) is sent. This was added for the ARMmite, as BASICtools needs to know when the user code is running.
ARMexpress versions starting with 6.11 also support this.

When BASICtools appears to be deaf

 There are cases where the USB driver and BASICtools get out of sync. This includes when the board is
disconnected from the USB port, and sometimes when the serial configuration is changed. In these cases it
may be necessary to exit BASICtools and then restart it, and in some cases reboot the system.

Configuration settings

 The configuration of BASICtools is saved in a file BASICtools.ini. It is written when either it does not exist
(when first installed) or when the configuration is changed by the user. This file is a Tcl source which may be

Page 506

edited by the user. If it becomes corrupt, delete the file and the default configuration will be restored.

 TclTerm.tcl when used as a stand-alone terminal emulator will also maintain its own initialization file
TclTerm.ini.

Page 507

USB use

 During programming BASICtools is used to load the users ARMbasic program. But once the user's
ARMbasic program is running the USB port may be used to communicate data back to the PC.

General Info

 The USB port is configured as a USB slave device and emulates a serial port for the PC. Drivers are also
available from FTDI for the Mac or Linux (FTDI 232RL running in serial emulation mode, normally VCP type
driver).

PC side programs

 Any program on the PC that can communicate with a serial port can send or receive data to the
ARMexpress eval PCB or the ARMmite. This would include MSCOMM and Visual BASIC. Also various C's
including GCC. Other options include Perl or Tcl scripts.

 However these programs must be able to control the DTR and RTS lines under user control. If they cannot
refer to the next section. Programs that cannot include Teraterm, Hyperterm and MatLab .

 The TclTerm.tcl is the source for a Tcl program that operates as a terminal emulator for the ARMexpress
family. You can use it if you have access to any of the GPL Tcl interpreters, or a compiled version is
available on the Coridium Support page. The sources are also at the ARMexpress Yahoo Groups Files
Section where you will also find a sample C program (writen for MinGW) that will also communicate with the
ARMexpress family.

Baudrate

 Baudrate will remain at 19.2Kb, unless changed by the user program which can be done with

#include <SERIAL.bas>
BAUD0 (newrate)

 Output of Data to PC

 The ARMbasic program can use PRINT, and for version 7 TXD0 or for version 6 SEROUT 16,... , or
TXD(16)=

Input of Data from PC

 An ARMbasic program should use RXD0. These routines will return -1 if no data is available. This allow
the users program to continue doing other tasks, or the user program can loop waiting for input on RXD0.

 DEBUGIN in a user program will wait for data, even if that is for ever. It is not a good practive to use this
function for sending data back to the PC. Its operation is recommended for user interaction with programs
during the development stage, while using BASICtools.

Page 508

USB use with Linux, Hyperterm, TeraTerm

General Info

 The ARMmite and ARMexpress use the DTR and RTS serial control lines to control programming and reset
for the device. The state chosen allows the ARMmite/express to run and be reset by the push button while
idle (ie. no serial program running).

PC side programs

 Programs on the PC such as Tcl, MSCOMM and GCC allow the control lines to be controlled by the user.
But some pre-compiled programs do not allow this control, such as HyperTerminal, TeraTerm, and some
Linux apps. This page describes the steps to allow these programs to operate.

Useful debugging tool

 Before starting its useful to load a program into the ARMmite/express that will pulse the LED and also
continuously send some data out the serial port. Here is one that works well...

Download the latest BASICtools and Tclterm

 In order to be able to communicate with the ARMmite/express after the control lines have been changed,
make sure you are running the latest TclTerm. Versions 1.6 and later have this support.

http://www.coridiumcorp.com/files/setupBASIC.exe

 Next, the driver must be changed for the USB serial device. The FTDI D2XX driver must be used. Download
it from the FTDI website.

http://www.ftdichip.com/Drivers/D2XX.htm

Choose the proper version for your operating system, and download and install the driver. The installation

Page 509

http://www.coridiumcorp.com/files/setupBASIC.exe
http://www.ftdichip.com/Drivers/D2XX.htm
http://www.coridiumcorp.com/files/setupBASIC.exe
http://www.ftdichip.com/Drivers/D2XX.htm

executable may be used, and there are instructions in the Installation Guides on that page.

Configuration Utility

 Next the settings of the serial control lines need to be changed, this requires the MProg utility from FTDI.
Download and install this program.

http://www.ftdichip.com/Resources/Utilities/MProg3.0_Setup.exe

Next download the data files for configuration of the ARMmite or ARMexpress eval PCBs. Unzip these files
and store in a convenient directory (such as C:/Program Files/MProg 3.0a/Templates)

http://www.coridiumcorp.com/files/USBconfig.zip

Setup ARMmite/ARMexpress for MatLab, HyperTerminal, or TeraTerm

 Run the MProg utility. Load the serial or legacy File version. And then reprogram the FTDI chip. ONLY
have 1 ARMmite or ARMexpress plugged in at time when you perform this operation.

Exit this program and close any serial programs such as BASICtools. For this change to take effect, the
ARMmite/express must be disconnected from the PC and reconnected.

Now the ARMmite/express will be idle until the serial port is open, when Hyperterminal, or TeraTerm is run.
Then after those programs are run, to start your BASIC or C program press the RESET pushbutton on the
ARMmite/express.

Page 510

http://www.ftdichip.com/Resources/Utilities/MProg3.0_Setup.exe
http://www.coridiumcorp.com/files/USBconfig.zip
http://www.ftdichip.com/Resources/Utilities/MProg3.0_Setup.exe
http://www.coridiumcorp.com/files/USBconfig.zip

Change the BASICtools settings for the reconfigured ARMmite/ARMexpress

 In order to be able to change the BASIC program, you will still need to use BASICtools, but it will have to
be configured to use the new control line configuration (DTR and RTS inverted).

Page 511

USB use with MatLab

General Info

 The ARMmite and ARMexpress use the DTR and RTS serial control lines to control programming and reset
for the device. The state chosen allows the ARMmite/express to run and be reset by the push button while
idle (ie. no serial program running).

 MatLab holds DTR high, but RTS low when it opens a serial port.

Useful debugging tool

 Before starting its useful to load a program into the ARMmite/express that will pulse the LED and also
continuously send some data out the serial port. Here is one that works well...

Download the latest BASICtools and Tclterm

 In order to be able to communicate with the ARMmite/express after the control lines have been changed,
make sure you are running the latest BASICtools. Versions 4.1 and later have support for MatLab.

http://www.coridiumcorp.com/files/setupBASIC.exe

 Next, the driver must be changed for the USB serial device. The FTDI D2XX driver must be used. Download
it from the FTDI website.

http://www.ftdichip.com/Drivers/D2XX.htm

Choose the proper version for your operating system, and download and install the driver. The installation
executable may be used, and there are instructions in the FTDI Installation Guides on that page.

Configuration Utility

Page 512

http://www.coridiumcorp.com/files/setupBASIC.exe
http://www.ftdichip.com/Drivers/D2XX.htm
http://www.coridiumcorp.com/files/setupBASIC.exe
http://www.ftdichip.com/Drivers/D2XX.htm

 Next the settings of the serial control lines need to be changed, this requires the MProg utility from FTDI.
Download and install this program.

http://www.ftdichip.com/Resources/Utilities/MProg3.0_Setup.exe

Next download the data files for configuration of the ARMmite or ARMexpress eval PCBs. Unzip these files
and store in a convenient directory (such as C:/Program Files/MProg 3.0a/Templates)

http://www.coridiumcorp.com/files/USBconfig.zip

Setup ARMmite/ARMexpress for MatLab

 Run the MProg utility. Load the matlab File version in. And then reprogram the FTDI chip. ONLY have 1
ARMmite or ARMexpress plugged in at time when you perform this operation.

Exit this program and close any serial programs such as BASICtools. For this change to take effect, the
ARMmite/express must be disconnected from the PC and reconnected.

Now the ARMmite/express will be idle until the MatLab serial port is open. Then after those programs are
run, to start your BASIC or C program press the RESET pushbutton on the ARMmite/express.

Change the BASICtools settings for the reconfigured ARMmite/ARMexpress

 In order to be able to change the BASIC program, you will still need to use BASICtools, but it will have to
be configured to use the new control line configuration (DTR and RTS inverted).

Page 513

http://www.ftdichip.com/Resources/Utilities/MProg3.0_Setup.exe
http://www.coridiumcorp.com/files/USBconfig.zip
http://www.ftdichip.com/Resources/Utilities/MProg3.0_Setup.exe
http://www.coridiumcorp.com/files/USBconfig.zip

 Check operation with MatLab

Page 514

ARMexpress Suggested RS232 / USB connection

 For a finer image see ARMexpRS.pdf in your install directory (C:\Program Files\Coridium\Schematics).

Pin 21

On most Parallax boards this line is connected to a regulated 5V supply.

Do not connect a power source greater than 5V directly to pin 21.

When not connected this pin is pulled up to 3.3V by RP1 on the module.

When using MakeItC, this line is pulled low to download a C program, which can be done automatically by
connecting to an NPN transistor with the RTS line on the serial port.

Pin 3

On later revision ARMexpress and ARMexpress LITE a 1K pulldown has been added on the module between
pins 3 and 4 (as pictured below. If your unit does not have this, then a 1K pulldown resistor is required, when
there is no signal on pin 3.

