Table of Contents

=
-
-
-
L]
*

e Ea s
til"‘.‘-.-‘

Getting Started

ARMmite
ARMexpress

wireless ARMmite
ARMweb

The Compiler

About

Main Features
Requirements

ARMbasic and other BASICs
Differences from PBASIC
Frequently Asked Questions
Revision History

Notices

The Language

Simple Statements
Compound Statements
Other Statements
Functions

Operators

Data Types

Alphabetical Keyword List

ARMbasic Stand-alone Compiler

Runtime Library
Date and Time Functions
Mathematical Functions
String Functions
User Input Functions

Hardware Library
Version 7 Hardware Library

Hardware Specs
Hardware Specs

Miscellaneous
PreProcessor
Debugging
Logic Scope

ARMweb
ARMweb

Tables
ASCII Character Codes
Bitwise Operators
Operator Precedence
Variable Types

Support
How to contact the developers
How to report a bug
Contributors

Page 1

http://www.coridiumcorp.com/ARMmite.php
http://www.coridiumcorp.com/ARMexpress.php

Getting Started

Getting Started

PRO, PROplus and SuperPRO
ARMmite and ARMexpress

ARMweb and DINKkit(ethernet)
wireless ARMmite

ARMbasic for non-Coridium Hardware

Page 2

ARMmite, ARMmite PRO and ARMexpress Getting Started

Getting Started Programming the 10
Install Software More complex programs
Connect ARMmite Trouble Shooting
Connect PRO family BASICtools Features
Writing your first program

Page 3

http://www.coridiumcorp.com

Step 1: Install Software

The ARMexpress family use a BASIC Compiler that runs on the PC. Coridium supplies BASICtools which
includes a terminal emulator and IDE that is specifically designed for the ARMexpress and ARMmite. Also,
a number of help files and documents about the ARMexpress will be installed on the machine at this time.

This installer is meant for Windows either 98, NT, XP or XPx64 and Vista.

If you are installing from the CD, then it will automatically run the install program when the CD is inserted. If
downloading from the web, run the SETUP program to start the installation.

il BASICtools Setup: Installation Options

Lo You don't want ko inskall, Click Mexk to continue,

Select components ko install: H|BasICtonls (required)
Start Menu Shortouts

Space required: 12,0MB

KRR
Cancel | Mllsshs nskallSvskem w2 o7 l‘ Mext =
o R

Click Next to get started.

il BASICtools Setup: Installation Folder

_AR] Setup will install BASICEools in the Following folder. Toinstallin a different
folder, click Browse and select another folder. Click Install to start the
inskallation,

- Destination Folder

- \Program Files!Coridium Browse, .. 1

Space required: 12,0MB
Space available: 414 .6GE

Cancel | MellSErE Trskal Setam v oy < Back. I Install I}

Accept the defaults and Install. You may chose a different target directory.

Page 4

ii& BASICtools Setup:

Completed

Show details I

Filisott Tnstall Svstem vz a7 = Hatk i | Close i

The installation will now run, and when it finishes hit Close .

And its as easy as that.

On to Step 2

Page 5

Step 2: Connect USB

Connect USB Cable to ARMmite/ARMexpress Eval PCB/ARMmite PRO

For details on connecting the ARMmite PRO visit this page.

The ARMmite / ARMexpress Eval Kit comes with a USB cable. This cable allows you to connect the
ARMmite/ARMexpress directly to a computer equipped with USB. Locate the USB jack on the side of the
Eval PCB and plug one end of the USB cable into it. When connected to a PC power is supplied by the PC,
the optional power connection is not required, but both may be safely connected.

Connect USB Cable to Computer

.-r-""'-/:

Locate the USB jack on your computer and plug the other end of
the cable into it.

Please Consult Installation Guides

Page 6

i) Found New Hardware *
FTz32R USE UART

Most PC's will sound a tone that indicates a new USB device has been connected. Most Windows Vista
and 7 systems will either include the FTDI device driver or are able to download it automatically from the
network.

If your system is unable to do that. Run the FTDI driver installation setup in the \Program
Files\Coridium\Windows_drivers directory. This will install the proper drivers for the FTDI chips we use for
interfacing to the USB.

Up to date details are at the www.ftdichip.com VCP drivers page.

Driver Installation Complete, Confirm USB Connection

The Eval PCB or the ARMmite will be powered from the USB bus. It may also be connected to a 5-12V DC
power source simultaneously.

To verify connection with the USB and PC the LED on the Eval PCB should light up.

On to Step 3

Page 7

http://www.ftdichip.com

Step 2: Connect USB on ARMmite PRO family

Connect Coridium USB Dongle to ARMmite PRO

The ARMmite PRO Eval Kit comes with a USB dongle and cable. This dongle and cable allows you to
connect the ARMmite PRO directly to a computer equipped with USB. When connected to a PC, power is
supplied by the PC, the optional power connection is not required, but both may be safely connected.

Connect black wire to GND. This cable is available at Digikey or the Makershed. This cable connects RTS
to RESETn, BASICtools support this.

Connect SparkFun USB Dongle to ARMmite PRO

Page 8

http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=768-1028-ND
http://www.makershed.com/ProductDetails.asp?ProductCode=TTL232R

USB dongle from Sparkfun shown.
Connect USB Cable to Computer

Locate the USB jack on your computer and plug the other end of
the cable into it.

Please Consult Installation Guides

i) Found New Hardware *
FT232R USE UART

Most PC's will sound a tone that indicates a new USB device has been connected. Most Windows Vista
and 7 systems will either include the FTDI device driver or are able to download it automatically from the
network.

If your system is unable to do that. Run the FTDI driver installation setup in the \Program
Files\Coridium\Windows_drivers directory. This will install the proper drivers for the FTDI chips we use for

Page 9

http://www.sparkfun.com/commerce/product_info.php?products_id=8772

interfacing to the USB.

Up to date details are at the www.ftdichip.com VCP drivers page.

Driver Installation Complete, Confirm USB Connection

The ARMmite PRO will be powered from the USB bus, when using either the Coridium Dongle or the FTDI 5V
cable. It may also be connected to a 6-7V DC power source simultaneously.

To verify connection with the USB and PC the LED on the Eval PCB should light up.

On to Step 3

Page 10

http://www.ftdichip.com

Step 3: Writing your first Program with BASICtools

Start the BASICtools from the StartMenu or from the Desktop Icon. You should see a welcome message
which has been sent from the ARMmite or ARMexpress-

F
© BASICtools control for ARM
File Edt Options Tools Help

Hml Sh:n|:||| I:Iearl Hes:etj

Welcome back to AFMbasic Kernel [7.09] Copyright Z007, Coridium Corp.

If you do not see this welcome, even after pushing the RESET button, then communication has not been
established.

check cables

check power supply

check COM port choice in BASICtools -> Options

check baud rate in BASICtools -> Options

on non-Coridium Boards, remowve any BOOT select jumpers, press RESET again
if still not working, check theTrouble Shooting Section

The traditional "Hi Mom" program

Page 11

—
© BASICtools control for ARM
File Edt Options Tools Help

Hun| Stﬂpl Dea| H&set|

~
Walcome back to ARMbasic Eernel[7.03] Copyright Z007, Coridium Corp.
Welcome to ARMbasic Hernel[7.09] Copyright 2007, Coridium Corp.
for the AlMmita
W

Entes_ |PRINT “Hi Mom"

So type something like the traditional PRINT "Hi Mom"
When you hit the ENTER key it will be sent to the ARMexpress and be echoed back

in the console window. (below)

© BASICtools control for ARM
File Edt Options Tools Help

Flun| Stapl L‘.lea| Heset|

elcome back to AFRMbhasic Hermel([7.09] Copyright Z007, Coridium Corp.

Melcome to APMbasic Hernel[7.0%] Copyright 2007, Coridium Corp.

for the APMwite

| €

Enter ||

Now RUN the program

Page 12

 BASICtools control for ARM CIEX
File Edit Options Tools Help

Run 5Inp| Elearl Flesel.|

Y
WMelcome back to ARMbasic Kerne/]}él Copyright Z007, Coridium Corp.
ol .
WMelcome to APMbasic Herviel[7.03] Copyright zZ007, Coridium Corp.

for the APMwite

PRINT "Hi Meom" /

N

Which you can do by either typing RUN or hitting the RUN button at the top of the screen.

And see the results

© BASICtools control for 2103
File Edt Options Tools Help

Flun| Sl:upl Elea| H&SE':|

WMelcome to AFMbasic Kernel[T7.09] Copyright 2007, Coridium Corp.
for the APMmite

PRTHNT *“Hi Mom™
RN
Programming Flash Z103...%*+*+
0. 04FE code 0.00KE data programmed
Executing. . .

Hi Mom

. Finished in 4 ms

€|

Enter: ﬂ

You can notice a number of things. First the program is compiled and then written into

Flash memory, and your program takes 40 bytes of code and less than 10 bytes of data space.

Next the program will be executed, as evidenced by the output of "Hi Mom" to the console.

ARMexpress also reports back how long the program executed, in this case 4 msec, which is mostly startup
time.

Also your program is now saved in the ARMmite/express Flash memory. And it will be executed the next
time the board is RESET. So try that...

Page 13

© BASICtools control for 2103
Fils Edit Options Tools Help

Flunl 5tu:np| Elearl Feset

Programming Flash Z103...%+%+
0. 04E code
Executing. . .

program done

0.00F data programuoed

4]

Enter |

On to Step 4

Page 14

Step 4: Programming the 10

Clear previous ARMmite/ARMexpress program

© BASICtools control for 2103
File Edit Options Tools Help

[

Enter: EELEAH

To begin a new program, you should CLEAR the previous one. You can do this with either the button or by
typing clear.

A program that uses 10

Type the following program in the console window. (below)

DIR(15)= 1 " enable pin 15 as an output

WHILE X<30
OUT(15) = XAND 1 " drive pin 15 high when x is odd, low when x is even
X=X+
WAIT(500)

LOOP

For the SuperPRO and PROplus, the LED is connected to P2(10). Use the following

FIO2DIR = &H2009C040 ' this is the DIR register for port 2, its also defined in #include <LPC17xx.bas>
*FIO2DIR = 1<<10
WHILE X<30
P2(10) = Xand 1
X=X+1
WAIT(500)
LOOP

Now RUN the program

Page 15

e

© BASICtools control for 2103
File Edit Options Tools Help

Flunl 5tu:up| Elaarl Flesel|

DIR(LE}=1

THILE X=20
OUT(LlS) = X AND 1
=M+l
WAIT(S00)

LOOP

]

EnlarﬂHl.lN b]

The LED on the PCB should pulse 15 times.

And see the results

Stop the program

Page 16

© BASICtools control for 2103
Fila Edit ©Options Tools Help

Flun| Blaupl L'.lea.'| H&set|

DIR{15}=1 .
WHILE X=20

OUT(LE) = ¥ AND 1L

=M+l

WAIT({E00D)
Loop
eiud)
Programwing Flash Z103...%+*+

0.10K code 0.01K data programmed

Executing. ..

%]

Enter |

To stop a running program simply press the Stop button.

On to Step 5

Page 17

Step 5: More Complex Programming

Choose a File

While the Enter line can be useful for small programs or quickly checking out hardware, you will probably
soon need to write larger programs. The way to do this is with a text editor. We don't enforce any text editor
on you, you can choose your favorite. We tend to use the Crimson Editor, though a number of users are
liking NotePad Plus (NPP). Once you've typed up your program you can load that with BASICtools. It is
easier to create a larger program with a text editor and then to Load File. You can link BASICtools to your
favorite editor with the options (see the next section), or launch the original Windows Notepad if no editor is
chosen.

Also the Enter line is limited in that #include <library> may be used, but the general pre-processor #include
and other #directives should be awided when typing a program a line at a time.

© BASICtools control for 2103
W Edit Options Tools Help

Mew File Crrl+id Hun| Stﬂpl L‘.lear| Heset|

A
Reload File Ckd-R
File History 4
Prink: CtrP
Edit Typing

Save Inbermediates QL03...*+*+
0.01E data programmed
Couik Chrl-)

. Finished in 15000 ms

[

Enter |

Page 18

http://www.crimsoneditor.com/
http://notepad-plus.sourceforge.net/uk/site.htm

" BASICtools control for 2103

Load File

[>

ﬁ _

My Recent

€

Deskiop

9

My Computer

File name: l \' I Open I

MyMetwork | Fiesof ype: | BASIC Source files [“bas] vl [cancel |

You're now ready to start tackling your application. Check with the Yahoo Forum for files and help from
other users of ARMbasic products. There are also examples on the Coridium Website Programming
pages.

For more details on the BASICtools IDE check the next page.

Page 19

http://tech.groups.yahoo.com/group/ARMexpress/
http://www.coridiumcorp.com/ProgrammingEx.php
http://www.coridiumcorp.com/ProgrammingEx.php

BASICtools Features

BASICtools startup

When BASICtools starts up, it will STOP any user program. So if you find yourself with a program flooding

the PC serial port with data, close BASICtools and then restart it (you may need to use the Task Manager to
exit). It will STOP your spewing program.

BASICtools Layout

best oubput
from
ARMmite ar
ARMexpress
T ——

eniber data for
DEBUGIM
e when
progranm
ILNnIng OF Wou
can iyps in
shoit programz]
line by line
b

last program loaded - detected CPU type

© BASICtools control for 2106

File Edt Options Tobls Help
:fonusbasic/zcopedScopeDemn bas Fluni Stupl Elearl I-'I&s&!|

Walcome back to ARMbasic([6.24) Copyright 2007, Coridium Corp.

__________‘_‘—\—_

Analvzing C:/gnubasic/scope/Scopelenc. bas
processing SCOPED~1.BAS

proceszing LoglicEcope.bas

Programming Flash Z106.._ *+%+

P 1.71K code 1.564F data programmed

Enln\r:!\

keyw ords: enter line debugin type BASIC commands

Buttons

Page 20

clear text wandow and erase any

start the loaded program user byping inka E nter; window

* BASICtools control for 2106 SBEX
File Edit Options Tools Help
C:/gnushasic/zcope/ScopeDemoba: Ron i Sgnp [Clear I Flflsﬂ |

\ i

Walcome back to ARMbasic([6.24] Copyright Z007, Corid Corp.

#hop a Iunning program
by rezeting and izzuing

Analyzing C:/gnubasic/scope/Scopelenc.bas aBREAK

I processing SCOPED~1.BAS
;Eg:::nsmci‘ng procezzing Loglclcope.bas
the Flash * Programming Flash Z106_ .- *+%+
1.54F data programmed

reget the board which vall
reztart the last program that
waz loaded

ndicates
block zent
and +
returned
when block iz
prodrarnnred

%

The CLEAR button only erases the display screen and the buffer on the PC of statements you have typed
into the Enter window.