Page 515

USB connection

A serial connection can be made with a USB breakout board. The suggested wiring should be done as
follows. The inversion of RXD, TXD and DTR can be done by the FTDI chip using their MProg utility. Mprog
programs ALL FTDI parts connected to the PC, so make sure only the one you want to change is
connected. Also changes do not occur until the FTDI chip is powered up (so you must disconnect it and
reconnect it).

Page 516

http://www.ftdichip.com

Hints for debugging

Make sure you have both Power and GND connected.

When running BASICtools, the idle condition is

 PIN 1 low

 PIN 2 low

 PIN 3 low

 PIN 22 high

 PIN 21 high

When RESET, either by pulling 3 high or 22 low, there will be some activity on pin 1 as the ARMexpress
sends the Welcome message.

Reset and Boot for PRO boards

For the PRO, PROplus and SuperPRO boards when connecting a PC to a board that is running, the reset
and boot control signals will be toggled by the PC. This is a function of Windows and the Drivers. This will
reset the board or possibly put it into a load program state. To avoid this you can disconnect the Reset and
Boot signals from the USB dongle, either by cutting pins or making an adapter using a 6 pin female header
with long pins(available from SparkFun).

Page 517

http://www.sparkfun.com/commerce/product_info.php?products_id=9280

Page 518

General Interfacing

Both the ARMexpress and the ARMmite can be directly connected to 5V TTL devices. The output voltage
for these ARM devices ranges from 0.4V to 2.9V when driving upto 4mA of current. Most TTL devices will
recognize these as valid logic levels (normally defined to be 0.8 and 2.0V)

Inputs

The ARMexpress and ARMmite may also be directly connected to 5V TTL outputs. If they are TTL
compatable the voltage levels of the TTL output would normally be (0.4 and 3.4V), though they may go
higher. The inputs for these ARM devices are 5V compatable.

Tieing to Supply lines

The ARMexpress and ARMmite inputs may be connected directly to a GND pin, but if connecting to a fixed
voltage supply, then a 1K or greater resistor in series is recommended. This is the same recommendation for
any TTL compatable device. The reason being is that the 5V supply may exceed the 5V at times, or if that
voltage is available before the power supply to the CPU, large currents may flow through the protection diodes
in the CPU.

Interfacing to higher voltages

A resistor divider may be used to connect the ARMexpress and ARMmite to voltages that go higher than 5V.
The picture below shows a connection appropriate for a 24V signal. A 100K resistor is connected from the
input to IO(11) and then an 11K resistor connects IO(11) to GND. This will divide that 24V input to vary
between 0 and 2.4V.

This resistor divider divides the 24V by 10 and also limits the current if that 24V goes higher. The circuit
below shows schematically the connection that was made.

Page 519

The resistors can be varied to handle different voltages. If the voltage to be sensed is susceptible to large
spikes a 3V Zener diode can be connected in parallel with R2 to further protect the ARMmite IO.

Opto-Isolator

Another way to sense large voltages and to isolate the ARMmite from those voltages is to use an
opto-isolator. These devices consist of an LED and a photo-transistor in a single package. They can provide
isolation of 1000s of Volts. Below is a sample circuit. The D2 optional diode should be used if the isolated
voltage to be sensed is an AC voltage. The value of R1 should be chosen depending on the Opto-isolator
spec, with the current through the opto-isolator diode typically being 10 mA.

Driving Transistors

The ARMexpress outputs are rated for 4mA, when more is required a common 2N3904 transistor can be
used for 100-200 mA. The base of the transistor is driven from an IO with a series resistor. When the IO is
high the transistor is turned on.

Driving Relays

When higher currents or voltage are involved a relay can be used. For mechanical relays a driving transistor
with a catch diode are required. The circuit starts as the above transistor circuit, which when on can either
close or open the relay contacts. When it turns off, current continues to flow in the coil of the relay as the

Page 520

magnetic field collapses, this current needs to go somewhere, thats what the catch diode provides is a path
for that current to flow back into the supply of the relay.

Page 521

Power

Common to all boards

Initial Power on conditions
On power up all pins are tri-stated on the ARMexpress/ARMmite.

Restarting the program
If the user has programmed the ARMexpress/ARMmite, that program will be started when the power is
applied, or restarted when RESET is asserted either low on the open-collector pin 22, or positive true on the
ATN pin.

If the user program ends by getting to the last statement of the program or executing an END instruction, the
ARMexpress will power down and await either input on the debug serial port, or a RESET.

Break operation or STOP
If the user code is running, it can be stopped by a RESET condition. This will normally restart the user code,
but there is a short window (500 msec) where the ARMexpress will wait to see if there is input on the serial
debug port. If the character received on the serial port is ESCAPE (27) or CTL-C (3) then the user program
is prevented from running and the ARMexpress is ready to be reprogrammed. Or the user can restart the
program by typing RUN or using the RUN button in BASICtools.

USB Power
The USB specification allows for up to 500 mA at 5V to be supplied to external devices. In many cases this
is limited to 100 mA by the manufacturer of the PC or hub.

ARMexpress and its eval PCB uses approximately 50 mA when running and 10 mA when idle. So it can be
powered from the USB port for programming, without the need for the alternate power supply. The same is
true for the ARMmite.

Once the programming is completed, the ARMexpress may be run without a connection to a PC. In this
case an alternate power supply connection has been provided. This input goes to a regulator to supply 5V
which is connected to pin 24 on the ARMexpress. Onboard the ARMexpress this will be regulated to 3.3V
and 1.8V for use by the ARM CPU. The ARMmite takes this same unregulated input to generate either 5V or
3.3V on the rev2/rev3 versions respectively.

Smart Power

The USB evaluation board can be powered from either the USB, an external supply or BOTH. Power from the
USB is controlled such that it is turned on by the USB controller. Power to the ARMexpress can also come
from the external power supply and these are controlled to allow both USB and the power supply to be
connected to the device at the same time.

The power connector is a 2.1mm, which is compatable with the Cui PP-002B part.

Battery backup

The ARMmite has a provision for adding a battery to keep its real time clock alive when power is removed.
The circuit is designed to use a Panasonic ML2020 rechargeable Li battery.

Parallax STAMP compatability

The Parallax STAMP products operate from a 5V supply. This can come from an unregulated input on pin
24, or from a regulated 5V supply on pin 21. The ARMexpress is backward compatable with both these
connections, but for new designs it is recommended that power be supplied on pin 24. The voltage required
is 4.5V or greater on pin 24, or 5V on pin 21. Also for C programming, pin 21 should not be connected to
power. The maximum voltage that may be applied to either pin 24 is 16V, but this is not a recommended
continuous voltage, as it will cause extra heat to be generated by the ARMexpress onboard voltage
regulators. For this reason the recommended maximum is 9V. When using an unregulated supply not
supplied by Coridium, care should be excercised, as the current draw of the ARMexpress is low and the

Page 522

voltage will often be much higher than the rated voltage. The user should ensure that this voltage does not
exceed the limit of 16V.

Page 523

Timing

The oscillator
The ARMexpress uses a ceramic resonator for the timing element. It is accurate for 1%. It is used for timing
of operations of SERIN, SEROUT, OWIN, OWOUT, PULSEIN, PULSEOUT, and COUNT.

Other operations such as I2CIN, I2COUT, SPIIN, SPIOUT, SHIFTIN, SHIFTOUT, PWM and FREQOUT are
"bit-banged" loops that are calibrated to the speed of the CPU.

The real time clock
The ARMexpress, ARMexpress LITE, or ARMmite wireless use the CPU clock based on the ceramic
resonator for the timing element. It is accurate for 1%.

The ARMmite and ARMweb use a 32KHz crystal which is much more accurate for timing of SECONDS,
MINUTES, HOURS, DAYS, MONTH and YEAR. It is accurate to 100ppm. And on the ARMmite or
ARMweb it can be kept running with a battery.

Interrupts

The serial port connection through the USB uses interrupts for all products. The service routines for these
actions have been minimized so that the user program is only interupted for TBD microseconds. The
ARMconnect also uses a 10 msec timer interupt. With version 7.09 firmware and later interrupts on 2 pins or
timer are available to the user BASIC program.

Operations that require accurate timing will disable the interupts during that critical period. These operations
include OWIN, OWOUT, SERIN and SEROUT. Other operations that would be negatively impacted by an
interupt also disable the interup for a period of time. Those include PULSIN, PULSOUT, PWM, RCTIME and
FREQOUT.

Interupts and User code
When the ARMexpress receives serial input it will interrupt to copy data into its buffer. This will cause a
small delay in the users program. In most cases this is not noticedable, but may be where user is timing
with TIMER.

User code can cause the serial port to be deaf when running long operations such as FREQOUT or PWM. In
normal operation this should not be a problem.

AD timing (ARMmite, ARMmite Wireless, ARMexpress LITE, and ARMweb)

The analog inputs can do a conversion in 11 uSec.

Page 524

SPI,Microwire

The Serial Peripheral Interface Bus or SPI bus is a very loose standard for controlling almost any digital
electronics that accepts a clocked serial stream of bits. A nearly identical standard called "Microwire" is a
restricted subset of SPI.

SPI is cheap, in that it does not take up much space on an integrated circuit, and effectively multiplies the
pins, the expensive part of the IC. It can also be implemented in software with a few standard IO pins of a
microcontroller.

Many real digital systems have peripherals that need to exist, but need not be fast. The advantage of a serial
bus is that it minimizes the number of conductors, pins, and the size of the package of an integrated circuit.
This reduces the cost of making, assembling and testing the electronics.