To erase the program, load a new program, either a line at a time or using the Load menu.

keyw ords: reset button stop button run button clear button

File Menu
open & blark file in chioose a new file to
wour text Editos load
 BASICtools control for 2106
Edit Options” Tools

ieload the # £
Izt file Mew File /C\r|+N !-uj:asb:a'scnpa:’ﬁmpeﬁemn.bas Ftuni Stﬂp| Clear! H&s&li

Load File =

~. Reload File Ctrl-R 1
File History Cifgnubasic/scopefScopelemo.bas ht 2007, Coridium Corp.
ikt text - Prink Chrl+P C:lgnubasicftesttests, has)
window ')) recently compiled

Edit Twping {:/gnubasicftestjbranch.bas s
Edit typing in save In iates C:/gnubasicftesttestIweb.bas
newlile. bas Y - -
[remermber Quit Ctrl-Q
o zave it o
e Programming Flash 210 WL

.- 1_71K code data programnmed
save the pre-processed file and compiled file-
useful for ARMweb code development
b
Enter: E

file load file reload file print save file quit

Page 21

Edit Menu

open a file in pour besd copy selection from test
Editos wiridow to buffer
H wle D o 0 b L]
File Tools
OF'EHE ic/zcopefScopel emo. bas Ftun! 5tnp| Elearl Hemll
TEAMT
window Copy (CErl4C =
Search Ctrl+F
Wals rhooss Editor agic[6.24] Copyright 2007, Coridium Corp.
Chl:u:useg wour
test Editor Analyzing C: /gquubasic/scope/Scopelenc.bas
processing SCOPED~1.BAS
rocesging LogicZcope.bas
grugrming Flash Zl0&6...%+*+
.- 1.71E code 1.84E data programmed
R
Enter: E

keyw ords: edit choose editor

Options Menu

riarmally set
o 19, 2Kb

use |f on L

select the senal port, ports in capital letters are
recognized az JSE senal ports

B - cows | e
s — :
Control | offline / DEMO mode
| refresh
i e Baud Ll
| __MNewline ¥
| font size ¥
Htl:nm to ARMbasic Kernel([7.43] Capyright 2008

|, Coridium Corp_
| for the ARMmite

l Enter: [

Refresh will check for serial devices again, it is useful if you plugged a device in after starting BASICtools.

keyw ords: options port baud new line char mode PC compile control throttle

Control Menu

Page 22

€ BASICtools control for ARM = | (B

File Edit [Options] Tools Help

Pot * Flun| Stonl Ehali Haadl

(Wl m® + MNormal use this with ARMmit=, and PRO with =

e Coridium USB dongle
ARMweb —— | :

Baud L L uze thiz with ARMweb [l

: Bgacy |

Newline ¥ MatLab use these if you have re- i

font size *| Z programmed the FTDI part,]
—— see the Hardware Section for

Manual maore detalls (Matlab/Legacy)
PRO-your cable
Welcome to ARMbasic Eerne

; Coridium Corp.
for the ARMmite

Copyright 2008

use this with NON-Coridium hardware

usa this for PRO with FTDI cable -
with na cantrol of DTR or RTS

Enter

keyw ords: options port baud new line char mode PC compile control throttle
BASIC variable viewer

Open this window from the Tools Menu (variables)

‘File Edit Options [Tools | Help

Variables -q.._._"__ Runl Stupl .Clearl R.esetl

show users BASIC variables
Code o \
Welcome to ARMbasic Fernel [EWJ5]

i
|
b for the SuperPro

i

resume the user program CoPyright 2010, Coridium Corp.

show addresses of users code labels

variables window

Page 23

* BASIC variables

L':'G3*4 type & portion of & varable name . ——— Find
As LEollvale== “'this is a test with a string that is longer tham 16 ———-—————————-
string LTHOB6973 20697220 61207465 TITAHZOFT GYTLGB20 61207374 T2696E67T 20744

S74206973 2B6CAF6E 67657220 7468616E 283136208 20202020 20202020 20202

MEVENES £9pap2D2D 20202020 20202020 20202020 20202020 20202020 2078797
B intecer array $0PPPEEOD PEOOONI7 DOPDEEOD DOBOOPDD DPPPDPED DOODEERD DOBOPOLWD DOODE
nexvalues SDDOBOODD DODOPOOE PPPOBBOD
decimsal values a 55 o a @ a 7
[}]] a
I integer variable Lopeepap2 2
b wEle decimal walue
FESUME Y0Ur program Troem
refresh variable vales the STOP stafement
p
b
< / it ¥
Hafmxlﬂ Resurme

This page is active when your program ENDs or hits a STOP statement or has been STOPed with the button.

code window

, € BASIC code

Locate | Find |

00010298 JUMPAROUNDHWP M

0001082a4 DOINITSERIAL

00010784 JUHPAROUNDSERIAL

98016bas HATH T user defined labels, like
00018ba8 SHOWCOUNT FUNCTION, SUB or label:
00010cd8 SHOWHWPWH

I: .---"'\...__‘_ hex address of that label in Flash

keyw ords: variable dump breakpoint STOP view memory

Search Window

Open this window from the Edit Menu

Page 24

uze regular exprezzion

enter kext o seanch for

thiz will zcan 2l files in your sowrce parser
ree ! ignore case
|
¢ Project Search (]3]
Search sting: |_Samples| ! Fir-u:II ™ CaseSensiive | Use Regesp
A

I Fibe C:/Program Fies/Coridium/bin/BAS| Clib/LogicScope. bas
8 ; fdefine NumSamples 400

a4 - if i< 1" then " wait for thiz command fiam BAS|Clools to dumnp zamples
A9 dirn Samples{Mum3 amples] az integer

: i=M umS amples

EER Samples)i] = “GRIO_IOPIN ' no difference in speed

B4’ & amples(i] = “gpio

90 Samplesli) = "GPIO_IOPIN ' nio diference in speed

91" Samplesi] = “gpio

1039: ifi="3"then "wyait for thiz command from BASIChools to dump samples
114 for i=MumS amples downto 1

115: prirt hexl S amples(i))

11 matches found W

ol o

keyw ords: search
Logic Scope Window

This module must be included in your BASIC program. It will monitor the pins for a period of time when called
from your program.

See the example program ScopeDemo.bas and details in the Logic Scope Section .

Page 25

r

* Logic Scope

.. »indicates this ine
iz bEing driven

n J"L L A S | W 6 S Y 6 N A Y | Y U | SO | U
L VO ¥ S Y I [VN I W A A O A A I A
T ."_'LE A A A R A I A A A A

scan hirme 4000 us
[aRMriite 3] <space> RUN| ¥ single timebase (us/dv) [400 3] T persistence CLEAR

keyw ords: oscilloscope logic analyzer logic scope

Page 26

Trouble Shooting

Reset ARMexpress shows no message

¢ BASICtools control for 2103
File Edit Eslas

Help

4 comz I\LStnp| Elear] Heset|
| w COMESZ

WHILE X< Contral * \ A
0T (18 Wireless ports recognized as FTOI USE ports

Tools

coml

W=M+1 cam3

WAIT(& Baud L offline:
Loor Mewlne ¥
RN char Mode usually buitin R5232 ports, alzo Blustooth
Progr amm ; i E_o_ T+ 4

o. font size 11K data programmed
Executing. . .
w

Enter: [

Most PCs have a number of COM ports, you might not have the correct port selected, you can change that in
the Options>Port Menu This window lists all the available ports, those in capital letters are recognized as
FTDI USB serial ports and are usually the location of the ARMexpress Eval PCB or the ARMmite.

One other reason that communication could be lost, is that the driver can lose sync with the card if it is
disconnected and reconnected with the USB, especially when BASICtools or TclTerm (under MakeltC) is
running and connected to the card. When this happens it is often necessary to restart the PC. Because the
serial port is being emulated, and the Windows enumerator gets inwlved, when the USB is disconnected, the
various pieces of software can get confused if the port is open. If you are using the original hardware serial
port, normally with COM1 this is not an issue.

betermininq which COM port should be used

This can be found in the Control Panel>System>Device Manager

Page 27

Tonals

Hidp

System Restore

Automatic Updates Remate |

‘E=izame Contral | Genersl

Computer Mame _ Hardware | Advanced | 1

ﬁlntel{lﬁl} Extren
wlnteI{R} PROS Device Manager
ﬁ;]ava

&';Java Flug-in 1
@Keybnard
Ay
k=

_iMause Drrivers
@,Netwnrk Zonng

ar yaur computer, e e Device Manager to change the
properties of any devige.

@Internet Opkicy i The Device Manager lizts.4

L Device Manager

File Action Wew Help

I'the hardware dewvices installed

Device

rager

gﬂ Metwork Setur
E‘.F'I'u:une and Ma

- WS 2 A

@ Portable Medis
%F‘Dwer Opkions
4 Printers and F
€4 uickTime

@ F.egional and L
<y Scanners and
()5cheduled Tas
@ Security Cente

%Suunds and
¢ speech
aﬁystem

aTaskI:uar and 5
ﬁUser Bccounts
& windows Firewall Configure the Windol
=8 Wiralaas Mebwark. . Ser onoar add Faa wi

See information about vour computer system,

COM port conflicts

While rare there are systems out there with non-plug and play serial ports, or its possible for 2 com

E]- Batteries

E:r] - Computer \
[+ Disk drives

E] a Displaw adapters
-k DVD{CD-ROM drives
E:r] 425 Floppy disk controllers
- Flappy disk drives

E] {28 Human Intetface Devices

1% IDE ATAIATAPT controllers

+-E8 Jungo

] 2 Keyboards

E] ”:_, Mice and other poinking devices

E] s Modems

E] -5 Monitars

=8 Mebwark adapters

.8 D-Link DE-530+ PCI Ethernet Adapter
L. H8@ Intel{R) PROJ100 YE Network Connection
= Ports (COM & LPT)

: ﬂ_}f Communications Port (COM1)

S ECP Printer Port (LPT1)

5 UsB Serial Port (COMS)

[+ 5% Processors

-8, sound, video and game controllars

[+ g Systemn devices

ports to have the same address. The address can be changed from the Control Panel.

Control Panel> System> Hardware> Device Manager> Ports> Port Settings> Advanced

Page 28

e System Restore | Automatic Updates : Aemeie
L Genersl | ComputerName | Hadware | pdvanced
‘B aGame Cort ! | COM Post Mumber. [.,I
mi[:::: Device Manage: B MG]
Thie Davica Manager iztz all the hardware devices incstaled ~ USE Transfer Sizes | COME [nuss)
Trkernet Of ot computes, Llse the Devics M e ko change the |
ez gt g i | Select fower seftin COMS il
£ ava Plugi [: | ' Sedect higher seltings e
{Bakeybosrd Digwice Manager
@Hﬂ |-“ P T) R T Hmmm““t A095 i
e —.. Device. Managr.r
Mo ' :
& Natwork O o) Transmit [Bytesk 4098 i
* e e LISH Serial Port (COMS) Props
Skl e+ B/ e @ B eI _
i — | General| PontSeting: | Duiver | o 5M Opbone
Partable 4 A Batharias : Brrrirbeior | : =
EaPower Opti + ¥ Computer "'I, Select lower getfings bo comect iezponze problems.
* jyPrinters an F e Disk drives
€ SuckTime - Display adepters B per 4 Latency Tiger [mascl; 16 i
@ regonal +1/ DYDCD-ROM drbves
2 Scanners a +|) Floppy disk contraliars) e Tineous
(A schedued +. g Floppy disk drives . {
Sacurky cd + Human Inkerface Devices oy i |"""'"""""""""""
g&]i‘::; E +1-{=) TDE ATASATART contralers i e S) A
o +-H8 Jungo =1 22 e
o speech > - Mo Wike Timeoutimesel [0
s 4| I Kayboards 1 |
oo 4123 Mice and other painting devices Rl (i e e
ASEDEr an. & ™ .
e i % whes - BB T
@8 vindons Frewal | - B Network adspters / anced. | Restors Defaults | »
i e Blshanck B9 O-Uink DE-5304 PCI Etherne :
Ses information about | IntekR) PRO/L00 VE Net |
=1 5 Porks [COM B LPT) r—

A comenurications Port (COMI
' ECP Printer Part [LPT1)
4 USE Serid Port (COME)

H I-————”rhmm [ox]| Cancal]mupda

Check the USB Driver version

Our software does not reinstall the USB drivers if they already existed. We expect to be running version
2.6.0.0 dated 10/22/2009. Find this in the Control panel>Driver properties

Page 29

B e

ap

sl Wi i | General| For Setings | Djiver | Detals|
= [& @ A Y it Il
or | =
+ (=) Floppy disk controllers : 3 |
+ J) Floppy disk drives I
¥ (8 Human Interface Devices ; ; '
D Provider,
+ &3 IDE ATAJATAPI controllers ; Fo! |
+ BB) Driver D ate: 10/22/2008 [
* ':..B Keyboards Driver Yersion: 2600 I
+- " Mice and other pointing device fanbihyd 3 : i
B Modems Ciigital Sigrier: Microzoft \Windows Hardware Compatibiliy Publ :
=@ Monitors 2 L E
= Metwork adapters ; ; ; |
-. D-Link DE-530+ PCT E Liiver Details... é To view details about the driver files. :
~ E9 Int=iR) PROJ100 YE Netw |
= .=f :%"5 (COM &LPT) [Lipdate Diiver...] To update the driver for thiz device. '
S Ecp
r_? USE E Rioll Back Diivit J Lf thE I:IE'-.-'PilDE.' fail&_ aftllar .l..lpdailmdg{;?e driver. roll
r} USB Serial Port (COMS) ack bo the previously installed diver.
+ @ Sound, video and game control [I rinstall] To uninztall the diver [Advanced].
+# Gge Storage volumes
¥ g System devices A R R R
[ok]| Cancel
foadl

If this does not match, then you have an older driver and it should be updated...
Offline indicator

This will be shown if the port you were using last time the program was run is no longer available. You
must reselect a Port using the Option Menu to reestablish communication with the ARMmite or
ARMexpress.

Page 30

 © BASICtools control for ARMexpress

File Edit Options Tools Help
? Hesetl Stu:upi Hunl Eleari

/

OFFLINE

Enter; E

Check Baud Rate

* BASICtools control for 2103
File Edit Bels{fEN Tools Help

Part *I Hun‘ Stu:up‘ Elear] Heseti

WHILE X< Contral P

OUTE15S wireless
H=K+l

Loop Mewline ¥ 2400
RL | Char Mode 4800
IPngraJn.m

5. fontsize k| 9600
Exacut 1ng—ﬁ W 19200
38400
5000
57600
115200

ogranmed

EEX

[

|

Enter: [: 921600

Or you might not have the correct baud rate selected.

Check your cables, check the LED

The green LED should be on if the USB connection is made for the ARMmite, or when power is connected for

wireless ARMmite or ARMweb.
See Connect USB

Wireless Serial link

Page 31

When debugging the serial connection for the wireless ARMmite, make sure both modems are set to the
same baud rate, otherwise one way communication is possible. Check your solder connections. Use a USB
breakout board to monitor the communication of either side, connect the RXD pin of the USB breakout to
either TXD or RXD on the ARMmite to monitor the serial communication.

If you can see the Welcome message following pressing the reset button on the ARMmite wireless, then
communication is running one direction. Type a ? at the enter line, you should see a number of 4 digit hex
numbers come back. At this point communication is running in both directions.

You can also use BASICtools to send repetitive data through the serial port. To do this check the Char mode
under options, this will send out any key you hold down from the enter box, rather than the normal line
buffering. Then you should be able to see the data on a scope. Remember to uncheck Char mode when
done.

Odd behavior following Windows Update

3
-

@Back A u_(,l |ﬁ f_j Search lL Folders v E.ﬁ.ddress = v B o

& C:\Program Files\Coridium E| |E|

File Edit Wiew Favorites Tools Help

= ARMbasic
kil and Foldee 1S &7 compled HTML Help file
— S53 KE
=} Make a new Folder
@ Publish this Folder to the Core
Wik 32w 32
bed Share this Folder Ican
BASICtools
Applicatian
Other Places Coridium Corporation

[C3 Program Files

(L} My Dacuments
[Shared Documents
ti My Cornputer

iﬂ My Mebwork Places

= BASICtools
= Configuration Settings
= 1KE

Details

Coridium

File Folder

Date Modified: Friday, april 21,
2006, 1226 PM

In rare cases, when the Windows Update has automatically rebooted while BASICtools was running, the
serial port settings of BASICtools have been corrupted. To correct this, reboot the system, and if the problem
persists delete the BASICtools configuration settings (BASICtools.ini, it will be regenerated when you run
BASICtools). This file is located in the %AppData%/Coridium directory or in older versions of BASICtoos

in Program Files\Coridium directory. If you don't know where the %AppData% directory is, open a DOS
command line and type echo %AppData% .

Have Fun!!

Page 32

ARMweb Getting Started

Getting Started
Install Software

Connect Ethernet

USB connection for ARMweb

Writing simple programs via the web
Writing programs with BASICtools

Page 33

http://www.coridiumcorp.com

Step 1: Install Software

Actually much of the software you need for the ARMweb is already on your computer. The interface to the
ARMweb is through any web-browser. That's why we call this Simply Connected™ technology.

A simple ARMbasic compiler runs on the ARMweb. While you can write short BASIC programs with this
interface, the compiler is there to support BASIC that is embedded into the HTML of the webpages served by
the ARMweb. Your main BASIC program should be debugged and loaded via BASICtools over a USB
connection.

You will want to run the setupBASIC installation, to get access to documentation about ARMbasic and the
PC based main BASIC compiler.

i BASICtools Setup: Installation Options

& _ Check the components you want ko install and uncheck the components
7 wou don't wank bo inskall. Click Mext bo continue.

Select components to install; F|EasICtonks (required)
Start Menu Shortouks

Space required: 12.0MB

Cancel | MullsarE Tnskal Svetemive 57 ‘ Mext = I
o

Click Next to get started.

Folder, click Browse and select another Folder. Click Install to skart the

inskallation,

i Destination Folder

. \Program FileshCoridium Browse, .. 1

Space required: 12.0MB
Space available: 414.6G6

Cancel | MullsarE Tnskal Svetemive 57 < Back. I Install p

Accept the defaults and Install. You may chose a different target directory.

Page 34

i BASICtools Setup:

| Completed

Show details I

Filisott Tnstall Svstem vz a7 = Hatk i | Close i

The installation will now run, and when it finishes hit Close .

And its as easy as that.

On to Step 2

Page 35

Step 2: Connect Power and Ethernet
Connect Ethernet Cable to ARMweb PCB

The primary power for the ARMweb is 3.3V provided from a linear regulator. The input power for the PCB may
be 5V regulated supply or a 6-9V unregulated supply, with a current rating of 250 mA or more. The connector
is a standard 2.5mm barrel connector with the + positive side of the supply in the center. A good choice for
this power is this 5V regulated supply from SparkFun .

You should see a green LED connect light on the lower left side of the ethernet cable indicate a connection
was made. Also your hub normally has a similar type of connection indicator. There should also be some
traffic indicated on the right side as the ARMweb looks for a DHCP.

If you don't see the LEDs lit, check your power connections (you should see at least 6V of the + side marked
on C1 with an unregulated supply or 5V with a regulated supply, and 3.3V as marked in the prototype area).

USB connection

We recommend that you have at least one USB connection to debug BASIC programs as well as network
issues. This can be our USB dongle or some other TTL serial connection.

Below is the picture you should see. Depending on which version of firmware and which USB dongle you
may see an EINT1 interrupt message. EINT1 was being used for network debug in earlier firmware versions.
You should disable that by choosing ARMweb control under the Options. After that you should see the
ARMweb "Searching for DHCP" and if there is one it will report the DHCP IP address and the IP address
assigned by the DHCP (MyIP)

Page 36

http://www.sparkfun.com/products/8269
http://www.coridiumcorp.com/catalog/product_info.php?products_id=83

[
@ BASICtools control for ARM

=

File Edit | Options| Tools Help
| Port ’] Rur1| Stu:upl Clear| Resetl

Control ¥ Mormal
] by [v ARMweb _ .
Welcome t Baud k| Copyright 2008, Coridium Corp.

Legacy
MatLab

for the Newline ¥/

[font size P
EINT1 10588 | Manual

Welcomse to ADMbasic[T. PRO-your cable

for the ABMweb

Copyright 2008, Coridium Corp.

Searching for DHCP

Mylame ARMweb

MyIP 1532_.165.0.4

MyMask Z55.255.255.0

MyDMS 152 _.168.0.1

mb_dhcop MAC 00 1E C7 &4 EC Bl
mb_dhep IP 152.162.0.1

Welcome to ARMbasic[7.36] Copyright 2008, Coridium Corp.
for the ARMweb

Again, if you don't see the LEDs or this display, check your power connections (you should see at least 6V
of the + side marked on C23, and 3.3V as marked in the prototype area), check your com connections
(details in Troubleshooting section).

Finding the card on the network (larger network) -- NetBIOS name service

The ARMweb will configure itself with an IP address assigned by a DHCP sener. IP addresses are the way
networks organize themselwes. If there is no DHCP senrver found, the ARMweb can provide limited DHCP
seniices in a Diagnostic mode, assuming a single connection on Ethernet with a PC using either a hub or
cross-over cable (see the Diagnostic section below).

Assuming a DHCP server is available and you are running on a Windows machine, you can use the Windows

NetBIOS Name Senvice. In which case you can find the ARMweb initially with http://armweb. Note that
some administrators disable NetBIOS name service .

Page 37

http://armweb
http://armweb

‘A Coridium ARMweb - Microsoft Internet Explorer

File Edit ‘Wiew Favorites Tools Help

‘gl - Search P Favorites -Q-ﬁ - S8 1 :i

v oG RS~ & « By v F bockmarksw TRk o B cogblocked “TF Ch

CoRiDiUM® ARMweb

Code | Values | Run | Clear | Controls | Help |

Finding the card using the DHCP server

On most home networks your DHCP will be your internet connection, and its address will share the first 3
bytes with the IP address of your PC. And the final byte being 1. The IP address of your PC is available from
the control panel or by typing IPCONFIG at a DOS command line. Common values for the DHCP server are
192.168.1.1 or 192.168.0.1 as in the example below.

You can navigate to the DHCP server using that IP address from a browser as below.

Page 38

File Edit - View - History - Bookmarks -~ Tools - Help

|| 2 Most Visited || Getting Started . Latest Headlines
| €31 Reno, MY Close Radar Map on Yahou, 2o i & Interest Rates Have Mowhere to Go-w 2 1 || System - ¢

@ ¥ -

Broadband Home : Fire
Link : Natwark

i) Cards & Logins =

* Change svetem password

« Zoftware: 5.25.109.5

= Privacy policy

* Password: Set . View detaile

“ Broadband Link
Connection Speed:
» Incoming: 1538 kbps

= Wiew summary

« Qutgoing: 384 kbps

= VWiew the home network

j :Eg < Home Network

L Computers:
("’J & cw-ps

\ @ CPObruce

Most DHCP senrvers will list client machines which have been assigned an IP address. This 2wire server
indicates it on the details view of the home network, and details for the device

Page 39

@ Home N

Eile Edit Miew History Bookmarks Tools Help
O c -
&, Most Visited | Getting Started 5y Latest Headlines

Nortun'v @v Cards & Logins -

& Reno, NV Close Radar Map on Yaho... =

E atat

View Device Details

Details

ARMweb

, | Connection Type:
i IP Address:
| IP Address Allocation: ©HC
. IP Address Type:
| Hardware Address:

Private (HAT)

& Interest Rates Have Mowhere o Go .. =

Broadband

0B:00:4d:ba:41:

hittp://192.168.0.1%sh?P AGE=CO2 & THISPAGE=CO1 &NEXTPAGE=C02&NODEID=11

¥y S8

Homa Firewall
Link Metwark

<9

= Summary | Wireless Seftings = Advanced Settings

11

Another example is the display from a Dlink Firewall that is also providing DHCP seniices.

| Home Network - Devic

So in this case the ARMweb can be found at http://192.168.0.2

Diagnostic Mode -- only to be used in special situations

Name
DHCP IP Address 192.168.0.
MAC Address L § L E I
W DHCP Client | - select one - v| [cione
Apply Cancel Help
Mame IP Address MWAC Addrass
Host Mame IF Address MAC Address Expired Time
SunJun 17
AR Mz h 192168.0.2 02-00-40-BE-41-01 159618 2007

A minimal configuration is an ARMweb connected to a PC with a cross-over cable. This can be useful for
configuring an ARMweb prior to connecting with a larger network, In this case no DHCP server will

be found, and after 10 seconds the ARMweb will provide limited DHCP senvices, assigning an |IP address to
the PC. However, this miniDHCP service will be terminated if the ARMweb is ever connected to a

Page 40

http://192.168.0.2
http://192.168.0.2

network with a DHCP server . To restore this miniDHCP senice and the factory defaults, hold the
push-button for 5 seconds while cycling the power.

The ARMweb will normally be located at http://192.168.0.50 unless it has been reconfigured before, in which
case it will use the last assigned IP address.

If you can not find the ARMweb at http://192.168.0.50 or http://ARMweb as abowe, then you can locate its
IP address with the DOS command line program IPCONFIG. The ARMweb will appear as the default gateway
in this case. Also if your ARMweb has been connected to a network seniced by a DHCP it will not function
as a limited DHCP server (this would cause confusion in a large network).

C:AWINDOWS\system 32\cmd. exe

osoft Windows HP [Uersion -2688]
(C» Copyright 1985-2081 Microsoft Corp.

C:sDocuments and SettingssBruceripconf ig

Windows IP Conf iguration

[Ethernet adapter Local Area Connection:

(DnnPﬂtlﬂn—apPﬂlflﬂ DHS Suffix . = ARMweh

IP Address. . . f e e = s s . = 192.168.8.3
Subnet Haf} e e e e e e e e . . o= 2 EE.JSR a
[Isrfql.ul'l. Gateway . . . - - - - . = HGE.B.58

C:sDocuments and SettingssBruce?

If you're not seeing this make sure your PC Network configuration is set to Obtain an IP address
automatically. (Control Panel -> Network Connections -> Local Area Network -> Properties -> TCPIP ->
Properties)

Now that you have the IP address of the ARMweb
You can go onto configuration settings, or writing simple programs using the web interface (the web interface
is only meant for simple programs, to do more extensive programs will require a USB connection and

BASICtools.

But for this web interface navigate using a browser to http://w.x.y.z where w.x.y.z is the IP address of the
ARMweb

DHCP assignment vs fixed IP addressing
We routinely allow the DHCP server to assign an initial address, but will use a fixed IP address in the final
setup. One reason to assign a fixed IP, is to make sure that the IP address assigned never changes, for

instance following a power outage. Details on setting a fixed IP address.

On to Step 3

Page 41

http://192.168.0.50
http://192.168.0.50
http://ARMweb
http://w.x.y.z
http://192.168.0.50
http://192.168.0.50
http://ARMweb
http://w.x.y.z

Optional: USB connection for BASICtools

While the ARMweb can be programmed through the webpage, during the development cycle BASICtools can
be used via a USB connection. BASICtools has a much faster response than a browser.

The attachment of the USB and power supply is shown below. While an Ethernet connection is not required,
if it exists and there is a DHCP server, the ARMweb will boot faster (otherwise each reset the 10 second
timeout waiting for DHCP senvice will occur).

ARMweb

DINKkit (ethernet)

Why use BASICtools?

Browsers are very slow when refreshing a webpage, so the interaction with the programmer is better with
BASICtools.

#include can not be used from a webpage, as the ARMweb does not have direct access to the #include'd file

Page 42

The BASIC compiler on the PC has more memory for the symbol table and can handle larger programs than
when compiling on the builtin ARMweb compiler.

The variable dump tool is available in BASICtools. Debug messages are sent to the USB port, as well as
<?BASIC ... ?> source and output when processing web requests. When your program is debugged and
AutoRun is turned on the USB port is turned off. You can improve the performance of the web server BASIC
compiler by increasing the speed of UARTO, by changing baud settings in BASICtools and executing
BAUDO(937500) in your main program.

For an introduction to BASICtools refer to the ARMmite sections .

BASIC and Webpage interaction

BASIC can be embedded in the webpage served by the ARMweb. That BASIC code can access global
variables of the user program running on the ARMweb. At present, BASIC embedded in the webpage can not
call a FUNCTION or SUB (this will be a future enhancement).

The user (client) can also interact with an ARMweb BASIC program via the CGI mechanism.

USB drivers

Most PC's will sound a tone that indicates a new USB device has been connected. Most Windows Vista
and 7 systems will either include the FTDI device driver or are able to download it automatically from the
network.

If your system is unable to do that. Run the FTDI driver installation setup in the \Program
Files\Coridium\Windows_drivers directory. This will install the proper drivers for the FTDI chips we use for

interfacing to the USB.

Up to date details are at the www.ftdichip.com VCP drivers page.

Continue with the some programming examples.
or

More details on ARMweb and BASIC...

Page 43

http://www.ftdichip.com

Step 3: Writing a simple Program with the web
interface

The traditional "Hi Mom" program

This section describes writing programs with the web interface, which is fine for small programs. But you will
really want to use the USB interface to write larger programs, covered in the next section .

3 Coridium ARMweb - Mozilla Firefox
File =~ Edit = Wiew History Bookmarks = Tools

Help

LR ;.&:‘ : 1"‘ L htto:fjarmweb] - [F |(_,|* | & -

CORiDIUM" ARMuweb

Code | Run | Clear | Stop | Controls | Help |

Enter BASIC Commands

Download Program File: [Open |

Welcome to ARMbasic[6.23b] Copyright 2007, Coridium Corcp.
for the ARMexpress with PBASIC extensions

Copyight @ 2007 Condium Coimp

Dione

So type something like the traditional PRINT "Hi Mom"
When you hit the ENTER key it will be sent to the ARMexpress and be echoed back
in the console window. (below)

Page 44

%3 Coridium ARMweb - Mozilla Firefox EEX
File Edit View History Bookmarks Tools Help "

: '-’Q'J ,_KE_& | http:fjarmweb)

€0RiDiUM“‘ ARMweb

Code | Run | Clear | Stop | Controls | Help |
Enter EASIC Commands: |

Telocome to A a=ic[6.23b] Copyright 2007, Coridiwe Corp.
for the Hexpress with PEASIC extensions

Ciownload Frogram Fi

print "Hi Hom™

Copyright @ 2007 Coridium Corp.