A serial peripheral bus is the most flexible choice when many different types of serial peripherals must be
present, and there is a single controller. It operates in full duplex (sending and receiving at the same time),
making it an excellent choice for some data transmission systems.

In operation, there is a clock, a "data in", a "data out", and a "chip select" for each integrated circuit that is
to be controlled. Almost any serial digital device can be controlled with this combination of signals.

SPI signals are named as follows:

 SCLK - serial clock
 MISO - master input, slave output
 MOSI - master output, slave input
 CS - chip select (optional, usually inverted polarity)

Most often, data goes into an SPI peripheral when the clock goes low, and comes out when the clock goes
high. Usually, a peripheral is selected when chip select is low. Most devices have outputs that become high
impedance (switched-off) when the device is not selected. This arrangement permits several devices to talk
to a single input. Clock speeds range from several thousand clocks per second (usually for software-based
implementations), to several million per second.

Most SPI implementations clock data out of the device as data is clocked in. Some devices use that trait to
implement an efficient, high-speed full-duplex data stream for applications such as digital audio, digital signal
processing, or full-duplex telecommunications channels.

On many devices, the "clocked-out" data is the data last used to program the device. Read-back is a helpful
built-in-self-test, often used for high-reliability systems such as avionics or medical systems.

In practice, many devices have exceptions. Some read data as the clock goes up (leading edge), others
read as it goes down (falling edge). Writing is almost always on clock movement that goes the opposite
direction of reading. Some devices have two clocks, one to "capture" or "display" data, and another to clock it
into the device. In practice, many of these "capture clocks" can be run from the chip select. Chip selects can
be either selected high, or selected low. Many devices are designed to be daisy-chained into long chains of
identical devices.

SPI looks at first like a non-standard. However, many programmers that develop embedded systems have a
software module somewhere in their past that drives such a bus from a few general-purpose I/O pins, often
with the ability to run different clock polarities, select polarities and clock edges for different devices.

The interface is also easy to implement for bench test equipment. For example, the classic way to implement
an SPI interface from a personal computer to custom electronics is via a custom cable to the PC's parallel
printer port. The parallel port generates and reads standard TTL logic voltages; +5V is high, ground is low. A
number of helpful people have developed drivers to give access to this port in the most restrictive operating
systems, such as Windows NT (see below), from the least likely environments, such as Visual Basic.

Page 525

http://en.wikipedia.org/wiki/Microwire
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Serial_bus
http://en.wikipedia.org/wiki/Serial_bus
http://en.wikipedia.org/wiki/Clock_signal
http://en.wikipedia.org/wiki/Impedance
http://en.wikipedia.org/wiki/Rising_edge
http://en.wikipedia.org/w/index.php?title=Falling_edge&action=edit
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Transistor-transistor_logic

Using the I2C Bus

The physical I2C bus
This is just two wires, called SCL and SDA. SCL is the clock line. It is used to synchronize all data transfers
over the I2C bus. SDA is the data line. The SCL & SDA lines are connected to all devices on the I2C bus.
There needs to be a third wire which is just the ground or 0 volts. There may also be a 5volt wire is power is
being distributed to the devices. Both SCL and SDA lines are "open drain" drivers. What this means is that
the chip can drive its output low, but it cannot drive it high. For the line to be able to go high you must provide
pull-up resistors to the 5v supply. There should be a resistor from the SCL line to the 5v line and another from
the SDA line to the 5v line. You only need one set of pull-up resistors for the whole I2C bus, not for each
device, as illustrated below:

The value of the resistors should be from 1.8K (1800 ohms) to 4.7k (4700 ohms). It depends on the length of
the I2C bus, the longer the bus, the smaller value should be used. If the value is too large, the rise time of the
signals will be too slow and the bus may not work properly. If the resistors are missing, the SCL and SDA
lines will always be low - nearly 0 volts - and the I2C bus will not work.

Masters and Slaves
The devices on the I2C bus are either masters or slaves. The ARMexpress as a master is always the device
that drives the SCL clock line. The slaves are the devices that respond to the master. A slave cannot initiate
a transfer over the I2C bus, only a master can do that. There can be, and usually are, multiple slaves on the
I2C bus, however there is normally only one master. ARMexpress does not support multiple masters. Slaves
will never initiate a transfer. Both master and slave can transfer data over the I2C bus, but that transfer is
always controlled by the master.

The I2C Physical Protocol
When the ARMexpress wishes to talk to a slave it begins by issuing a start sequence on the I2C bus. A start
sequence is one of two special sequences defined for the I2C bus, the other being the stop sequence. The
start sequence and stop sequence are special in that these are the only places where the SDA (data line) is
allowed to change while the SCL (clock line) is high. When data is being transferred, SDA must remain
stable and not change whilst SCL is high. The start and stop sequences mark the beginning and end of a
transaction with the slave device.

Data is transferred in sequences of 8 bits. The bits are placed on the SDA line starting with the MSB (Most
Significant Bit). The SCL line is then pulsed high, then low. Remember that the chip cannot really drive the
line high, it simply "lets go" of it and the resistor actually pulls it high. For every 8 bits transferred, the device
receiving the data sends back an acknowledge bit, so there are actually 9 SCL clock pulses to transfer each
8 bit byte of data. If the receiving device sends back a low ACK bit, then it has received the data and is ready
to accept another byte. If it sends back a high then it is indicating it cannot accept any further data and the

Page 526

master should terminate the transfer by sending a stop sequence.

How fast?
ARMexpress runs in Fast mode at approximately 380 KHz.

I2C Device Addressing
All I2C addresses are either 7 bits or 10 bits. The use of 10 bit addresses is rare and is not covered here. All
of our modules and the common chips you will use will have 7 bit addresses. This means that you can have
up to 128 devices on the I2C bus, since a 7bit number can be from 0 to 127. When sending out the 7 bit
address, we still always send 8 bits. The extra bit is used to inform the slave if the master is writing to it or
reading from it. If the bit is zero are master is writing to the slave. If the bit is 1 the master is reading from the
slave. The 7 bit address is placed in the upper 7 bits of the byte and the Read/Write (R/W) bit is in the LSB
(Least Significant Bit).

The placement of the 7 bit address in the upper 7 bits of the byte is a source of confusion for the newcomer.
It means that to write to address 21, you must actually send out 42 which is 21 moved over by 1 bit. It is
probably easier to think of the I2C bus addresses as 8 bit addresses, with even addresses as write only, and
the odd addresses as the read address for the same device.

The I2C Software Protocol
The first thing that will happen is that the master will send out a start sequence. This will alert all the slave
devices on the bus that a transaction is starting and they should listen in incase it is for them. Next the
master will send out the device address. The slave that matches this address will continue with the
transaction, any others will ignore the rest of this transaction and wait for the next. Having addressed the
slave device the master must now send out the internal location or register number inside the slave that it
wishes to write to or read from. This number is obviously dependant on what the slave actually is and how
many internal registers it has. Some very simple devices do not have any, but most do. Having sent the I2C
address and the internal register address the master can now send the data byte (or bytes, it doesn't have to
be just one). The master can continue to send data bytes to the slave and these will normally be placed in
the following registers because the slave will automatically increment the internal register address after each
byte. When the master has finished writing all data to the slave, it sends a stop sequence which completes
the transaction. So to write to a slave device:
1. Send a start sequence
2. Send the I2C address of the slave with the R/W bit low (even address)
3. Send the internal register number you want to write to
4. Send the data byte
5. [Optionally, send any further data bytes]
6. Send the stop sequence.

Reading from the Slave
This is a little more complicated - but not too much more. Before reading data from the slave device, you
must tell it which of its internal addresses you want to read. So a read of the slave actually starts off by
writing to it. This is the same as when you want to write to it: You send the start sequence, the I2C address
of the slave with the R/W bit low (even address) and the internal register number you want to write to. Now
you send another start sequence (sometimes called a restart) and the I2C address again - this time with the
read bit set. You then read as many data bytes as you wish and terminate the transaction with a stop
sequence. So to read the compass bearing as a byte from the CMPS03 module:
1. Send a start sequence
2. Send the I2C address of the slave with the R/W bit low (even address)
3. Send the internal register number you want to read from.
4. Send a start sequence again (repeated start)

Page 527

2. Send the I2C address of the slave with the R/W bit high (odd address)
6. Read data byte from the slave device. (may be repeated depending on the slave capabilities)
7. Send the stop sequence.

The bit sequence will look like this:

Wait a moment
The ARMexpress does not support slaves that use clock stretching. The result is that erroneous data is read
from the slave. Beware! Luckily this function is relatively rare these days.

Example Master Code

#include <I2C.bas>
...

' test the EEPROM 24LC02 on pins 0 == SDA and 1 == SCL
shortMessage(0)= 0 ' address into EEPROM

present = I2COUT (0, 1, 0xA0, 8, shortMessage)
if present = 0 then print "NO i2c device ***"

WAIT(10) ' allow time for data to be written
I2CIN(0, 1, 0xA0, 1,shortMessage, 7, shortResponse)

' now do I2CIN as seperate operations

I2COUT (0, 1, 0xA0, 1, shortMessage) ' send just the address and offset
I2CIN(0, 1, 0xA0, -1,"", 7, shortResponse)

Easy isn't it?

The definitive specs on the I2C bus can be found on the Philips website. Its currently here but if its moved
you'll find it easily be googleing on "i2c bus specification".