Dhone

Now RUN the program

Page 45

%3 Coridium ARMweb - Mozilla Firefox
File Edt View History Bookmarks Tools Help

_-_ﬂ : , @._ - f |th|:|Harml,-,leb||'

QORiDiUM“‘ ARMweb

Code Clear | Stop | Controls] Help |

Enter BASIC Commandg@ or

Welcome to ARMbasic[6.23b] Copyright 2007, Coridium Corp. i
for che ARNexpress wich PEASIC extensions

print "Hi Mom®™

Copyright @ 2007 Cordium Corp.

Diore

Which you can do by either typing RUN or hitting the RUN button at the top of the screen.

And see the results

Page 46

£3 Coridium ARMweb - Mozilla Firefox
File Edt View History Bookmarks = Tools Help

PR , {:‘_ - f |htt|:|”.arml,qebl|' S B U g D 'Ir |G|r : S : ‘ 3]

CORiDIUM" ARMweb

Code | Run E Clear | Srop | Controls | Help |

Enter BASIC Commands.
Download Program File: [Open

Welcome to ARMbasic[6.23b] Copyright 2007, Coridium Corp.
for che ARNexpress wich PEASIC extensions

print "Hi Hom"
run
Weiting to Flash...

. OE code OFE data prograrmed
Executing...

Hi HMom

. Finished in 3 ma

Copyright @ 2007 Cordium Corp.

Crone

You can notice a number of things. First the program is compiled and then written into
Flash memory, and your program takes OK of code and OK of data space.

Next the program will be executed, as evidenced by the output of "Hi Mom" to the console.
ARMexpress also reports back how long the program executed, in this case 3 msec

On to the next Step

Page 47

Step 3: Writing your first Program with BASICtools

Start the BASICtools from the StartMenu or from the Desktop Icon. You should see a welcome message
which has been sent from the ARMmite or ARMexpress-

F
© BASICtools control for ARM
File Edt Options Tools Help

Hml Sh:n|:||| I:Iearl Hes:etj

Welcome back to AFMbasic Kernel [7.09] Copyright Z007, Coridium Corp.

If you do not see this welcome, even after pushing the RESET button, then communication has not been
established.

check cables

check power supply

check COM port choice in BASICtools -> Options

check baud rate in BASICtools -> Options

on non-Coridium Boards, remowve any BOOT select jumpers, press RESET again
if still not working, check theTrouble Shooting Section

The traditional "Hi Mom" program

Page 48

—
© BASICtools control for ARM
File Edt Options Tools Help

Hun| Stﬂpl Dea| H&set|

~
Walcome back to ARMbasic Eernel[7.03] Copyright Z007, Coridium Corp.
Welcome to ARMbasic Hernel[7.09] Copyright 2007, Coridium Corp.
for the AlMmita
W

Entes_ |PRINT “Hi Mom"

So type something like the traditional PRINT "Hi Mom"
When you hit the ENTER key it will be sent to the ARMexpress and be echoed back

in the console window. (below)

© BASICtools control for ARM
File Edt Options Tools Help

Flun| Stapl L‘.lea| Heset|

elcome back to AFRMbhasic Hermel([7.09] Copyright Z007, Coridium Corp.

Melcome to APMbasic Hernel[7.0%] Copyright 2007, Coridium Corp.

for the APMwite

| €

Enter ||

Now RUN the program

Page 49

 BASICtools control for ARM CIEX
File Edit Options Tools Help

Run 5Inp| Elearl Flesel.|

Y
WMelcome back to ARMbasic Kerne/]}él Copyright Z007, Coridium Corp.
ol .
WMelcome to APMbasic Herviel[7.03] Copyright zZ007, Coridium Corp.

for the APMwite

PRINT "Hi Meom" /

N

Which you can do by either typing RUN or hitting the RUN button at the top of the screen.

And see the results

© BASICtools control for 2103
File Edt Options Tools Help

Flun| Sl:upl Elea| H&SE':|

WMelcome to AFMbasic Kernel[T7.09] Copyright 2007, Coridium Corp.
for the APMmite

PRTHNT *“Hi Mom™
RN
Programming Flash Z103...%*+*+
0. 04FE code 0.00KE data programmed
Executing. . .

Hi Mom

. Finished in 4 ms

€|

Enter: ﬂ

You can notice a number of things. First the program is compiled and then written into

Flash memory, and your program takes 40 bytes of code and less than 10 bytes of data space.

Next the program will be executed, as evidenced by the output of "Hi Mom" to the console.

ARMexpress also reports back how long the program executed, in this case 4 msec, which is mostly startup
time.

Also your program is now saved in the ARMmite/express Flash memory. And it will be executed the next
time the board is RESET. So try that...

Page 50

© BASICtools control for 2103
Fils Edit Options Tools Help

Flunl 5tu:np| Elearl Feset

Programming Flash Z103...%+%+
0. 04E code
Executing. . .

program done

0.00F data programuoed

4]

Enter |

On to Step 4

Page 51

ARMweb C support

FreeRTOS

We hawe posted at the FreeRTOS web site a version of FreeRTOS that has been ported to the ARMweb.
This open source system is available to our users.

Coridium will provide C support based on either FreeRTOS or on our proprietary system for a fee for custom
programming.

The FreeRTOS will support a web server interface, but it does not include the HTML inline BASIC compiler.

Page 52

http://www.coridiumcorp.com

Wireless ARMmite Getting Started

Getting Started Wire up Bluetooth Module
Install Software Wire up Zigbee
Wire up USB Custom Serial
Wire up Bluetooth BASICtools Features

Page 53

http://www.coridiumcorp.com

Step 0: Have a wired alternative

Because a wireless link can be an additional unknown, we STRONGLY suggest you have a wired connection
handy, either a SparkFun USB breakout board and connector or something you have that is homebuilt. At
less than $20 this will give you \isibility into what is going on between the PC and the wireless ARMmite.
You can also use this connection to monitor the data from the ARMmite or the wireless modem (do this by
jumpering the RXD pin on breakout board to either RXD or TXD, also remember a GND connection, do NOT
connect TXD when monitoring in parallel with the modem).

Step 1: Install Software

The ARMexpress family use a BASIC Compiler that runs on the PC. Coridium supplies BASICtools which
includes a terminal emulator and IDE that is specifically designed for the ARMexpress and ARMmite. Also,
a number of help files and documents about the ARMexpress will be installed on the machine at this time.
This installer is meant for Windows either 98, NT, XP or XPx64 and Vista.

If you are installing from the CD, then it will automatically run the install program when the CD is inserted. If
downloading from the web, run the SETUP program to start the installation.

i BASICtools Setup: Installation Options

B3] Check the components you want toinstall and uncheck the components
vou don't want ko inskall, Click Next ko continue,

Select components ta install: B&SICkools (required)
Start Menu Shorkcuts

Space reguired; 12,0ME

e)
o R R

Click Next to get started.

Page 54

http://www.sparkfun.com/commerce/product_info.php?products_id=718
http://www.sparkfun.com/commerce/product_info.php?products_id=115

i BASICtools Setup: Installation Folder

_AR] Setup will install BASICEools in the Following folder. Toinstallin a different
i folder, click Browse and select another folder. Click Install to start the
inskallation,

- Destination Folder

- \Program FilesCoridium Browse, .. ’

Space required: 12.0MB
Space available; 414.6GE

Cancel | MallsarE Trskall Svetemivd 47 < Back. I Install I}

Accept the defaults and Install. You may chose a different target directory.

i BASICtools Setup:

Show details I

soft Tristall Systen w2 87 = Hatk i | Close i

The installation will now run, and when it finishes hit Close .

And its as easy as that.

On to Step 2

Page 55

Step 2: Make USB connections

The Wireless ARMmite can be connected to SparkFun's USB breakout board. The minimal connection
uses a 4 pin 0.1" header. This connection gives a hardwired serial connection for configuration and
debugging, which can be useful during the initial setup of the tools and software, or for monitoring serial traffic
during program debugging.

Minimal USB connections. The pin diagram is shown below (pin names to match the USB breakout board)

Additional pins may be wired up to the USB breakout board, so that it will work identically with the original
ARMmite. In this case 5V from the USB will power the board. But when that connection is made a
power supply should NOT be connected.

=
o
P
a
s
¥
*

- Sy] <
R % LWL, L.DH:’IDILJML.EIF{P com
uUse s5v

Below is the schematic with the names representing the perspective of the ARM processor (RXDO0 on the
ARM connnects to TXD on the USB breakout board).

Page 56

http://www.sparkfun.com/commerce/product_info.php?products_id=718

BOOT
FESETH

AT

00 = (D L0 = 07 0 —

J3 CONG
Jg load T5 for monitor/debug
A T RXD0
USEbreakout 3 =00
4
e CON4
COMNg

00 P D L s O —

TLELEEE

Shown below is the orientation with the USB breakout board mounted on the ARMmite, using a 4 pin
receptacle soldered into the breakout board-

& Il | 1 L=
RESETa—11 . alEla o
W' . CORIDIUMEORP. coB

BASICtools Configuration

While you are not using a wireless connection, if you are using just the 4 pin connection to the USB breakout
board, the Wireless ARMmite is functioning in "Wireless" mode as there is no control from the PC for reset.
So for BASICtools to function correctly you must enable the Wireless option shown below.

Page 57

¢ BASICtools control for 2103
File Edit Relaldlelgt

Port

v P Compile ic Hernel[&.Z1]
Control *

--- 1B = gaud
Executin I
Mewline

Char Mode

fonk size #

... Finished in 1 ms
Analyzing C: fguubasicitest hranch_has
processing branch_bas

Programming E103 Flash. .. *+*%+
... 2K rcode 0OE data programmed

Copyright zO07,

-~

Co

Enter: E

On to Step 2

Page 58

Step 3: Make Zigbee connections

The Wireless ARMmite can be connected to Maxstream Zigbee Xbee and Xbee PRO modules
(available at Newark or Digikey). The connection uses two 10 pin 2mm receptacles .

Xbee connections. The pin diagram is shown below-

'-u

iy |

- -

-t

] y

3 r.' TR

RES B
e ww,CORIDIUM

V33

7] 7
TOEEAIA08E

#hee

Shown below is the orientation with the Xboee module mounted on the ARMmite, using two 10 pin
receptacles soldered into the ARMmite-

Page 59

http://www.maxstream.net/products/xbee/xbee-oem-rf-module-zigbee.php
http://www.newark.com
http://www.digikey.com
http://www.sparkfun.com/commerce/product_info.php?products_id=8272
http://www.sparkfun.com/commerce/product_info.php?products_id=8272
http://www.sparkfun.com/commerce/product_info.php?products_id=8272

PC side connection

The other end of the Zigbee wireless connection can use a Maxstream Development Kit or a USB
Maxstream dongle adapter. At present while Zigbee is a standard, modules are only compatable with
each other if they are based on the same firmware which often means both ends are from the same vendor
(Maxstream in this case). Follow directions supplied with that unit for installation on the PC. The
Maxstream X-CTU utility can be used to configure and test the setup.

Setting the Baud rate

The default baud rate for the Xbee module is 9600 baud. This can be changed to 19.2Kb with the X-CTU

utility or it can be lett there. To run the ARMmite at 9600 baud, install a jumper on the 9600 BAUD location.

Page 60

http://www.maxstream.net/products/xbee/dev-kit-zigbee.php
http://www.newmicros.com/index2.php?url=http://www.newmicros.com/cgi-bin/store/order.cgi?form=prod_detail&part=USB-XBEE-DONGLE-CARRIER&id=Is8JgC503tbE7Lq6i15lBd3Hjbr31353
http://www.newmicros.com/index2.php?url=http://www.newmicros.com/cgi-bin/store/order.cgi?form=prod_detail&part=USB-XBEE-DONGLE-CARRIER&id=Is8JgC503tbE7Lq6i15lBd3Hjbr31353
http://www.maxstream.net/support/downloads.php

"= X-CTU [COM7]
PC Settings; Hange Test; Terminal Modem Configuration i

- Modem Parameters and Firmware - Parameter View - Profile -~ Versions

Read i Wwirite i Restore “ Clear Screen i i Save i

|

|

i Load i

Dawnload new
YETZIONE...

[Always update firmware

Modem: XBEE-PRO Function Set Werzion
|«BP24 ~| |«BEE PRO 802.15.4 > 103 v
|

_- RF Interfacing -

‘. B (31RO - Packetization Timeout
- B (1107 - DIO7 Configuration

. B [0) D - DIOG configuration

. B [11D5 - DIOS configuration

to B (1) PO - PO Configuration

- B (0) 4P - 4P| Enable =

e @ 0831 YR - Firmware Wersion

- [[1809) HY - Hardware Yersion ¥

Set’read the zenal interface baud rate for communication between modem zenal port and
host. Bequest non-standard baud rates with values above 0xB0 uzing a terminal window,
Fead BD register to find actual baud rate achieved.

COMY 19200 8-M-1 FLOWSMOMWE XBPZ4 Ver1083 |

Setting the COM port

The port for the USB connection can be set with the Control Panel.

Page 61

E; Device Manager

File Action Yiew Help

e B F8 2 A =Ra

—j Parts (COM & LPT)

F‘p‘ Bluetaoth Serial Part (COM10)
' Bluetaoth Serial Park (C0M14)
7 Eluetooth Serial Port [COM71Y
7 Eluetooth Serial Port [IC0ME)

7 Eluetooth Serial Port [COMEE)
7 Eluetooth Serial Port [IC0Me)

7 Eluetooth Serial Port (290
7 Eluetooth Serial Port [COM31)
7 Eluetooth Serial Port [COMS2Y
7 Eluetooth Serial Port [ICOMS3)
Bluetn:u:nth Serial Park (COMS4)
Communicakions Park (COM1)

ECP Printer Part (LPT1)

reamn PEG-L Serial Park Adapter (COME)
IJ5E Serial Part (COM2)

LICD Covi=l Favk S TRACY

ﬂmawwwwwc

i3

At this point BASICtools will work normally, (make sure you check the Wireless option, and note that the

serial port will be one identified as a USB serial - in capital letters, assuming you're using the USB adapter)-

© BASICtools control for ARM
File Edit Beladae® Tools Help

FEX

CoMz t.:._p] ﬂ] Fiesetl
v PC Compile COM ~
Conkrol r -
Welsome |, wirslacs comi i Copyr (=
ight Z00 comlo 5
for th Baud 3 comlg tensions] |
Mewlne Com’3
Char Mode com?1 =
fork size ¥ comd =
Cormas
cam9
com@0 :
com9l : 1
Com9z =
com93 5
com94 |
offline]
-
Enter: E
On to Step 2

Page 62

Step 3: Make BlueSMiRF connections

The Wireless ARMmite can be connected to SparkFun's BlueSMiRF module . When using the
BlueSMiRF, the power from the wall adapter is applied directly to the BlueSMiRF and it must be
limited to 6V or less. We recommend using a regulated 5V supply such as carried by SparkFun .

The connection can be made with a right angle 0.1" receptacle or by soldering the 2 boards together directly.
The pin diagram is shown below-

ElueSmikF Wa-6
Jd
1
2
fl RXDO
Tx=D0
]
=]
BLUESMIRF
S R4
this keeps the 10K
pullup on BlusSmiRF . .
hiszed to V-6

disrided]:IIEF & . v

Shown below is one orientation with the BlueSMiRF mounted below the ARMmite-

Page 63

http://www.sparkfun.com/commerce/product_info.php?products_id=582
http://www.sparkfun.com/commerce/product_info.php?products_id=8269

PC side connection

The other end of the Bluetooth wireless connection can use a Bluetooth USB dongle . Follow directions
supplied with that unit for installation on the PC. Do not try to install more than 1 Bluetooth USB dongle on a
PC, as the drivers will probably conflict. Also the Bluetooth software will assign a number of serial ports of
which 2 may be used to emulate a serial connection that can be used with the BASICtools.

WIDCOMM tools

After you install the tools (the latest from SparkFun are the WIDCOMM utilities), you will see a BlueTooth
icon on the desktop. When connecting for the first time open this to "pair" the PC to the BlueSmiRF--

Page 64

http://www.sparkfun.com/commerce/product_info.php?products_id=150

(T~ 3 My Bluetooth Places
Pl . Flle Edit View Blustooth Favorkes Tools Help

&) @ - Ej‘ f._“l Search || Folders =

_My Device

o N
Blueknoth Exchanoe Folder
Blustooth Exchange Folder

My Device

aund Bhuet. .,

W P ICL I'r'

miw Fhe service

Find Blustooth O

Entte Bluetooth Meighborbood a Add a Bluetooth Device

arifgure devics:

IFireECEaon

2 My Bluetooth Places\Entire Bluetooth Neighborhood

File Edit ‘iew Bluetooth Faworites Tools Help

ook » &3 (¥ seach [roders i

SparkFun-BT

Bluetooth Security Code Request

) oovoetome -

Befoe a connection can be established, thes computer and the de
ksted sbove must be "paired'!

Paired devices exchange a seciet key each time they connegl® Thi
kemy iz unigue for sach pair of devices: & iz used to venly ids and to
enciypt the data that the devices exchange.

T o pair with this device, snter the devica's security cle®nd click OF.

Bluetooth secunty code: default

I. Ok, l [Cancel] [Help -E

The Bluetooth security code for the SparkFun BlueSmiRF is "default". In some versions of the BlueSmiRF
this pairing must occur within 60 seconds of the BlueSmiRF powering on. So it may be necessary to cycle
power before the pairing. The symptom for not pairing is that no senices will be available for the BlueSmiRF.

Now paired, if you double click on the SparkFun-BT it should display

\w \
Ty COMO on SparkFun-ET
Mot Connecked

At this point you should be able to connect the serial port by double clicking or right clicking on this icon.
the connection is made, the flashing green LED will go off on the BlueSmiRF and its red LED should be

continously on. The icon should now show-

Unkroven: Major{0), Minc

Explore
Cpen

Discover Available Servicas

Pair Device

Properties

Page 65

};\1'\,
i ey (COMO on SparkFun-BT
v Connecked

o The Bluetooth serial port COMBE iz now configured to connect to the device
\ SparkFun-BT.

The Application that will uge thiz conhection must be configured to use COME,

The application may be started at any time.

[Do mot display this message again

Now you know where the com port has been located, as COM6 in the above example.

You can now start the BASICtools and use COM6. Warning, the drivers will often at this point get confused,

and you may not be able to make the connection, but at least at this point everything is configured correctly.

One indication is that the red LED on the BlueSmiRF will go off, and it will return to flashing green. The best
course is to reboot Windows at this point, start BASICtools, set the com port and baud rate and then make
the Bluetooth connection.

Setting the Baud rate

The default baud rate for the BlueSMIRF is 9600 baud. Once communication is established it can be
changed to 19.2Kb or it can be left at 9600. To run the ARMmite at 9600 baud, install a jumper on the 9600
BAUD location.

The command to change the baud rate is done with an AT command, specifically ATSW20,79,0,0,1<cr>
which can be done with a short BASIC program

version 7

PRINT "ATSW20,79,0,0,1"
version 6

SEROUT 16,9600,["ATSW20,79,0,0,1",13]
To return to 9600 baud

PRINT "ATSW20,39,0,0,1"

BlueSoleil connection

In IVT's BlueSoleil, this is not a trivial excercise. And it seems to be a bit hit or miss. The listing of ports in
the Control panel also seems a bit arbitrary and the services option of BlueSoleil seems to misreport which
COM port will be assigned. But once a connection is made on the proper port, it does seem to stay there
through reboot.

To connect the serial port, you may need to Refresh Devices, Refresh Senvices, then Connect. When all is
working well you can identify the port being used in the Status window-

Page 66

General l

~ Connection
Device Marme: SparkFunBT |
Status: Conneched. '
Dwrahon: 0000:339
Paired: Mo
Role: Slava
COM Pet COMSISPP) I
~ Bictivity _
Sent. . @ﬁ _____ Received -
4 |
Bytes: 224 | i)
- Radio Signal Steength—————————]
Wesk Good Stong |
EREH R HREE
Froperties Disconrect | Urpar |

0K | Cacel | Hep |

At this point BASICtools will work normally, (make sure you check the Wireless option, and note that the
serial port will not be one identified as a USB serial - in capital letters)-

Also if you disconnect the service in the BlueSoleil utility, you will need to exit the program, restart it, refresh
devices, refresh senvices and then connect.

Page 67

¢ BASICtools control for 2103

On to Step 2

File Edit Help
oMz f Huni Sh:upi Eleari Heseti
. ZOMS
Welcome | w PC Compile comnl [6.21] Copyright 2007, Co
ridium C Conkral »
) comlld
b W Wireless
Analyzin comld Z.bas
Baud L com3
processi Mewlne ¥ com7l
Programm
. 1IE Char Mode Coms
Executin fort size Comas
W ooom? o F
Const 0K caman
4 of for loop
Eoo should be 500 comsl
500 should he Sog COM3E
Loo should be E0L coms3
Loo should be 500 com94
a test or I offline
should hawve printed r £
=
10 »
Enter: E

Page 68

Step 3: Make BlueTooth SMD module connections

The Wireless ARMmite can be connected to SparkFun's BlueTooth v2.0 SMD module .

Under development

.....

BT MODULE

So far there has not been enough customer interest to complete this board.

Page 69

http://www.sparkfun.com/commerce/product_info.php?products_id=149

Step 3: Custom Serial connections

The Wireless ARMmite can be used with the USB breakout board to download BASIC code, but then use
the download/debug connection to communicate with some other serial device..

Available serial connections. The pin diagram is shown below (pin named for perspective of the ARM CPU,
RXD is an input to the ARM).

-
-
-
=
)

RESETIE=—R| (2=e)

: = l-',m"" v
= WwWw,CURIDIUMCURP.Com

Page 70

BASICtools Features

BASICtools startup

When BASICtools starts up, it will STOP any user program. So if you find yourself with a program flooding

the PC serial port with data, close BASICtools and then restart it (you may need to use the Task Manager to
exit). It will STOP your spewing program.

BASICtools Layout

best oubput
from
ARMmite ar
ARMexpress
T ——

eniber data for
DEBUGIM
e when
progranm
ILNnIng OF Wou
can iyps in
shoit programz]
line by line
b

last program loaded - detected CPU type

© BASICtools control for 2106

File Edt Options Tobls Help
:fonusbasic/zcopedScopeDemn bas Fluni Stupl Elearl I-'I&s&!|

Walcome back to ARMbasic([6.24) Copyright 2007, Coridium Corp.

__________‘_‘—\—_

Analvzing C:/gnubasic/scope/Scopelenc. bas
processing SCOPED~1.BAS

proceszing LoglicEcope.bas

Programming Flash Z106.._ *+%+

P 1.71K code 1.564F data programmed

Enln\r:!\

keyw ords: enter line debugin type BASIC commands

Buttons

Page 71

clear text wandow and erase any

start the loaded program user byping inka E nter; window

* BASICtools control for 2106 SBEX
File Edit Options Tools Help
C:/gnushasic/zcope/ScopeDemoba: Ron i Sgnp [Clear I Flflsﬂ |

\ i

Walcome back to ARMbasic([6.24] Copyright Z007, Corid Corp.

#hop a Iunning program
by rezeting and izzuing

Analyzing C:/gnubasic/scope/Scopelenc.bas aBREAK

I processing SCOPED~1.BAS
;Eg:::nsmci‘ng procezzing Loglclcope.bas
the Flash * Programming Flash Z106_ .- *+%+
1.54F data programmed

reget the board which vall
reztart the last program that
waz loaded

ndicates
block zent
and +
returned
when block iz
prodrarnnred

%

The CLEAR button only erases the display screen and the buffer on the PC of statements you have typed
into the Enter window.

To erase the program, load a new program, either a line at a time or using the Load menu.

keyw ords: reset button stop button run button clear button

File Menu
open & blark file in chioose a new file to
wour text Editos load
 BASICtools control for 2106
Edit Options” Tools

ieload the # £
Izt file Mew File /C\r|+N !-uj:asb:a'scnpa:’ﬁmpeﬁemn.bas Ftuni Stﬂp| Clear! H&s&li

Load File =

~. Reload File Ctrl-R 1
File History Cifgnubasic/scopefScopelemo.bas ht 2007, Coridium Corp.
ikt text - Prink Chrl+P C:lgnubasicftesttests, has)
window ')) recently compiled

Edit Twping {:/gnubasicftestjbranch.bas s
Edit typing in save In iates C:/gnubasicftesttestIweb.bas
newlile. bas Y - -
[remermber Quit Ctrl-Q
o zave it o
e Programming Flash 210 WL

.- 1_71K code data programnmed
save the pre-processed file and compiled file-
useful for ARMweb code development
b
Enter: E

file load file reload file print save file quit

Page 72

Edit Menu

open a file in pour besd copy selection from test
Editos wiridow to buffer
H wle D o 0 b L]
File Tools
OF'EHE ic/zcopefScopel emo. bas Ftun! 5tnp| Elearl Hemll
TEAMT
window Copy (CErl4C =
Search Ctrl+F
Wals rhooss Editor agic[6.24] Copyright 2007, Coridium Corp.
Chl:u:useg wour
test Editor Analyzing C: /gquubasic/scope/Scopelenc.bas
processing SCOPED~1.BAS
rocesging LogicZcope.bas
grugrming Flash Zl0&6...%+*+
.- 1.71E code 1.84E data programmed
R
Enter: E

keyw ords: edit choose editor

Options Menu

riarmally set
o 19, 2Kb

use |f on L

select the senal port, ports in capital letters are
recognized az JSE senal ports

B - cows | e
s — :
Control | offline / DEMO mode
| refresh
i e Baud Ll
| __MNewline ¥
| font size ¥
Htl:nm to ARMbasic Kernel([7.43] Capyright 2008

|, Coridium Corp_
| for the ARMmite

l Enter: [

Refresh will check for serial devices again, it is useful if you plugged a device in after starting BASICtools.

keyw ords: options port baud new line char mode PC compile control throttle

Control Menu

Page 73

€ BASICtools control for ARM = | (B

File Edit [Options] Tools Help

Pot * Flun| Stonl Ehali Haadl

(Wl m® + MNormal use this with ARMmit=, and PRO with =

e Coridium USB dongle
ARMweb —— | :

Baud L L uze thiz with ARMweb [l

: Bgacy |

Newline ¥ MatLab use these if you have re- i

font size *| Z programmed the FTDI part,]
—— see the Hardware Section for

Manual maore detalls (Matlab/Legacy)
PRO-your cable
Welcome to ARMbasic Eerne

; Coridium Corp.
for the ARMmite

Copyright 2008

use this with NON-Coridium hardware

usa this for PRO with FTDI cable -
with na cantrol of DTR or RTS

Enter

keyw ords: options port baud new line char mode PC compile control throttle
BASIC variable viewer

Open this window from the Tools Menu (variables)

‘File Edit Options [Tools | Help

Variables -q.._._"__ Runl Stupl .Clearl R.esetl

show users BASIC variables
Code o \
Welcome to ARMbasic Fernel [EWJ5]

i
|
b for the SuperPro

i

resume the user program CoPyright 2010, Coridium Corp.

show addresses of users code labels

variables window

Page 74

* BASIC variables

L':'G3*4 type & portion of & varable name . ——— Find
As LEollvale== “'this is a test with a string that is longer tham 16 ———-—————————-
string LTHOB6973 20697220 61207465 TITAHZOFT GYTLGB20 61207374 T2696E67T 20744

S74206973 2B6CAF6E 67657220 7468616E 283136208 20202020 20202020 20202

MEVENES £9pap2D2D 20202020 20202020 20202020 20202020 20202020 2078797
B intecer array $0PPPEEOD PEOOONI7 DOPDEEOD DOBOOPDD DPPPDPED DOODEERD DOBOPOLWD DOODE
nexvalues SDDOBOODD DODOPOOE PPPOBBOD
decimsal values a 55 o a @ a 7
[}]] a
I integer variable Lopeepap2 2
b wEle decimal walue
FESUME Y0Ur program Troem
refresh variable vales the STOP stafement
p
b
< / it ¥
Hafmxlﬂ Resurme

This page is active when your program ENDs or hits a STOP statement or has been STOPed with the button.

code window

, € BASIC code

Locate | Find |

00010298 JUMPAROUNDHWP M

0001082a4 DOINITSERIAL

00010784 JUHPAROUNDSERIAL

98016bas HATH T user defined labels, like
00018ba8 SHOWCOUNT FUNCTION, SUB or label:
00010cd8 SHOWHWPWH

I: .---"'\...__‘_ hex address of that label in Flash

keyw ords: variable dump breakpoint STOP view memory

Search Window

Open this window from the Edit Menu

Page 75

uze regular exprezzion

enter kext o seanch for

thiz will zcan 2l files in your sowrce parser
ree ! ignore case
|
¢ Project Search (]3]
Search sting: |_Samples| ! Fir-u:II ™ CaseSensiive | Use Regesp
A

I Fibe C:/Program Fies/Coridium/bin/BAS| Clib/LogicScope. bas
8 ; fdefine NumSamples 400

a4 - if i< 1" then " wait for thiz command fiam BAS|Clools to dumnp zamples
A9 dirn Samples{Mum3 amples] az integer

: i=M umS amples

EER Samples)i] = “GRIO_IOPIN ' no difference in speed

B4’ & amples(i] = “gpio

90 Samplesli) = "GPIO_IOPIN ' nio diference in speed

91" Samplesi] = “gpio

1039: ifi="3"then "wyait for thiz command from BASIChools to dump samples
114 for i=MumS amples downto 1

115: prirt hexl S amples(i))

11 matches found W

ol o

keyw ords: search
Logic Scope Window

This module must be included in your BASIC program. It will monitor the pins for a period of time when called
from your program.