Page 528

http://www.semiconductors.philips.com/acrobat/literature/9398/39340011.pdf

ARM Peripheral Use

The ARM peripheral bus

Timer0 free running micro-second counter (TIMER command)
Timer1 used on ARMweb or with ON TIMER
Timer1 setup as 1msec timer, may be reprogrammed
Timer1 , Timer2 and Timer3 used for HWPWM on ARMmite or ARMexpress LITE
Uart0 UART for debug/download
Uart1 Not Used unless requested by user with BAUD1
PWM used when HWPWM is engaged on PROplus, SuperPRO
I2C Not Used
SPI reserved
RTC used for time-keeping

Interrupt use -- 21xx

FIQ not used

ISR0 UART0

ISR2 PWM -- only used by ARMweb

ISR3 UART1 if RXD1, TXD1 used

ISR4 EINT0 if ON EINT0 used

ISR5 EINT1 if

ON EINT1

used ISR6 EINT2 if ON EINT2 used

ISR7 TIMER1 if ON TIMER used

ARMweb has EINT0 connected to ENC28J60,

but it is not used and

available to the user. ARMweb firmware

also uses EINT2 for remote debugging.

Interrupt use -- 175x

ISR21 UART0

ISR22 UART1

If a function is not included in the BASIC code the interrupt is available,

for instance ON TIMER uses TIMER0 interrupt and RXD1 uses the UART1 interrupt.

In Idle just the CPU clock stops and any interrupt will wake it.

Background Tasks

Except for the ARMweb, the only background tasks are interrupt handlers for UART0 and UART1. UART1 is
not active until the BAUD1 function is called.

Page 529

ARMweb Ethernet Services

ARMweb Ethernet Services
 armweb.htm PAGE
 Controls Page
 CGI Services
 CGI Example
 FTP Services
 Mail Service
 Web Services
 Web BASIC
 UDP Services
 Reset Behavior
 Firmware Update

ARMweb C support

Page 530

http://www.coridiumcorp.com
http://www.freertos.org/index.html?http://interactive.freertos.org/entries/243907-lpc2138-enc28j60-port/edit

ARMweb Getting Started

Getting Started
 Install Software
 Connect Ethernet
 USB connection for ARMweb
 Writing simple programs via the web
 Writing programs with BASICtools

Page 531

http://www.coridiumcorp.com

Optional: USB connection for BASICtools
While the ARMweb can be programmed through the webpage, during the development cycle BASICtools can
be used via a USB connection. BASICtools has a much faster response than a browser.

The attachment of the USB and power supply is shown below. While an Ethernet connection is not required,
if it exists and there is a DHCP server, the ARMweb will boot faster (otherwise each reset the 10 second
timeout waiting for DHCP service will occur).

 ARMweb

 DINkit (ethernet)

Why use BASICtools?

Browsers are very slow when refreshing a webpage, so the interaction with the programmer is better with
BASICtools.

#include can not be used from a webpage, as the ARMweb does not have direct access to the #include'd file

Page 532

The BASIC compiler on the PC has more memory for the symbol table and can handle larger programs than
when compiling on the builtin ARMweb compiler.

The variable dump tool is available in BASICtools. Debug messages are sent to the USB port, as well as
<?BASIC ... ?> source and output when processing web requests. When your program is debugged and
AutoRun is turned on the USB port is turned off. You can improve the performance of the web server BASIC
compiler by increasing the speed of UART0, by changing baud settings in BASICtools and executing
BAUD0(937500) in your main program.

For an introduction to BASICtools refer to the ARMmite sections .

BASIC and Webpage interaction

BASIC can be embedded in the webpage served by the ARMweb. That BASIC code can access global
variables of the user program running on the ARMweb. At present, BASIC embedded in the webpage can not
call a FUNCTION or SUB (this will be a future enhancement).

The user (client) can also interact with an ARMweb BASIC program via the CGI mechanism.

USB drivers

Most PC's will sound a tone that indicates a new USB device has been connected. Most Windows Vista
and 7 systems will either include the FTDI device driver or are able to download it automatically from the
network.

If your system is unable to do that. Run the FTDI driver installation setup in the \Program
Files\Coridium\Windows_drivers directory. This will install the proper drivers for the FTDI chips we use for
interfacing to the USB.

Up to date details are at the www.ftdichip.com VCP drivers page.

Continue with the some programming examples.

or

More details on ARMweb and BASIC...

Page 533

http://www.ftdichip.com

armweb.htm PAGE

Description

This page is the main control page for the ARMweb. It is always available even if the main page served is a
user generated page. It can be accessed at the armweb.htm page.

Code :
The default is to come to this page. A user BASIC program can be typed in line by line, or downloaded using
the OPEN button.

Values: (potentially obsolete)
Variables in the user BASIC program can be accessed from this page. Those variables have to be declared
as either WEB or WEB READONLY.

With the new user webpage features, this function may go away in a future release.

Run/Stop :
This button will either run or stop the previously loaded user BASIC program. This function is disabled when
when security is set on the Controls Page .

Clear :

Page 534

This will erase any user program. This function is disabled when when security is set on the Controls Page
.

Controls :
This accesses the Controls Page. It will be disabled when security is set.

Help:
Currently has no function, and may be eliminated in a future release, or linked to the Coridium Web Site help
files.

See also

 UDP Services
 FTP Services

Page 535

Controls PAGE

Description

This page controls the ARMweb. It is always available even if the main page served is a user page. It can be
accessed at the armweb.htm page.

Main Page :
The default is to come to this page. When the user loads their own pages via ftp, then this can be changed to
make the main page the user generated page

The ARMweb's default node name is armweb, when you change this main page, the ARMweb will adopt that

Page 536

entry as its node name. The node name will be seen by DHCP servers, as well as the response to node
ping .

Set Date:
If your browser supports the JavaScript system-time functions this button will access the systems date and
time and update the ARMweb registers.

DHCP :
The ARMweb node can either use a DHCP to obtain its IP address, or you can set it to a fixed IP address.
The default is to accept a DHCP generated IP address.

We routinely allow the DHCP server to assign an initial address, but will use a fixed IP address in the final
setup. One reason to assign a fixed IP, is to make sure that the IP address assigned never changes, for
instance following a power outage.

Security is OFF :
When Security is OFF the user's BASIC program will not start on reset. Also you have access to the
Controls Page, ftp server and run/stop clear buttons.

When Security is ON, the users BASIC program is run on reset. This will also lock out ftp, control, stop,
clear and code page access when the user program is running. When enabled updates can not be made
from the web as long as the user BASIC program is running. When enabled and the user program is running,
the only way to make changes is to physically hold the push-button on the ARMweb during power up, which
returns to the factory defaults (including erasing the program and any files in the ftp space). You must also
change the default passwords for this to work.

When Security is ON, debug messages to UART0 (and via USB dongle to BASICtools) are disabled. This
improves the performance of web server.

Standalone/Networked Mode :
This is part of the initial configuration. The default is Standalone mode, but it will switch to Network mode if
the ARMweb ever gets a response from a DHCP server. While in Standalone mode, the IP address will be
normally 192.168.0.50, and the ARMweb will act as a mini-DHCP server for a PC connected directly to it.
This allows a very minimal system to configure the ARMweb (see the Getting Started section)

Passwords:
The ftp service can use a password (the default is none or user/pass and password checking turned off). If
you do set a different username and password also click the Use Password button.

Email:
The MAIL statement can send an email to the address and server set by these fields. The SMTP server for
name@somewhere.com is normally smtp.somewhere.com .

Program Statistics :
The compiler keeps track of the amount of code and variable space that has been used, and is represented
by a percentage of the whole space (64KB code, and 4KB data).

Accepting Changes:
Any changes you make will not be permanent until the next power cycle (power off and on). If you do not
want to make changes there is an Undo All Changes button, that will revert to the last saved configuration.

See also

 UDP Services
 FTP Services

Page 537

mailto:name@somewhere.com

CGI Services

Syntax

FUNCTION CGIIN AS STRING

Description

CGIIN functions like a serial channel to the webpage. When someone accesses the webpage that creates a
CGI event (like a button push, or text entry) that data will be sent to a buffer that can be read from the BASIC
program.

If no GET request has been made the string returned will also be an empty string.

When the ARMweb is accessed from a webpage, if the webpage contains a ? in the address, data following
the ? is passed to the CGIIN routine. There is only one 256 byte buffer available, and that buffer will be
available for TBD seconds or unitl it is read by a CGIIN.

This function requires version 7.36 of the firmware.

Example

dim CGIinput(255) as string
...

while 1
 CGIinput = CGIIN ' assumes the form is http : // ... /Input?=# per the example in CGI example

 if CGIinput(0) then print CGIinput ' display on the terminal window -- for debugging

 select CGIinput(6)
 case "0"
 ' do nothing
 case "1"
 io(16) = 1
 case "2"
 io(16) = 0

 ...

 CGIinput = "" ' erase the input line
loop

See also

 CGI example
 Web Basic
 FTP Services

Page 538

Webpage Programming

Building a webpage on the ARMweb is much like any other web server. An HTML webpage is ftp'ed to the
ARMweb, and it can communicate to a BASIC program running on the ARMweb. The BASIC program can be
controlling attached devices. Control or data can be fed back through the webpage interface. All sources for
this example are at www.coridiumcorp.com/files/WebBASIC.zip

Use standard HTML and JavaScript

Build your web page in standard HTML and JavaScript. Include text and graphics in the webpage, here the
webpage includes an image of a logo. In this example user actions on the webpage are fed back with a CGI
script using JavaScript button action. It also can display a state of the ARMweb, here an LED by running a
small BASIC program (included into the HTML).