See the example program ScopeDemo.bas and details in the Logic Scope Section .

Page 76

r

* Logic Scope

.. »indicates this ine
iz bEing driven

n J"L L A S | W 6 S Y 6 N A Y | Y U | SO | U
L VO ¥ S Y I [VN I W A A O A A I A
T ."_'LE A A A R A I A A A A

scan hirme 4000 us
[aRMriite 3] <space> RUN| ¥ single timebase (us/dv) [400 3] T persistence CLEAR

keyw ords: oscilloscope logic analyzer logic scope

Page 77

Win98 Setup

<.
The BASICtools.exe is not compatable with Win98. BASICtools.exe is generated by the Freewrap
utility which turns a Tcl program into a standalone executeable requiring no other .DLLs or support programs.

There seems to be a bug in the Freewrap that does not support the calls to batch (.BAT) files that
BASICtools uses to run the pre-processor.

When Tcl is installed on a Win98 system, and the Tcl source is run that way, it all functions normally. So
that is the current work-around for Win98 systems. So to run BASICtools on Win98, you will need to
install some version of TcITk. We like the MinGW wersion as it is pretty simple and requires only a few
.DLLs. This is available at SourceForge.net, and we also have a copy on our server-

TclTk 8.4.1 installation

This is a self-extracting executeable that will install TclTk.

Once this is installed copy the BASICtools.tcl file to the \Program Files\Coridium\ directory
BASICtools.tcl

Change the Desktop shortcut for BASICtools from

C:\Program Flles\Coridium\BASICtools.exe to C:\Program Flles\Coridium\BASICtools.tcl

This will launch the Tcl source version which runs on Win98.

While this is not optimal, it does work, and will probably be required for Win98 to be used.

Page 78

http://www.coridiumcorp.com/files/tcltk.exe
http://www.coridiumcorp.com/files/BASICtools.tcl

ARMbasic Standalone Compiler

<

This section does NOT apply to Coridium Hardware
Products, it is for installing BASIC on boards from
other vendors.

The ARMbasic compiler runs on the PC, in combination with a BASIC support library that is installed on the
ARM.

Getting Started ‘F"Vriting your fi:zt plrggram
Install Software Mrogrammlzlg e
Install DEMO Firmware Tr?)fb(::g]l?ozig;ograms
Unlocking the firmware installer T et

Page 79

This section does NOT apply to Coridium Products, it is for
installing BASIC on boards from other vendors.

Step 1: Install Software

The ARMbasic compiler runs on the PC, in combination with a BASIC support library that is installed on the
ARM. Coridium supplies BASICtools which includes a terminal emulator and IDE that is specifically
designed to run BASIC on an ARM processor. Also, a number of help files and documents about the
ARMbasic will be installed on the machine at this time. This installer is meant for 32 bit Windows either NT,
XP or XPx64 and Vista.

The software is downloaded from the web, and run as an installer SETUP program.

il BASICtools Setup: Installation Options

ARl Check the components you want toinstall and uncheck the components
wou don't want toinstall, Click Mext to continue,

Select components ko install: BASICtools (required)
Skart Menu Shorkcuts

Space required: 12,0MB

T s T
e}
o R

Click Next to get started.

i BASICtools Setup: Installation Folder

R3] Fetup will install BASICEools in the Following Folder, To install in a different
[folder, click Browse and select another folder. Click Install to start the
inskallation,

Destination Folder

Browse, ..

Space required: 12,0MB
Space available: 414 .6GE

Cancel < Back 1 Inskall |}

Accept the defaults and Install. You may chose a different target directory.

Page 80

i BASICtools Setup:

| Completed

Show details I

Filisott Tnstall Svstem vz a7 = Hatk i | Close i

The installation will now run, and when it finishes hit Close .

And its as easy as that.

On to Step 2

Page 81

This section does NOT apply to Coridium Products, it is for
installing BASIC on boards from other vendors.

Step 2: Install DEMO Firmware, if you have purchased
the compiler skip to step 3

The ARMbasic compiler is freely downloaded, but the utility to install BASIC support libraries is locked to a
PC. But we do support a DEMO mode that limits variables to 100 words and 4K of code. To install this
firmware follow these steps.

The software installed in the previous step is NewFirm for the standalone ARMbasic compiler.

i) EBrother HL-52500N

T Coridium »

) andlinuzx

| £ Basictools
| &7 UninstallBasic
. © NewFirm

NewFirm allows you to choose the serial port on the PC from a list of known ports. Ports in that list that
are capitalized were determined to be using FTDI USB serial devices. You must also set the control type,
For Coridium style designed boards which use DTR for reset and RTS for boot, this can be selected by the
Normal checkbox. For boards without those connections, you must Manually get the board into a ROM boot
configuration. This is done by holding P0.14 low while asserting RESET. For instance on Olimex boards this
is done by shorting the BSL jumper while pushing RST. On Futurelec boards, hold the LOAD button while
pressing and releasing RESET.

Page 82

® Coridium Firmware Installer

File BeER Crystal Dividers Baud Help

Select CPU tupe or TEST connection Select COM port

f+ COM2 }7FTDI notts
" COME

" comi other zerial
" com3 Pos

Select control
™ Momal DTR RTS
" Legacy IDTR IATS
T Manual

TEST LOAD DEMO I

Page 83

[o 1 -~ et = te =

cohneching...

Coperight 2006, Coridium Corp.
Synchronizing

Setting ozcillator

Ok

OE.

TesT|

If this does not pass, then you cannot go on to the next step. You must verify your connections, choice of
COM port, and whether you are driving P0.14 low while driving RST on the LCP2xxx low, and then releasing
it. These would be the same steps you use to program any hex file with a program like FlashMagic. Refer to
the documents that came with your PCB.

Once the TEST passes, you can load the DEMO code. Set the CPU and Crystal values. Then you can
LOAD DEMO firmware.

Install Firmware on ARM

This part of the install needs to be run once to place a base set of libraries on the ARM processor. This
firmware includes the initialization code, communication routines, and a set of subroutines called from the
user ARMbasic program.

The NewFirm utility is also used to accomplish this. The first time you run this portion of the installation, a
key will be required. This process is not yet automated, and requires you to get a key from Coridium. For
details on that look at the unlock pages .

After passing the communication TEST, choose the CPU type -

Page 84

* Coridium Firmware Installer

File Me=N8 Crvstal Dividers Baud Help

2131 Select CPL twpe or TEST connechion Select COM part
2132 i COMZ

i COME

2138 i coml
2141 i com3

Select control
2104 " MWomal DTR RTS
21z " Legacy IDTR IRTS
2214 i tdanual

Zz2e2
2204 TEST

Once the CPU is chosen the TEST button will become an UPDATE.

Before doing the UPDATE, check the Crystal setting, for instance the Olimex board uses a 14.7456 MHz
crystal.

* Coridium Firmware Installer
File CPU Be@EEN Dividers Baud Help

14,7456
15,000
16,000
15.000
v 20,000 heck Baud Rate, Crpstal Settings
Cither

You can also choose the default baud rate.

Page 85

C Coridium Firmware Installer
File ©CPU Crwstal Dividers BEENGS Help

Che Sa000 Erpztal Settings
S7a00
115200
okher

Remember, that if you change the baud rate here, you will need to set the baud rate in BASICtools, the

default is 19.2Kb.

Now you are ready to place the Firmware on your PCB.

You can use the UPDATE option if you have purchased an ARMbasic firmware license, if not you can install

the demo code.

Click UPDATE or click LOAD DEMO

€ progress

Hl Sonchronizing
L .Setting ozcillator

O

| dowinloading 2103...

-l Copyright 2008, Caridium Carp., Single Uzer Firmyware update

49:4:3:2000000000ading 2138
2133 11416 bytes loaded

LPC2103 CPU with 20000000 crpstal at 19132 baud

(F cpu 2000 2000 85a 7

il COR-Port W ACOME opened...
' Synchronizing

| Setting oscillator

B rtRT SEctar O A0TB] et
L \riting Sector 1 [4096]: ...
HR M TiNng Sector 2 [A098] e
' Download done

Assuming all was connected correctly, you will see something like above, and you are now ready to start
writing ARMbasic programs. This is the last time you will need to run the NewFirm program, as the portion

of the Flash that contains your program will be maintained by the BASIC program.

Remowve any BOOT jumpers, and press RESET, which will now launch the ARMbasic runtime monitor

running on your PCB.

If you bought an ARMbasic compiler, continue to installing full firmware.

Page 86

If you are just running the demo code, continue to write your first program.

Page 87

Step 3: Writing your first Program with BASICtools

Start the BASICtools from the StartMenu or from the Desktop Icon. You should see a welcome message
which has been sent from the ARMmite or ARMexpress-

F
© BASICtools control for ARM
File Edt Options Tools Help

Hml Sh:n|:||| I:Iearl Hes:etj

Welcome back to AFMbasic Kernel [7.09] Copyright Z007, Coridium Corp.

If you do not see this welcome, even after pushing the RESET button, then communication has not been
established.

check cables

check power supply

check COM port choice in BASICtools -> Options

check baud rate in BASICtools -> Options

on non-Coridium Boards, remowve any BOOT select jumpers, press RESET again
if still not working, check theTrouble Shooting Section

The traditional "Hi Mom" program

Page 88

—
© BASICtools control for ARM
File Edt Options Tools Help

Hun| Stﬂpl Dea| H&set|

~
Walcome back to ARMbasic Eernel[7.03] Copyright Z007, Coridium Corp.
Welcome to ARMbasic Hernel[7.09] Copyright 2007, Coridium Corp.
for the AlMmita
W

Entes_ |PRINT “Hi Mom"

So type something like the traditional PRINT "Hi Mom"
When you hit the ENTER key it will be sent to the ARMexpress and be echoed back

in the console window. (below)

© BASICtools control for ARM
File Edt Options Tools Help

Flun| Stapl L‘.lea| Heset|

elcome back to AFRMbhasic Hermel([7.09] Copyright Z007, Coridium Corp.

Melcome to APMbasic Hernel[7.0%] Copyright 2007, Coridium Corp.

for the APMwite

| €

Enter ||

Now RUN the program

Page 89

 BASICtools control for ARM CIEX
File Edit Options Tools Help

Run 5Inp| Elearl Flesel.|

Y
WMelcome back to ARMbasic Kerne/]}él Copyright Z007, Coridium Corp.
ol .
WMelcome to APMbasic Herviel[7.03] Copyright zZ007, Coridium Corp.

for the APMwite

PRINT "Hi Meom" /

N

Which you can do by either typing RUN or hitting the RUN button at the top of the screen.

And see the results

© BASICtools control for 2103
File Edt Options Tools Help

Flun| Sl:upl Elea| H&SE':|

WMelcome to AFMbasic Kernel[T7.09] Copyright 2007, Coridium Corp.
for the APMmite

PRTHNT *“Hi Mom™
RN
Programming Flash Z103...%*+*+
0. 04FE code 0.00KE data programmed
Executing. . .

Hi Mom

. Finished in 4 ms

€|

Enter: ﬂ

You can notice a number of things. First the program is compiled and then written into

Flash memory, and your program takes 40 bytes of code and less than 10 bytes of data space.

Next the program will be executed, as evidenced by the output of "Hi Mom" to the console.

ARMexpress also reports back how long the program executed, in this case 4 msec, which is mostly startup
time.

Also your program is now saved in the ARMmite/express Flash memory. And it will be executed the next
time the board is RESET. So try that...

Page 90

© BASICtools control for 2103
Fils Edit Options Tools Help

Flunl 5tu:np| Elearl Feset

Programming Flash Z103...%+%+
0. 04E code
Executing. . .

program done

0.00F data programuoed

4]

Enter |

On to Step 4

Page 91

Step 4: Programming the 10

Clear previous program

© BASICtools control for 2103
File Edit Options Tools Help

[

Enter: EElEAFi

To begin a new program, you should CLEAR the previous one. You can do this with either the button or by
typing clear.

A program that uses 10

Type the following program in the console window. (below -- assuming Olimex 2106 proto board, an LED is
connected to 10(12) on the Olimex, I0(15) on many Coridium boards).

DIR(12)=1 " enable pin 12 as an output

WHILE X<30
OUT(12) = XAND 1 " drive pin 15 high when x is odd, low when x is even
X=X+
WAIT(500)

LOOP

Now RUN the program

Page 92

© BASICtools control for 2103
File Edit Options Tools Help

Flunl 5tu:up| Elaarl Fleseli

DEX

DIR(LE}=1

THILE X=20
OUT(LlS) = X AND 1
=M+l
WAIT(S00)

LOOP

]

EnlarﬂHl.lN b]

The LED on the PCB should pulse 15 times.

You can allow the program to finish or --

Stop the program

© BASICtools control for 2103
Fila Edt Options Tools Help

Flun| Slnpl L'.lea.'| Heset|

DIR(LE}=1
WHILE X<30

OUT({LE) = ¥ AND 1L

H=E+l

WAIT(ED0)
Loop
RO
Programwming Flash Z103...%+*+

0. 10K code 0.01K data programmsd

Executing. ..

]

Enter |

To stop a running program simply press the Stop button.

On to Step 5

Page 93

Step 5: More Complex Programming

Choose a File

While the Enter line can be useful for small programs or quickly checking out hardware, you will probably
soon need to write larger programs. The way to do this is with a text editor. We don't enforce any text editor
on you, you can choose your favorite. We tend to use the Crimson Editor, though a number of users are
liking NotePad Plus (NPP). Once you've typed up your program you can load that with BASICtools. It is
easier to create a larger program with a text editor and then to Load File. You can link BASICtools to your
favorite editor with the options (see the next section), or launch the original Windows Notepad if no editor is
chosen.

Also the Enter line is limited in that #include <library> may be used, but the general pre-processor #include
and other #directives should be awided when typing a program a line at a time.

© BASICtools control for 2103
W Edit Options Tools Help

Mew File Crrl+id Hun| Stﬂpl L‘.lear| Heset|

A
Reload File Ckd-R
File History 4
Prink: CtrP
Edit Typing

Save Inbermediates QL03...*+*+
0.01E data programmed
Couik Chrl-)

. Finished in 15000 ms

[

Enter |

Page 94

http://www.crimsoneditor.com/
http://notepad-plus.sourceforge.net/uk/site.htm

" BASICtools control for 2103

Load File

[>

ﬁ _

My Recent

€

Deskiop

9

My Computer

File name: l \' I Open I

MyMetwork | Fiesof ype: | BASIC Source files [“bas] vl [cancel |

You're now ready to start tackling your application. Check with the Yahoo Forum for files and help from
other users of ARMbasic products. There are also examples on the Coridium Website Programming
pages.

For more details on the BASICtools IDE check the next page.

Page 95

http://tech.groups.yahoo.com/group/ARMexpress/
http://www.coridiumcorp.com/ProgrammingEx.php
http://www.coridiumcorp.com/ProgrammingEx.php

BASICtools Features

BASICtools startup

When BASICtools starts up, it will STOP any user program. So if you find yourself with a program flooding

the PC serial port with data, close BASICtools and then restart it (you may need to use the Task Manager to
exit). It will STOP your spewing program.

BASICtools Layout

best oubput
from
ARMmite ar
ARMexpress
T ——

eniber data for
DEBUGIM
e when
progranm
ILNnIng OF Wou
can iyps in
shoit programz]
line by line
b

last program loaded - detected CPU type

© BASICtools control for 2106

File Edt Options Tobls Help
:fonusbasic/zcopedScopeDemn bas Fluni Stupl Elearl I-'I&s&!|

Walcome back to ARMbasic([6.24) Copyright 2007, Coridium Corp.

__________‘_‘—\—_

Analvzing C:/gnubasic/scope/Scopelenc. bas
processing SCOPED~1.BAS

proceszing LoglicEcope.bas

Programming Flash Z106.._ *+%+

P 1.71K code 1.564F data programmed

Enln\r:!\

keyw ords: enter line debugin type BASIC commands

Buttons

Page 96

clear text wandow and erase any

start the loaded program user byping inka E nter; window

* BASICtools control for 2106 SBEX
File Edit Options Tools Help
C:/gnushasic/zcope/ScopeDemoba: Ron i Sgnp [Clear I Flflsﬂ |

\ i

Walcome back to ARMbasic([6.24] Copyright Z007, Corid Corp.

#hop a Iunning program
by rezeting and izzuing

Analyzing C:/gnubasic/scope/Scopelenc.bas aBREAK

I processing SCOPED~1.BAS
;Eg:::nsmci‘ng procezzing Loglclcope.bas
the Flash * Programming Flash Z106_ .- *+%+
1.54F data programmed

reget the board which vall
reztart the last program that
waz loaded

ndicates
block zent
and +
returned
when block iz
prodrarnnred

%

The CLEAR button only erases the display screen and the buffer on the PC of statements you have typed
into the Enter window.

To erase the program, load a new program, either a line at a time or using the Load menu.

keyw ords: reset button stop button run button clear button

File Menu
open & blark file in chioose a new file to
wour text Editos load
 BASICtools control for 2106
Edit Options” Tools

ieload the # £
Izt file Mew File /C\r|+N !-uj:asb:a'scnpa:’ﬁmpeﬁemn.bas Ftuni Stﬂp| Clear! H&s&li

Load File =

~. Reload File Ctrl-R 1
File History Cifgnubasic/scopefScopelemo.bas ht 2007, Coridium Corp.
ikt text - Prink Chrl+P C:lgnubasicftesttests, has)
window ')) recently compiled

Edit Twping {:/gnubasicftestjbranch.bas s
Edit typing in save In iates C:/gnubasicftesttestIweb.bas
newlile. bas Y - -
[remermber Quit Ctrl-Q
o zave it o
e Programming Flash 210 WL

.- 1_71K code data programnmed
save the pre-processed file and compiled file-
useful for ARMweb code development
b
Enter: E

file load file reload file print save file quit

Page 97

Edit Menu

open a file in pour besd copy selection from test
Editos wiridow to buffer
H wle D o 0 b L]
File Tools
OF'EHE ic/zcopefScopel emo. bas Ftun! 5tnp| Elearl Hemll
TEAMT
window Copy (CErl4C =
Search Ctrl+F
Wals rhooss Editor agic[6.24] Copyright 2007, Coridium Corp.
Chl:u:useg wour
test Editor Analyzing C: /gquubasic/scope/Scopelenc.bas
processing SCOPED~1.BAS
rocesging LogicZcope.bas
grugrming Flash Zl0&6...%+*+
.- 1.71E code 1.84E data programmed
R
Enter: E

keyw ords: edit choose editor

Options Menu

riarmally set
o 19, 2Kb

use |f on L

select the senal port, ports in capital letters are
recognized az JSE senal ports

B - cows | e
s — :
Control | offline / DEMO mode
| refresh
i e Baud Ll
| __MNewline ¥
| font size ¥
Htl:nm to ARMbasic Kernel([7.43] Capyright 2008

|, Coridium Corp_
| for the ARMmite

l Enter: [

Refresh will check for serial devices again, it is useful if you plugged a device in after starting BASICtools.

keyw ords: options port baud new line char mode PC compile control throttle

Control Menu

Page 98

€ BASICtools control for ARM = | (B

File Edit [Options] Tools Help

Pot * Flun| Stonl Ehali Haadl

(Wl m® + MNormal use this with ARMmit=, and PRO with =

e Coridium USB dongle
ARMweb —— | :

Baud L L uze thiz with ARMweb [l

: Bgacy |

Newline ¥ MatLab use these if you have re- i

font size *| Z programmed the FTDI part,]
—— see the Hardware Section for

Manual maore detalls (Matlab/Legacy)
PRO-your cable
Welcome to ARMbasic Eerne

; Coridium Corp.
for the ARMmite

Copyright 2008

use this with NON-Coridium hardware

usa this for PRO with FTDI cable -
with na cantrol of DTR or RTS

Enter

keyw ords: options port baud new line char mode PC compile control throttle
BASIC variable viewer

Open this window from the Tools Menu (variables)

‘File Edit Options [Tools | Help

Variables -q.._._"__ Runl Stupl .Clearl R.esetl

show users BASIC variables
Code o \
Welcome to ARMbasic Fernel [EWJ5]

i
|
b for the SuperPro

i

resume the user program CoPyright 2010, Coridium Corp.

show addresses of users code labels

variables window

Page 99

* BASIC variables

L':'G3*4 type & portion of & varable name . ——— Find
As LEollvale== “'this is a test with a string that is longer tham 16 ———-—————————-
string LTHOB6973 20697220 61207465 TITAHZOFT GYTLGB20 61207374 T2696E67T 20744

S74206973 2B6CAF6E 67657220 7468616E 283136208 20202020 20202020 20202

MEVENES £9pap2D2D 20202020 20202020 20202020 20202020 20202020 2078797
B intecer array $0PPPEEOD PEOOONI7 DOPDEEOD DOBOOPDD DPPPDPED DOODEERD DOBOPOLWD DOODE
nexvalues SDDOBOODD DODOPOOE PPPOBBOD
decimsal values a 55 o a @ a 7
[}]] a
I integer variable Lopeepap2 2
b wEle decimal walue
FESUME Y0Ur program Troem
refresh variable vales the STOP stafement
p
b
< / it ¥
Hafmxlﬂ Resurme

This page is active when your program ENDs or hits a STOP statement or has been STOPed with the button.

code window

, € BASIC code

Locate | Find |

00010298 JUMPAROUNDHWP M

0001082a4 DOINITSERIAL

00010784 JUHPAROUNDSERIAL

98016bas HATH T user defined labels, like
00018ba8 SHOWCOUNT FUNCTION, SUB or label:
00010cd8 SHOWHWPWH

I: .---"'\...__‘_ hex address of that label in Flash

keyw ords: variable dump breakpoint STOP view memory

Search Window

Open this window from the Edit Menu

Page 100

uze regular exprezzion

enter kext o seanch for

thiz will zcan 2l files in your sowrce parser
ree ! ignore case
|
¢ Project Search (]3]
Search sting: |_Samples| ! Fir-u:II ™ CaseSensiive | Use Regesp
A

I Fibe C:/Program Fies/Coridium/bin/BAS| Clib/LogicScope. bas
8 ; fdefine NumSamples 400

a4 - if i< 1" then " wait for thiz command fiam BAS|Clools to dumnp zamples
A9 dirn Samples{Mum3 amples] az integer

: i=M umS amples

EER Samples)i] = “GRIO_IOPIN ' no difference in speed

B4’ & amples(i] = “gpio

90 Samplesli) = "GPIO_IOPIN ' nio diference in speed

91" Samplesi] = “gpio

1039: ifi="3"then "wyait for thiz command from BASIChools to dump samples
114 for i=MumS amples downto 1

115: prirt hexl S amples(i))

11 matches found W

ol o

keyw ords: search
Logic Scope Window

This module must be included in your BASIC program. It will monitor the pins for a period of time when called
from your program.

See the example program ScopeDemo.bas and details in the Logic Scope Section .

Page 101

r

* Logic Scope

.. »indicates this ine
iz bEing driven

n J"L L A S | W 6 S Y 6 N A Y | Y U | SO | U
L VO ¥ S Y I [VN I W A A O A A I A
T ."_'LE A A A R A I A A A A

scan hirme 4000 us
[aRMriite 3] <space> RUN| ¥ single timebase (us/dv) [400 3] T persistence CLEAR

keyw ords: oscilloscope logic analyzer logic scope

Page 102

This section does NOT apply to Coridium Hardware Products, it is
for installing BASIC on boards from other vendors.

Writing ARMbasic Firmware

The ARMbasic compiler is freely downloaded and there is a demo version of firmware freely available, but the
to install the full BASIC a special NewFirm utility has to be purchased from Coridium.

The software installed in the previous step is NewFirm for the standalone ARMbasic compiler.

i) Brather HL-52500N

© Coridiom »

? andLinuzx

| B Basictools
| & UninstalBasic
. © NewFirm

A specific version of the NewFirm has been built for you. This utilty does require a network connection, and it
is limited to 5 installs for the single user license, and 100 installations for the commercial license. Larger
licenses are available, contact the Coridium Sales Department.

On to Step 3

Page 103

Trouble Shooting

Reset Target PCB shows no message

¢ BASICtools control for 2103
File Edit Eslas

Help

4 comz I\LStnp| Elear] Heset|
| w COMESZ

WHILE X< Contral * \ A
0T (18 Wireless ports recognized as FTOI USE ports

Tools

coml

W=M+1 cam3

WAIT(& Baud L offline:
Loor Mewlne ¥
RN char Mode usually buitin R5232 ports, alzo Blustooth
Progr amm ; i E_o_ T+ 4

o. font size 11K data programmed
Executing. . .
w

Enter: [

Most PCs have a number of COM ports, you might not have the correct port selected, you can change that in
the Options>Port Menu This window lists all the available ports, those in capital letters are recognized as
FTDI USB serial ports and are usually the location of the ARMexpress Eval PCB or the ARMmite.

One other reason that communication could be lost, is that the driver can lose sync with the card if it is
disconnected and reconnected with the USB, especially when BASICtools or TclTerm (under MakeltC) is
running and connected to the card. When this happens it is often necessary to restart the PC. Because the
serial port is being emulated, and the Windows enumerator gets inwlved, when the USB is disconnected, the
various pieces of software can get confused if the port is open. If you are using the original hardware serial
port, normally with COM1 this is not an issue.

betermininq which COM port should be used

This can be found in the Control Panel>System>Device Manager

Page 104

Tonals

Hidp

System Restore

Automatic Updates Remate |

‘E=izame Contral | Genersl

Computer Mame _ Hardware | Advanced | 1

ﬁlntel{lﬁl} Extren
wlnteI{R} PROS Device Manager
ﬁ;]ava

&';Java Flug-in 1
@Keybnard
Ay
k=

_iMause Drrivers
@,Netwnrk Zonng

ar yaur computer, e e Device Manager to change the
properties of any devige.

@Internet Opkicy i The Device Manager lizts.4

L Device Manager

File Action Wew Help

I'the hardware dewvices installed

Device

rager

gﬂ Metwork Setur
E‘.F'I'u:une and Ma

- WS 2 A

@ Portable Medis
%F‘Dwer Opkions
4 Printers and F
€4 uickTime

@ F.egional and L
<y Scanners and
()5cheduled Tas
@ Security Cente

%Suunds and
¢ speech
aﬁystem

aTaskI:uar and 5
ﬁUser Bccounts
& windows Firewall Configure the Windol
=8 Wiralaas Mebwark. . Ser onoar add Faa wi

See information about vour computer system,

COM port conflicts

While rare there are systems out there with non-plug and play serial ports, or its possible for 2 com

E]- Batteries

E:r] - Computer \
[+ Disk drives

E] a Displaw adapters
-k DVD{CD-ROM drives
E:r] 425 Floppy disk controllers
- Flappy disk drives

E] {28 Human Intetface Devices

1% IDE ATAIATAPT controllers

+-E8 Jungo

] 2 Keyboards

E] ”:_, Mice and other poinking devices

E] s Modems

E] -5 Monitars

=8 Mebwark adapters

.8 D-Link DE-530+ PCI Ethernet Adapter
L. H8@ Intel{R) PROJ100 YE Network Connection
= Ports (COM & LPT)

: ﬂ_}f Communications Port (COM1)

S ECP Printer Port (LPT1)

5 UsB Serial Port (COMS)

[+ 5% Processors

-8, sound, video and game controllars

[+ g Systemn devices

ports to have the same address. The address can be changed from the Control Panel.

Control Panel> System> Hardware> Device Manager> Ports> Port Settings> Advanced

Page 105

Check the USB Driver version

e System Restore | Automatic Updates Aemeie |
L Gereal | Computer Name Hedwae | Advanced
= Game Cort ! | COM Post Mumber. [.,I
mi[:::: Device Manager B MG]
& Llavica Manager iztz al the hardware devaces inctaled # -
, 3 Tha Dl § : 4 inetad USE Trarsfes Sizes | COME [inus=)
ﬁ&la'.lntnam’: mm:;ﬂdnwagﬁ I. & Dievice Manage to change the & ebect Kirar setiin & problen
5 Java Phugr : Sedect higher settings -5
Biieiit | DericeManager | .
ﬂﬁd r‘“ PR e P TR AT A R T Y T Y e T Recarss [Bytez) A095 i
e —.. Device. Managr.r
Mo : :
& etwork O - T Tuanzmit (Batesk A05F i
e LISH Serial Port (COMS) Props
Skl e+ B/ e @ B eI _
o : | Generat| Port Selings | Duiver [ff 5 Obons
Partable 4 U Eatbaries : Beenirbeniter L 3
EaPower Opti #l Computer } Select lower getfings bo comect iezponze problems.
* jyPrinters an FH e Disk drives
4 QuckTime 4@ Display adepters Btz pes 3 Latency Tiger [msecl: 16 i
@ Regonal & 1k DYDYCO-ROM drfves
Sy 5canners a 4 52 Flazpy disk contraliars [R
(A schedued # 4, Floopy disk drives .
ke -k Human Trberface Devices e i |"""'"""""""""""
g_ SJEI':E " +1-42) IDE ATAJATART controllers i 0 :
o +-H8 Jungo =1 | 22 e
o speech > - Mo Wike Timeoutimesel [0
Tt +| & kayboards 1 -
s #1 7 Mice:and other painting devices R
Taskbar an 5 Modems =
83 User accod B oeritars 00 M E
@8 vindons Frewal | - B Network adspters / anced. | Restors Defaults | »
2 i ple Mshanek B9 O-Uink DE-5304 PCI Etherne :
Sess infarmation abouk B IntelR) PROSIO00 VE Mot o
=1 5 Porks [COM B LPT) r—
A comenurications Port (COMI
' ECP Printer Part [LPT1)
! 4 USE Serid Port (COME)
Sae information hmatic upda
[ook || Concal | je—

Our software does not reinstall the USB drivers if they already existed. We expect to be running version
2.4.6.0 dated 3/13/2008 (for XP). Find this in the Control panel>Driver properties

Page 106

B e

ap

sl Wi i | General| For Setings | Djiver | Detals|
= [& @ A Y it Il
or | =
+ (=) Floppy disk controllers : 3 |
+ J) Floppy disk drives I
¥ (8 Human Interface Devices ; ; '
D Provider,
+ &3 IDE ATAJATAPI controllers ; Fo! |
+ BB) Driver D ate: 10/22/2008 [
* ':..B Keyboards Driver Yersion: 2600 I
+- " Mice and other pointing device fanbihyd 3 : i
B Modems Ciigital Sigrier: Microzoft \Windows Hardware Compatibiliy Publ :
=@ Monitors 2 L E
= Metwork adapters ; ; ; |
-. D-Link DE-530+ PCT E Liiver Details... é To view details about the driver files. :
~ E9 Int=iR) PROJ100 YE Netw |
= .=f :%"5 (COM &LPT) [Lipdate Diiver...] To update the driver for thiz device. '
S Ecp
r_? USE E Rioll Back Diivit J Lf thE I:IE'-.-'PilDE.' fail&_ aftllar .l..lpdailmdg{;?e driver. roll
r} USB Serial Port (COMS) ack bo the previously installed diver.
+ @ Sound, video and game control [I rinstall] To uninztall the diver [Advanced].
+# Gge Storage volumes
¥ g System devices A R R R
[ok]| Cancel
foadl

If this does not match, then you have an older driver and it should be updated...
Offline indicator

This will be shown if the port you were using last time the program was run is no longer available. You
must reselect a Port using the Option Menu to reestablish communication with the ARMmite or
ARMexpress.