Upload to ARMweb using FTP

No special tools to compile your page, just upload it to the ARMweb. Here the 2 files used for the webpage,
the main HTML and the banner image.

Page 539

http://www.coridiumcorp.com/files/WebBASIC.zip

Interact with a BASIC program running on the ARMweb

The webpage can send data to the ARMweb using CGI that can be read in your BASIC program. It can parse
these requests and perform various actions. This allows you to control an ARMweb across the room or
anywhere on the internet.

Your Web application running on an ARMweb

This is what will appear on the web, served by the ARMweb.

Page 540

See also

 CGI services
 Web Basic
 FTP Services

Page 541

http://www.coridiumcorp.com/ARMhelp/scr/WebBasic.html
http://www.coridiumcorp.com/ARMhelp/scr/FTPservices.html

FTP Services

ARMweb contains a small File System to store additional web pages.

 maximum size of all files combined must be less than 224KB
 there must be less than 76 files
 File names must be 23 characters or less
 File names are case sensitive
 there is only 1 directory and sub-directories are not supported
 the main HTML file must be of the form filename.htm
 ftp put, delete are slow due to the Flash writes, which can take 20 seconds or more
 any BASIC program must be stopped, otherwise ftp will not log you in, or will ignore any requests

By default password protection is not used for FTP.
If logging in from a command prompt simply press enter when asked for Username and Password.
If password protection is desired go to the Controls page of ARMweb and select Use Password.
NOTE : The default user name is "user" and password "pass".

Change these as desired and reset the node to apply changes.
Also on the Controls page, a file from the system may be chosen as the Main Page.
This then becomes the default page when browsing to http://ARMweb or to http://Nodes-IP-address .

The current implementation is aimed at using the simplest ftp interface, and it may not work with more
complex ftp programs or browsers doing ftp. We recommend using the Windows ftp from the DOS command
prompt. Here is a sample session used to copy the files for a webpage to the ARMweb (192.168.0.6 was
assigned by the DHCP, and the default username/pass were used (either enter user and pass, or just hit
enter both times).

After the above ftp session a webpage has been setup on the ARMweb. It can be viewed at
http://192.168.0.6/simple.htm.

To make that the main page served by the ARMweb go to the controls page.

Page 542

http://ARMweb
http://Nodes-IP-address
http://192.168.0.6/simple.html
http://ARMweb
http://Nodes-IP-address
http://192.168.0.6/simple.htm

At this point the change will not take affect until the ARMweb is reset, the easiest way is to cycle power on
and off.

From then on, when you navigate to http://192.168.0.6 the simple.html page will be displayed. If you want to
go to the ARMweb BASIC, Controls or Values page, go to http://192.168.0.6/armweb.htm.

See also

 Web Basic
 Web Services

Page 543

http://192.168.0.6
http://192.168.0.6/armweb.htm
http://192.168.0.6
http://192.168.0.6/armweb.htm

MAIL

Syntax

MAIL (string) ' does not use authenication,

MAIL (message, recipient, user_name, pass_word) ' takes 4 strings and uses authorization

Description

In the first form MAIL will send an email to the address specified in the Controls page. This email is limited to
an address on your mail server/ISP, as it is piggybacking on the authentication of your internet connection.

So you can send an email to yourself.

To use email authentication use the second form, in this case it uses the SMTP address of the controls
page, and logs in using the user_name and pass_word. The email message will be sent to recipient .
recipient requires the full address like somebody@somewhere.com. user_name should NOT include
domain.com as that is set in the Controls page smtp server.

In all cases email is limited to 1 email sent every 10 seconds.

Setup

Go to the Controls web page of the ARMweb.
Enter your email address in the Email input box and press enter.
Enter your SMTP server's address in the SMTP input box and press enter.
Example:
jdoe@coridiumcorp.com
smtp.coridiumcorp.com

Page 544

Reset the node to apply the changes.

The smtp server used must service the email address chosen.

The maximum size of the MessageList which will be contained in the email Body is 255 bytes.

Example

DIM A$(10)
A$= "the current temperature is "+STR(temperature)
MAIL (A$)
...

MAIL ("operator intervention needed") ' send a short email to yourself
MAIL("wake up out there","someone@somewhere.com","my_user_name","my_password")

Page 545

See also

 UDP Services
 FTP Services

Page 546

Web Services

ARMweb may be accessed from any web browser by going to http://ARMweb or if the node's IP is known
http://192.168.xx.yy.
From here users may enter code a line at a time, download basic files or access all features of ARMweb.

Building a web page

This is not the venue to teach webpage design, but a simple example will be presented here. Various ways
can be used to build a webpage from FrontPage, DreamWeaver, Mozilla-Composer, to your favorite text
editor. This page is built with 2 files, the main page and an image file (banner1.gif). This is the sample
source built as displayed in Mozilla Composer.

Once you've built a page, use the FTP Services to upload it. Then you will be able to view the page as the
main page for the ARMweb-

See also

Page 547

http://ARMweb
http://192.168.xx.yy.

 Web Basic
 FTP Services

Page 548

Web BASIC

ARMweb allows for basic code to be embedded in the web pages much like PHP or JavaScript
Variables may be accessed from the User program. The intention is not to place your BASIC code in this
program, but to interact with your program from a webpage. For example if you put an endless loop in the
BASIC embedded in the webpage, the webpage will hang.

Example: Add reading a User variable through the webpage.

Here is a modified version of the webpage loaded from Web Services .
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

 <meta content="text/html; charset=ISO-8859-1" http-equiv="content-type">

 <title>simple page</title>

</head>

<body>

<?BASIC

 print "the VALUE of y is ";y

?>

</body>

</html>

Now from Code page of ARMweb enter the following program (its can be accessed at armweb.htm)

Page 549

WHILE 1
 IO(15) = Y AND 1 ' Flash the LED
 Y = Y + 1
 WAIT 1000
LOOP
RUN

The program is running and the value of Y is incremented every half second.
Browse to http://ARMweb/simple.htm

Refreshing the browser will show the updated values of Y.

Example: Executing a BASIC command from a webpage.

Page 550

http://ARMweb/simple.htm
http://ARMweb/simple.htm

To the above example we will add a method to set the variable y to 0, by accessing another webpage that
runs a BASIC program. This may also be accomplished with CGI, see the CGI examples .

First add an anchor to another webpage that will be served by the ARMweb

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
 <meta content="text/html; charset=ISO-8859-1" http-equiv="content-type">
 <title>simple page</title>
</head>
<body>
<?BASIC
 print "the VALUE of y is ";y
?>

Zero Y
</body>
</html>

Next create another page zero.htm that executes a very short BASIC program to zero the variable y. This
page also returns to the original page.

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
 <meta content="text/html; charset=ISO-8859-1" http-equiv="content-type">
 <META HTTP-EQUIV=Refresh CONTENT="1; URL=http://192.168.0.8">
 <title>simple page</title>
</head>
<body>
<?BASIC
 y=0
?>
Y is Zero
</body>
</html>

Page 551

Some notes, currently errors in the BASIC embedded in HTML are not flagged, so be careful, but they will be
visible to the console of BASICtools over the USB connection.

The meta tag highlighted will return you to the original page after 1 second, though not all browsers support
this.

For a CGI method to accomplish the same see the CGI examples .

WEB BASIC limits

The BASIC code between <?BASIC and ?> is limited to 1450 characters.

The output from a web BASIC program must not exceed 1460 characters.

If the web BASIC contains an infinite loop, the server will hang waiting for the loop to complete.

The Pre-processor is not available to WEB BASIC inside the HTML. That includes #include, #ifdef, #define...

The code between <?BASIC ... ?> and the output is also sent to the UART0 (and via USB Dongle to
BASICtools). This slows down the web server, that can be improved by increasing the baud rate of UART0,
by executing BAUD0(937500) in your main program. And to continue to view those debug messages reset
the baud rate in BASICtools.

See also

 Web Services
 FTP Services

Page 552

UDP Services

Syntax

FUNCTION UDPIN (PORT) AS STRING
FUNCTION LASTIP

SUB UDPOUT (IP, PORT, String)

Description

UDPIN and UDPOUT read or write a packet of data on the network using UDP protocol.
The IP address which the data is sent to or received from is designated by IPa.IPb.IPc.IPd eg.
192.168.0.122, which is packed into a 32 bit word.
Broadcast addressing is not supported for UDPIN or UDPOUT.
The port is designated by PORT.

NODE PING - A special feature of ARMweb listens on port 49152 (0xC000) for any UDP broadcast.
The node will then reply with its Name and IP to identify it on the network.
According to iana.org, The Dynamic and/or Private Ports are those from 49152 through 65535.
User applications should use ports above 49152 to avoid other conflicts.

UDPOUT automatically sets the node to listen on the given port.
This allows any reponses to be buffered and subsequently read with UDPIN.
If an application wishes to just read UDPIN it is advised to call UDPIN once to clear any buffered data first.
Each call to UDPIN will wait up to one half second to receive data or return immediately upon receipt.
If no data was read the port is left open for reading, any incoming data will be buffered and available for
subsequent calls.
The maximum size of the returned by UDPIN is 255 bytes.

This function requires version 7.36 of the firmware

Example

'send a string to UDP port 50000 of 192.168.0.122
UDPOUT ((192<<24)+(168<<16)+(0<<8)+122, 50000, "9876543210")

DIM A$(100)

'sit and listen for any incoming UDP on port 50000

A$ = ""
WHILE A$(0) = 0
 A$ = UDPIN (50000)
 x = LASTIP
LOOP
PRINT A$; " from "; x>> 24; "."; x>>16 and 255; "."; x>>8 and 255; ".";x and 255

Executing...

ABCDEFGHIJ from 192.168.15.122

See also

 Web Basic
 FTP Services

Page 553

Power On Behavior

Initial Power on conditions

On power up all pins are tri-stated on the ARMweb.

If P0.14 is low during reset, the NXP ISP (in system programming) routine starts. This is how we load
firmware.

If P0.14 is high the Coridium firmware starts up. It looks for a cable plugged into the Phy. If there is none the
board will not start the user program, but drops into the BASIC firmware monitor.

If there is an ethernet cable connected, the ARMweb tries 5 times to get an IP address from a DHCP. There
is a pause of 5 seconds between each try.

If no DHCP responds, and the ARMweb has never seen a DHCP response it goes into a mini-DHCP server
mode. In this mode a PC with a cross-over cable may be directly connected to the ARMweb (or a hub and
standard cables). The ARMweb will act as DHCP server to the PC. This mode is for diagnostic purposes
and is NOT intended for normal use.

If the DHCP responds the ARMweb accepts the IP address and the boot process continues.

The ARMweb waits 0.5 seconds for an ESC character, which if received on UART0 stops the user program
from running. If no ESC is received the process continues.

If the ARMweb security setting on the controls page has been set, the user program will start. If it is not set
it will drop into the BASIC firmware monitor.

Restoring Factory Defaults

Press and hold the button on pin P0.7 during RESET (on J8.9 in DINkit). The firmware will erase all user
programs, settings and files in the ftp area.

Regaining control with BASICtools

Hit the STOP, which disables web access and enters the monitor. Type in a small program that terminates,
which will erase the looping program. Hit RESET which will drop back into a non AUTORUN state.

BASIC Boot Loader serial commands

When the user program is not running or not at a STOP, the BASIC firmware monitor is functioning.

The ARMweb has a full compiler ready to compile BASIC programs line by line. This can be used with the
TclTerm terminal emulator or the web interface of the ARMweb. When running BASICtools programs are
compiled on the PC and downloaded to the ARMweb. The ARMweb also supports the commands used by
all the others, and these are used to load and control BASIC programs-

 :20.... Coridium hex format line, copy this data into the code buffer
 :00000001FF write the code buffer into the appropriate Flash space
 ARM responds by sending XOFF, writing the Flash, then sends XON followed by +
 ? get vectors for ARMbasic compiler running on the PC
 ^ launch any user program contained in the Flash space
 @HHHH dump memory starting at HHHH which is a hex value without a preceding $
 @ dump memory starting from last address + 32
 "message echo message back
 ! reserved
 ctl-C or ESC on reset run the BASIC bootloader rather than the User program

Page 554

Firmware Update

ARMweb allows for firmware updates in the field. The following steps should be used.

After version 7.36, firmware versions will require update via USB. Note what com port the USB is configuered
as, you will need that information below.

Download load21xx.exe from the Yahoo ARMexpress Forum Files section.

Also download the latest ARMweb firmware. The name will be of the form webXXXX.hex. As of March 2011,
web0746.hex is the latest release.

From a command line run load21xx.exe.

It will prompt you for the proper format of the command to update, the CPU is a 2138 -- see below for an
example session.

Restoring Factory Defaults

Press and hold the button on pin P0.7 during RESET (on J8.9 in DINkit). The firmware will erase all user
programs, settings and files in the ftp area.

firmware update session --

Page 555

http://tech.groups.yahoo.com/group/ARMexpress/files/

Page 556

Tables

Tables
 ASCII Character Codes
 Bitwise Operators
 Operator Precedence
 Variable Types

Page 557

http://www.coridiumcorp.com

ASCII Character Codes

ARMbasic uses the standard "ASCII extended" character set. The compiler uses the character set values
32 to 126 which corresponds to SPACE through TILDA.

Characters outside this range may have a special meaning and are interpreted by the terminal emulation
program that is controlling the ARMexpress. Those would include BACKSPACE, TAB, CR and LF. These
characters cause changes in the stream of characters going to or from the ARMexpress module. These
characters may be interpreted differently on a PC vs. a Mac.

Two codes XON and XOFF are used for flow control. When a large ARMbasic program file is sent to the
ARMexpress module, the module may require a delay when writing code into Flash memory. During these
writes of code to Flash, an XOFF character will be sent to the PC that indicates that the PC should pause
sending data. After the block is written (about 0.4 second) an XON will be sent to resume communication.

However when using SERIN or SEROUT, there is no special interpretation of characters, so all codes 0 to
255 may be sent without any change.

The ARMmite requires BASICtools to know whether the user ARMbasic code is running. So now when a
program starts a SOH (001) character is sent and when the program finishes an EOT (004) character is
sent. User code should avoid using these character codes if BASICtools is being used for communication
with the module or board.

 Dec Hex Meaning Dec Hex Meaning
 000 000 NUL (Null char.)
 001 001 SOH (Start of Header)
 002 002 STX (Start of Text)
 003 003 ETX (End of Text)
 004 004 EOT (End of Transmission)
 005 005 ENQ (Enquiry)
 006 006 ACK (Acknowledgment)
 007 007 BEL (Bell)
 008 008 BS (Backspace)
 009 009 HT (Horizontal Tab)
 010 00A LF (Line Feed)
 011 00B VT (Vertical Tab)
 012 00C FF (Form Feed)
 013 00D CR (Carriage Return)
 014 00E SO (Shift Out)
 015 00F SI (Shift In)
 016 010 DLE (Data Link Escape)
 017 011 DC1 (XON)
 018 012 DC2 (Device Control 2)
 019 013 DC3 (XOFF)
 020 014 DC4 (Device Control 4)
 021 015 NAK (Negative Ack)
 022 016 SYN (Synchronous Idle)
 023 017 ETB (End of Trans. Block)
 024 018 CAN (Cancel)
 025 019 EM (End of Medium)
 026 01A SUB (Substitute)
 027 01B ESC (Escape)
 028 01C FS (File Separator)
 029 01D GS (Group Separator)
 030 01E RS (Request to Send)
 031 01F US (Unit Separator)
 032 020 SP (Space)

 064 040 @ (AT symbol)
 065 041 A
 066 042 B
 067 043 C
 068 044 D
 069 045 E
 070 046 F
 071 047 G
 072 048 H
 073 049 I
 074 04A J
 075 04B K
 076 04C L
 077 04D M
 078 04E N
 079 04F O
 080 050 P
 081 051 Q
 082 052 R
 083 053 S
 084 054 T
 085 055 U
 086 056 V
 087 057 W
 088 058 X
 089 059 Y
 090 05A Z
 091 05B [(left bracket)
 092 05C \ (back slash)
 093 05D] (rightbracket)
 094 05E ^ (caret)
 095 05F _ (underscore)
 096 060 `

Page 558

 033 021 ! (exclamation mark)
 034 022 " (double quote)
 035 023 # (number sign)
 036 024 $ (dollar sign)
 037 025 % (percent)
 038 026 & (ampersand)
 039 027 ' (single quote)
 040 028 ((left parenthesis)
 041 029) (right parenthesis)
 042 02A * (asterisk)
 043 02B + (plus)
 044 02C , (comma)
 045 02D - (minus or dash)
 046 02E . (dot)
 047 02F / (forward slash)
 048 030 0
 049 031 1
 050 032 2
 051 033 3
 052 034 4
 053 035 5
 054 036 6
 055 037 7
 056 038 8
 057 039 9
 058 03A : (colon)
 059 03B ; (semi-colon)
 060 03C < (less than)
 061 03D = (equal sign)
 062 03E > (greater than)
 063 03F ? (question mark)

 097 061 a
 098 062 b
 099 063 c
 100 064 d
 101 065 e
 102 066 f
 103 067 g
 104 068 h
 105 069 i
 106 06A j
 107 06B k
 108 06C l
 109 06D m
 110 06E n
 111 06F o
 112 070 p
 113 071 q
 114 072 r
 115 073 s
 116 074 t
 117 075 u
 118 076 v
 119 077 w
 120 078 x
 121 079 y
 122 07A z
 123 07B { (left brace)
 124 07C | (vertical bar)
 125 07D } (right brace)
 126 07E ~ (tilde)
 127 07F DEL (delete)

Page 559

Bitwise Operators

Y = A AND B

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

Y= A OR B

A B Y

0 0 0

0 1 1

1 0 1

1 1 1

Y = A XOR B

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

Y = NOT A

A Y

0 1

1 0

Page 560

Operator Precedence

Description

 When several operations occur in a single expression, each operation is evaluated and resolved in a
predetermined order. This called the order of operation or operator precedence. There are three main
categories of operators; arithmetic, comparison, and logical. If an expression contains operators from more
than one category, arithmetic operators are evaluated first, comparison operators next, and finally logical
operators are evaluated last. If operators have equal precedence, they then are evaluated in the order in which
they appear in the expression from left to right. Comparison operators all have equal precedence.

 The following table gives the operator precedence for each operator in each category. Operators lower on
the list have a lower operator precedence. Operators on the right have lower precedence than ALL operators
in the column to the left. Arithmetic operators are evaluated before comparison operations, and logical
operators are last.

 Parentheses can be used to override operator precedence. Operations within parentheses are performed
before other operation. However, within the parentheses operator precedence is used.

Arithmetic Comparison Logical

- (Negation) = <> < > <= >= AND

*, / (Multiplication and division) OR

MOD (Modulus Operator) XOR

+, - (Addition and subtraction) NOT

<<, >> (Shift Bit Left and Shift Bit Right)

See also

 Operator List

Page 561

Variable Types

NAME BITS FORMAT MIN VAL MAX VAL

INTEGER 32 signed integer -2147483648 +2147483647

ARRAY fixed length signed integer -2147483648 +2147483647

STRING variable/max
length 256 bytes

zero terminated 0 +255

STRING used as byte array
no max length

 0 +255

Page 562

Support

Support
 How to contact the developers
 How to report a bug
 Contributors
 Notices

Page 563

http://www.coridiumcorp.com

Updating ARMbasic Firmware

The ARMbasic compiler can be freely downloaded. There is no

charge to run BASIC or C on Coridium Products.

We do offer for sale a BASIC firmware that can be installed on OTHER vendors hardware. There is a demo
version that allows you to try it before you buy it. That demo version limits the code and data space.

This utility is protected. You will need to obtain this program from Coridium which is part of the order
process. For now this will be emailed to you manually from Coridium, until this process is fully automated

Upgrading Firmware on Coridium boards
 Install Software

 Unlock Firmware installer

Installing Firmware on other vendors boards
 Install Software

 Install Demo Firmware
 Installing purchased full feature Firmware

Page 564

http://www.coridiumcorp.com

Step 1: Install Software
The ARMbasic compiler runs on the PC, in combination with a BASIC support library that is installed on the
ARM. This support library (firmware) will be updated from time to time to support new features. To upgrade
that firmware you will need to purchase the upgrade.

Purchase page from Coridium Web store

This installer is meant for 32 bit WIndows either NT, XP or XPx64 and Vista.

The software is downloaded from the web, and run as an installer SETUP program.

 Click Next to get started.

 Accept the defaults and Install. You may chose a different target directory.

Page 565

http://www.coridiumcorp.com/catalog/product_info.php?products_id=69

 The installation will now run, and when it finishes hit Close .

 And its as easy as that.

On to Step 2

Page 566

Step 2: Writing the Firmware.
The ARMbasic compiler is freely downloaded, but the utility to install BASIC support libraries is locked. To
unlock that you need to receive a special version of this program from Coridium after purchase. There is a
demo version available for the stand-alone ARMbasic compiler.

The software installed in the previous step would either be FirmUp for firmware upgrades, or NewFirm for the
standalone ARMbasic compiler.

To run FirmUp/NewFirm you must have network access, as information is downloaded from the Coridium
website.

Step 2: Establish communication
 Before you can run ARMbasic you must be able to communicate with the board that contains the NXP
LPCxxxx ARM, and then load ARMbasic firmware onto that board. These 2 steps are accomplished with the
NewFirm/FirmUp program. The installation of Step 1 has installed a Start Menu shortcut.

 FirmUp allows you to choose the serial port on the PC from a list of known ports. Ports in that list that are
capitalized were determined to be using FTDI USB serial devices. You must also set the control type, which
for most will be Normal mode. Legacy mode is for those users who have inverted the control signals, for
instance to run Hyperterm or Linux, details here . For wireless boards, Manual mode should be chosen.

LOAD DEMO code will erase any other programs on the board, do NOT do this unless you know the
BASIC firmware was already erased.

Page 567

 So select your comport and choose the control method. To test that push the soft button TEST on the
FirmUp program. It will prompt you for any action required (like pushing buttons on the target board), and
then test the communication with the PC. If this does not pass, then you cannot go on to the next step.

Loading this DEMO code will erase any other programs on the board, do NOT do this unless you
know the BASIC firmware was already erased.

Page 568

Step 3: Install Firmware on ARM
 This part of the install needs to be run once to place a base set of libraries on the ARM processor. This
firmware includes the initialization code, communication routines, and a set of subroutines called from the
user ARMbasic program.

Firmware has been succssfully loaded, you can open a terminal window here to verify that.

Page 569

Page 570

How to contact the developers

You should contact the ARMbasic developers through Coridium Corp.

 www.coridiumcorp.com

Tech Support monitors the following groups.

 groups.yahoo.com/group/ARMexpress
 groups.yahoo.com/group/gnuarm

Coridium has done custom ports of ARMbasic to other platforms.

 techsupport@coridiumcorp.com

See also

 Reporting a bug

Page 571

http://www.coridiumcorp.com
http://tech.groups.yahoo.com/group/ARMexpress/
http://sourceforge.net/forum/?group_id=122342
mailto:techsupport@coridiumcorp.com

How to report a bug

 Before reporting a bug, try to make sure it's a bug in ARMbasic and not a bug in your own code. Try to
write a small test that reproduces the problem you are encountering. Read any relevant documentation. If you
show people that you have tried to solve your own problem, rather than immediately running for help, you will
be more likely to find people willing to help you.

 Be as specific as you can - "The FREQOUT runtime library function fails when it is called with a value of
1234" is much better than "It crashes".

 The first place to go in the case you believe you've encountered a bug is
groups.yahoo.com/group/ARMexpress

 If you have isolated a compiler bug completely, and you have steps to reproduce it and a small piece of
sample code, you can also file a bug report with tech support at support @coridiumcorp.com.

 DO NOT file general "it doesn't work!" bug reports in the groups.yahoo.com/group/ARMexpress system.
Only isolated, reproducible bugs should be posted there.

Page 572

http://www.yahoo-groups.ARMexpress.com
http://sourceforge.net/tracker/?group_id=122342&atid=693196
http://www.yahoo-groups.ARMexpress.com

Contributors

The ARMbasic compiler itself is property of the Coridium Corp. and all rights are reserved.

Mike and Bruce began this project in 2003. The original target was a Cygnal 8051 using the Keil Compiler.
As part of the development, the BASIC was compiled on a PC in both Visual C and GCC. This allowed
quicker development of the language parser. Then a need arose for a hardware debugger on an ARM based
cell phone that used the CodeWarrior compiler. To check out hardware such as new displays and camera
subsystems a new approach was required. At the time it took 3-5 hours to make a change in the main
software on the platform. The BASIC made it possible to verify interfaces in minutes. Then Zilog introduced
the websurfer and the BASIC was ported to that platform with a web interface replacing the serial port. Later
it moved to the Rabbit 3100 modules and was productized on the 3710. This product is the BASIC-8. For
performance the interpreter was replaced with code compiler that performed a two pass compile-link step.
The speed of code increased by at least an order of magnitude. Now Coridium has moved this compiler back
to the ARM using GCC. This time it includes a single pass BASIC compiler that incrementally builds
programs in Flash. Code tables are maintained even after the program is "run" which allows the user the look
and feel of an interpreter. Its easy to check the value of variables when the program has stopped, or to even
change them. Also during this time the BASIC-8 product's web interface was translated to Japanese and is
available as the NAPI-BASIC server.

As you can see the compiler has been around the block, and now the world too. Its quite portable as having
lived on 6 different C-platforms. As it has been used extensively, its also quite stable. Coridium will continue
to add features as needed and offer customizations for OEM customers.

A number of utilities have been used to produce the ARMexpress system.

Freewrap is used to generate BASICtools from a Tcl/Tk script.

The MinGW cpp is used for pre-processing the BASIC.

The Tcl'ers Wiki Oscilloscope was the source for the basis of the LogicScope code.

ARMbasic was compiled with Winarm GCC.

The ARMbasic documentation has been based on the documents of the GPL WikiPedia and FreeBASIC
project. This document is also covered under the GFDL license.

A PBASIC translator (in development) will use GNU sed v3.02.80 and MinGW cpp.

Page 573

Notices

 NO WARRANTY

 1. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. CORIDIUM PROVIDES THE PROGRAM "AS IS" WITHOUT WARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM

IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF

ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 2. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL CORIDIUM BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,

INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO

USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE

OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR

OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The ARMbasic© compiler is distributed as part of hardware sold by Coridium Corp. such as the ARMexpress
module. All rights to the compiler are reserved under copyright to Coridium Corp. It may not be copied or
reverse engineered..

 Windows® is a registered trademark of Microsoft Corporation.
 VisualBASIC® is a registered trademark of Microsoft Corporation.
 BASIC Stamp® is a registered trademark of Parallax, Inc.
 PBASIC™ is a trademark of Parallax, Inc.
 I2C® is a registered trademark of Philips Corporation.
 1-Wire® is a registered trademark of Maxim/Dallas Semiconductor.
 SPI™ is a trademark of Motorola

 This documentation is released under the GFDL license.

Page 574

Index

A

 ABS

 AD

 ADDRESSOF

 AND

 ARM hardware access

 ARMweb Ethernet Services

 Arrays

 [ASC]

 ASCII table

 AS

B

 BAUD

 BAUD0

 BAUD1

 BYREF

 BYTEBUS

 BYVAL

C

 CALL

 CASE

 CHR

 CLEAR

 CONST

 Constants

 COS

 COUNT

 CPU details

D

 DATA

 Data Abort

 Data Types

 DAY

 DEBUGIN

 DIM

 DIR

 DO...LOOP

 DOWNTO

 DXF files

E

 ELSE

 ELSEIF

 END

 ENDFUNCTION

 ENDIF

 ENDSELECT

 ENDSUB

 Error Reporting

 EXIT

F

 FAQs

 Firmware Version 7

 FOR..NEXT

 FREAD

Page 575

F

 FREQOUT

 FUNCTION

G

 Getting Started

 GOSUB

 GOTO

H

 Hardware Access

 HEX

 HIGH

 HOUR

 HWPWM

 Hyperterm

I

 I2CIN

 I2COUT

 IF...THEN

 IN

 INPUT

 Installation

 INTEGER

 Interfacing with TTL

 INTERRUPT

 IO

L

 LEFT

 Legacy Serial Programs

 LEN

 LIST

 LOOP

 LOW

M

 MAIL

 MAIN

 Matlab

 Mechanical Drawings

 MIDSTR

 MINUTE

 Memory Map

 MOD

 MONTH

N

 NEXT

 NOT

O

 ON

 Operator List

 Operator Precedence

 OR

 OUT

 OUTPUT

 OWIN

 OWOUT

Page 576

P

 Pin diagram -- ARMexpress

 Pin diagram -- ARMexpressLITE

 Pin diagram -- ARMmite

 Pin diagram -- ARMmite wireless

 Pin diagram -- ARMweb

 Pointers

 Power

 Power On behavior

 Prefetch Abort

 Pre-Processor

 PRINT

 PULSIN

 PULSOUT

 PWM

 P0 P1 P2 P3 P4

R

 RCTIME

 READ

 Register Access

 RESTORE

 RETURN

 REV

 RIGHT

 RND

 RS232 Connections

 RUN

 Run Away Programs

S

 Schematics

 SECOND

 SELECT CASE

 SERIN

 SEROUT

 SHIFTIN

 SHIFTOUT

 SIN

 SLEEP

 Spec Sheets -- CPU

 SPIBI

 SPIIN

 SPIOUT

 STEP

 STOP

 STR

 STRCHR

 STRCOMP

 STRING

 Strings

 STRSTR

 SUB

Page 577

 RXD

 RXD0

 RXD1

T

 THEN

 Time Functions

 TIMER

 Timing

 TO

 TOLOWER

 TOUPPER

 Trouble Shooting

 TTL interface

 TXD

 TXD0

 TXD1

U

 UDPIN

 UDPOUT

 UNTIL

 USB Connections

V

 VAL

 Variables

W

 WAIT

 WEEKDAY

 WHILE

 WRITE

X

 XOR

Y

 YEAR

Misc

 &H $ constants

Page 578

	Table of Contents
	Getting Started
	ARMmite, PRO family, ARMexpress
	Install Software
	Connect USB
	Connect USB to ARMmite PRO
	Writing your first program
	Programming the IO
	More complex programs
	BASICtools Features
	Trouble Shooting

	ARMweb, DINkit(ethernet)
	Install Software
	Connect Ethernet
	USB connection for BASICtools
	Writing a simple Program via the web
	Writing a program with BASICtools
	ARMweb C support

	Wireless ARMmite
	Install Software
	Wire up USB
	Wire up Zigbee
	Wire up Bluetooth
	Wire up Bluetooth Module
	Custom Serial
	BASICtools Features
	Win98 Setup

	ARMbasic for non-Coridium Hardware
	Install Software
	Installiing Demo Firmware
	Writing your first program
	Programming the IO
	More complex programs
	BASICtools Features
	Writing firmware onto the board
	Trouble Shooting

	The Compiler
	About
	Main Features
	Requirements
	Installing
	Running
	ARMbasic and other BASICs
	Differences from PBASIC
	PreProcessor
	Frequently Asked Questions
	Revision History
	Notices

	The Language
	PreProcessor
	#define
	#else
	#ifdef
	#if
	#include
	#undef
	#warning

	Simple Statements
	Assignment
	CALL
	Comments
	END
	EXIT
	GOSUB
	GOTO
	DEBUGIN
	PRINT
	READ
	RETURN

	Compound Statements
	DO...LOOP
	FOR...NEXT
	IF...THEN
	SELECT CASE
	WHILE...LOOP

	Other Statements
	CONST
	DATA
	DIM
	label:
	MAIN
	ON
	RESTORE
	STOP

	Debugging
	@ (dump memory)
	! (set memory)
	CLEAR
	DEBUGIN
	LIST
	RUN

	Functions
	FUNCTION
	SUB
	ENDFUNCTION
	ENDSUB

	Operators List
	& (String concatenation)
	* (Multiplication)
	+ (Addition)
	+ (String concatenation)
	- (Negation)
	- (Subtraction)
	/ (Division)
	< (Less than)
	<= (Less than or equal)
	<> (Inequality)
	= (Equality)
	> (Greater than)
	>= (Greater than or equal)
	AND (Conjunction)
	NOT (Bit-wise complement)
	OR (Disjunction: Inclusive Or)
	<< (Shift-left)
	>> (Shift-right)
	REV
	XOR (Exclusive Or)

	Operator Precedence
	Data Types
	Constants
	Variables
	Arrays
	Strings
	ARM Hardware Access
	AddressOf operation
	Converting Data Types
	[ASC]
	CHR
	HEX
	STR
	VAL

	Alphabetical Keyword List
	* peripheral
	ABS
	AD
	ADDRESSOF
	AND
	AS
	[ASC]
	BYREF
	BYTEBUS
	BYVAL
	CALL
	CASE
	CHR
	CLEAR
	CONST
	DATA
	DEBUGIN
	DIM
	DIR
	DO...LOOP
	DOWNTO
	ELSE
	ELSEIF
	END
	ENDFUNCTION
	ENDIF
	ENDSELECT
	ENDSUB
	EXIT
	FOR
	FREAD
	FUNCTION
	GOSUB
	GOTO
	HEX
	HIGH
	IF...THEN
	IN
	INPUT
	INTEGER
	INTERRUPT
	IO
	LEFT
	LEN
	LIST
	LOOP
	LOW
	MAIN
	MOD
	NEXT
	NOT
	ON
	OR
	OUT
	OUTPUT
	PRINT
	READ
	RESTORE
	RETURN
	REV
	RIGHT
	RND
	RUN
	SELECT CASE
	STEP
	STOP
	STR
	STRCOMP
	STRING
	SUB
	THEN
	TIMER
	TO
	UNTIL
	VAL
	WAIT
	WHILE
	WRITE
	XOR

	Additional Reserved Words

	Runtime Library
	Mathematical Functions
	ABS
	MOD
	RND
	SIN, COS

	String Functions
	String Comparisons
	[ASC]
	CHR
	HEX
	INSTR
	LCASE
	LEFT
	LEN
	MID
	MIDSTR
	RIGHT
	MID
	Single byte access
	STR
	STRCHR
	STRCOMP
	STRSTR
	TOLOWER
	TOUPPER
	UCASE
	VAL

	Hardware Library
	* (ARM periph access)
	Date and Time Functions
	DAY
	HOUR
	MINUTE
	MONTH
	SECOND
	SLEEP
	TIMER
	WAIT
	WEEKDAY
	YEAR

	Flash Access
	FREAD
	WRITE

	Function List
	FREQOUT
	COS
	FREQOUT
	SIN

	HWPWM
	HWPWM

	I2C
	I2CIN
	I2COUT

	OneWire
	OWIN
	OWOUT

	PULSE
	COUNT
	PULSIN
	PULSOUT
	PWM
	RCTIME

	Serial - BitBanged
	BAUD
	RXD
	SERIN
	SEROUT
	TXD

	Serial - Hardware
	BAUD0
	BAUD1
	RXD0
	RXD1
	TXD0
	TXD1

	SHIFTIN, SHIFTOUT
	SHIFTIN
	SHIFTOUT

	SPI
	SPIBI
	SPIIN
	SPIOUT

	Interrupts
	ADDRESSOF
	INTERRUPT
	INTERRUPT SUB
	ON

	Logic Scope
	Timed Samples
	User Sampling
	StandAlone Scope

	Pin Controls
	AD
	BYTEBUS -- ARMweb only
	DAC
	DIR
	HIGH
	IN
	INPUT
	IO
	LOW
	OUT
	OUTPUT
	Port P0..P4

	Miscellaneous
	Aborts

	Hardware Specs
	ARMmite Pin Diagrams
	ARMmite PRO Pin Diagrams
	Wireless ARMmite Pin Diagrams
	ARMexpress LITE Pin Diagram
	ARMexpress Pin Diagram
	ARMweb Pin Diagrams
	DINrail Pin Diagrams
	SuperPRO/ PROplus Pin Diagrams
	Schematics
	Memory Map
	Power On Behavior
	CPU details
	Serial Configuration
	USB use
	USB use with Linux, Hyperterm, TeraTerm
	USB use with MatLab
	RS232 or USB connection
	TTL and other interfacing
	Power
	Timing
	SPI,Microwire
	Using the I2C Bus
	ARM Peripheral Use

	ARMweb Ethernet Services
	Getting started with ARMweb
	USB connection for BASICtools
	armweb.htm PAGE
	Controls Page
	CGI Services
	CGI example
	FTP Services
	Mail Services
	Web Services
	Web BASIC
	UDP Services
	Power On Behavior
	Firmware Update

	Tables
	ASCII Character Codes
	Bitwise Operators
	Operator Precedence
	Variable Types

	Support
	Upgrading Firmware
	Install Firm Up
	Writing Firmware

	How to contact the developers
	How to report a bug
	Contributors
	Notices

	Index