Page 107

 © BASICtools control for ARMexpress

File Edit Options Tools Help
? Hesetl Stu:upi Hunl Eleari

/

OFFLINE

.....

Enter; E

Check Baud Rate

¢ BASICtools control for 2103 FBX
File Edit Bels{fEN Tools Help
Part *I Hun‘ Stnp] Elear] Heseti
WHILE X< Contral P b
OUT (15 Wireless
HEXtl |————
s 2o
LOEE Mewlne *| 2400
;ﬁgrm CharMode | 4300
,:,_: font size ® 9600 ST
Executineg. .. W 19200
38400 B
Sa000
57600 v
115200
Enter: [921600

Or you might not have the correct baud rate selected.

Check your cables
Check the serial connection to your PCB.

Odd behavior following Windows Update

Page 108

& C:\Program Files\Coridium

File Edit Wiew Favorites Tools Help

@Back - ‘\J lﬁ ;j Search ill:-_-if-Fculders v

: ARMbasic
kil and Foldee 1S &7 compled HTML Help file
— 553 KB
=} Make a new Folder
@ Publish this Folder to the Core
Wik 32w 32
bed Share this Folder AR
BASICtools
Applicatian

Other Places Coridium Corporation

[C3 Program Files

(L} My Dacuments
[Shared Documents
ﬁ My Cornputer

ﬁ My Mebwork Places

BASIChools
Configuration Setkings
1EKB

Details

Coridium

File Folder

Date Modified: Friday, april 21,
2006, 1226 PM

[
Address Go

In rare cases, when the Windows Update has automatically rebooted while BASICtools was running, the
serial port settings of BASICtools have been corrupted. To correct this, reboot the system, and if the problem
persists delete the BASICtools configuration settings (BASICtools.ini, it will be regenerated when you run

BASICtools). This file is located in the %AppData%\Coridium directory.

Have Fun!!

Page 109

The Compiler

#
-
®
-
L
-
L
*
L]
#

"
-
-
-
L]
L]
#
&
a
a

The Compiler
About
Main Features
Requirements
ARMbasic and other BASICs
Differences from PBASIC
Frequently Asked Questions
Pre-processor
Revision History
Notices

Page 110

http://www.coridiumcorp.com

About

<

ARMbasic is a 32-bit BASIC compiler for ARM processors. It was started to create a portable, alternative
to hardware debuggers, but has quickly grown into a powerful programmable controller tool, already including
support for asynchronous serial, 12C, SPI, PWM, timer and counter operations. It is run on ARM CPUs such
as that found in the ARMexpress PCB, which is pin compatable with other DIP24 modules such as the
Parallax BASICstamp.

ARMbasic is simple to use, and runs totally on the ARMexpress or from the PC for the ARMmite, and
both can programmed from a serial port. The target applications include control functions, so performance
and a powerful set of hardware routines have been included. The language has a minimum of overhead when
compared to larger general purpose languages.

Aside from having a syntax the most compatible possible with MS-VisualBASIC and PBASIC, ARMbasic

introduces several new features such as hardware specific routines, string support, limited pointers and many
others.

ARMbasic is written in ANSI-C compiled with GCC.

Page 111

Main Features

<

= Many control applications can be accomplished in a very small program
= ARMbasic can be installed in minutes, and be solving your control problems just as quickly

= While BASIC is considered a simplistic language, ARMbasic with built-in hardware functions and the

speed of compiled code can be a higher performance solution than many more complex languages
= Asitis an incremental compiler, it has the feel of an interpreter. Its quick and easy to debug its
programs. Why learn a new development system, you can either enter programs directly from the
console or use any text editor that you are already familiar with.
BASIC Compatability

= ARMbasic from Coridium is not a "new" BASIC language. It is not required of you to learn anything
new if you are familiar with any Microsoft-BASIC variant. Even if you don't have knowledge of the
BASIC language, its constructs are easy to learn and easy to use.
= ARMbasic is case-insensitive; scalar variables don't need to be dimensioned or declared before
use; MAIN function is not required. Syntax follows much of that of Microsoft-Visual BASIC
Most of the PBASIC 10 functions have been added

INPUT and OUTPUT control pin direction
HIGH and LOW control pin output values
I2C on any of the 15 pin pairs
SPI using any group of 2/3 pins
HWPWM on ARMmite/ARMweb
Software PWM on any pin with 256 lewels
FREQOUT on any pin upto 50 KHz
PULSIN and PULSOUT will measure or output a pulse
SHIFTIN, SHIFTOUT can be used for SPI or MicroWire devices
OWIN and OWOUT support one-wire devices
SERIN, SEROUT can be used for low duty cycle asynchronous serial ports on any pin upto
115Kbaud
= RCTIME will measure a capacitive delay
Support for 32-bit variables and Strings

= Integer: (32-bit math)
= String support
Arrays

= Static arrays supported, up to 32KB in size on the ARMexpress, 4KB on the ARMmite
Memory Limits

= All arrays, variables and strings are allocated from a 33KB space on the ARMexpress, 5KB on the
ARMmite

= Code will include user programs, constant strings (used in expressions or PRINT), DATA constants.

= On the ARMexpress 48KB is available for user programs, and an additional 8KB is available for
DATA constants and constant strings. 4KB of this space (owerlays DATA area) can be written into
Flash and functions as non-wolatile memory. Note that Flash may be written a minimum of 100K
times.
= On the ARMmite 19KB is available for user programs, and 1KB shared for DATA constants (256
max) and constant strings.
Direct Hardware Access

= Uses the same syntax as C-pointers
Debugging support

= The ease and speed of an interpreter.
= Dump of variables used
Included with any module

Page 112

= The ARMmite and ARMexpress compile their programs on the PC and they are downloaded using
BASICtools, that compiler is part of the utilities available on CD or download from Coridium

Page 113

Requirements

<

= ARMbasic for the ARMmite, Wireless and ARMexpressLITE runs on Windows and is controlled by a
USB port..

= The ARMbasic compiler runs on the ARMexpress hardware platform and only requires a terminal
emulator connection through either a USB or serial port, but to get pre-processor functions the
compiler needs to run on Windows.

= The ARMbasic compiler runs on the ARMweb hardware platform and only requires a browser for
programming.

= TclTerm is a terminal emulation program written in Tcl, and has been ported to Windows. Other
terminal emulators may be used, if they allow control of DTR/RTS, or they can be run in Legacy
mode .

= Documentation is available in both Windows CHM format and HTML.

All versions

Page 114

Installing

<

= Follow the installer instructions which are also outlined in the Getting Started section. The compiler
is run on the PC and hex code is downloaded and stored in Flash on the ARM chip.
= Connection to a PC is done with a serial port, details in the corresponding Getting Started Section

Window Vista

Windows Vista 64bit version

= The Windows XP installer BASICtools and TclTerm interface program works for WinXP x64, but the
drivers specific for x64 and the FTDI interface must be used.
Windows XP

= Follow the installer instructions which are also outlined in the Getting Started section. The compiler
can be run on either the PC or the ARMexpress. New debug features of BASICtools do rely on the
compiler being run on the PC.

= Connection to a PC is done with a serial port, details in the corresponding Getting Started Section

Windows XP 64bit version

= The Windows XP installer BASICtools and TclTerm interface program works for WinXP x64, but the
drivers specific for x64 and the FTDI interface must be used.
Windows 2000

= The Windows XP installer, BASICtools and TclTerm interface program works for Win2000.
Windows 98

= Win98 is no longer supported, if you have an old machine install Win2000 on it.
Linux

= Currently an installer is not supported, but only the documentation and a terminal emulator are
required.

= A command line interface has been developed for Windows as an example of how to do the same in
Linux. The necessary files and sources can be found in the files section of the Yahoo
ARMexpress Group . There is an effort to port this to Python going on, contact Coridium if you
would like to help.

= To communicate with the ARMexpress, a connection to a serial port is required

= The documentation is available in HTML format so anything with a browser should be capable of
using it.

= Parallels on Mac OS Xruns with the WinXP utilities. OS Xwersion of Tcl does not currently support
serial devices so we have not been able to port our utilities to run natively on the Mac.

Page 115

http://tech.groups.yahoo.com/group/ARMexpress/files/
http://tech.groups.yahoo.com/group/ARMexpress/files/

Running

<

Windows version

= A desktop icon and start-menu links should be created by the installer, use them to open the
console directly into the directory where the tools are stored
= see Getting Started section
Linux version

= port not done, though the source is available
= an alternative implementation exists at http://www.devscott.org/projects/bside/
Mac version

= runs on Parallels using WinXP
DOS version

= no direct support for this

Page 116

http://www.devscott.org/projects/bside/
http://www.devscott.org/projects/bside/

ARMbasic and other BASICs

<

ARMbasic and Visual BASIC hawe different goals. Visual BASIC is a general purpose language that includes
access to various elements of Microsoft Windows and its application programs. ARMbasic is a small
language aimed at controlling hardware with some communication abilities with host systems. Wherever
practical ARMbasic is a proper subset of Visual BASIC. Some elements of earlier BASICs do not apply to
Visual BASIC, but still do in ARMbasic. These elements include keywords such as RUN and CLEAR.

Data Types

= Visual BASIC has a rich set of data types as well as some object oriented extensions.
= In ARMbasic the default data type is 32 bits (SIGNED INTEGER), and also supports arrays of
SIGNED INTEGERS and STRINGs.
Changed due to ambigquity

= FOR..NEXT is ambiguous for negative STEP. To clarify negative steps use DOWNTO.
Design differences

= One goal of ARMbasic is to be a simple, easy to use language, but still be a powerful tool for
controlling hardware. For this reason a simple subset of BASIC has been chosen, with extensions
for hardware control.
= Only single dimension arrays are supported.
Pre-Processor

= This is a very powerful tool available to C programmers, but not available in many BASICs
= The C-preprocessor (CPP) has been integrated into BASICtools

Page 117

Differences from PBASIC

<

Although version 6 ofARMbasic has an extremely similar syntax to PBASIC, there are subtle differences.

ARMbasic version 7 has been shipping and it abandons the script style commands of PBASIC hardware
routines in favor of Visual BASIC like functions and subroutines in seperate libraries accessed by #include.

32-bits vs. 16-bits

= ARMbasic is written for 32-bit hardware, and cannot utilize code which depends on 16-bit truncation.
= The default data type is 32 bits, rather than 16 bits in PBASIC.

Changed due to ambiguity

= FOR..NEXT is ambiguous for negative STEP. To clarify negative steps use DOWNTO

= The PBASIC syntax of INO, DIRO, OUTO has problems with parameterization. It is replaced by the
use of IN(0), DIR(0) and OUT(0).

= The formatted input of many PBASIC words will in many cases hang waiting for input if it is not of the
proper form. Its better to accept any or all input and then parse it later, but PBASIC does not have
that ability. A simple set of string functions have been added to ARMbasic to interpret input

Design differences

= Integer variables do not need to be declared. This is common to most other BASICs. ARMbasic
does not require simple variables to be declared before use. As of version 6.23 of the Windows
ARMbasic compiler allows the use of DIM xxx AS INTEGER to declare simple variables, and will
enforce that all variables be declared by DIM after that first DIM declaration.

= As there is much more variable space available, simple BIT, NIBBLE, BYTE types are not supported.
Arrays of BYTE also called strings are supported

= Normal BASIC array declarations are supported using DIM. Unlike PBASIC syntax.

= PIN declaration is replaced by treating pins as an array IN(x) vs INx. This makes parameterization of
pins simpler.

= The standard CONST syntax of most BASICs is used instead of PBASIC CON syntax

= Multiple statements on a single line are not supported

= The standard PRINT is used and its syntax is used in place of PBASIC DEBUGOUT

= Simple statements must be completed on a single line, run on statements are not supported

= The $ suffix can be used to declare strings using the DIM statement

= Strings use a null (char 0) terminator .

= CLEAR is used to reset all variables and reset the stack.

= In aninterpreter there is an advantage to having functions such as & [\ ™ ** *\ DIG and DCD But
these are easily done in a compiled BASIC and have no performance or space penalty.

x = NOT (a AND b) 'equivalentto a &\ b
x=a*b>>16 " equivalent to a ** b (for 16 bit values)
x=a*b>>8 " equivalent to a */ b (for 16 bit values)
x =y /1000 mod 10 'equivalenttoy DIG 4

X = 1<<6 ' equivalent to DCD 6

= HYP, TAN and NCD are not implemented in ARMbasic
= Many differences will be handled in the PBASIC translator pre-process step (under development)
» -$hex values are not supported

Design simplifications

= Only 1 statement per line is allowed
= run-on statements are not allowed (continuation to the next line)
= Formatted input is replaced with elementary string functions

Archaic commands

Page 118

DTMFOUT is not supported.

ON and BRANCH should be coded using SELECT CASE.
LOOKUP can use arrays or strings.

LOOKDOWN should be coded using SELECT CASE
GET, PUT can be replaced with arrays

Page 119

Preprocessor for BASIC

<

Most BASICs do not have a pre-processor. ARMbasic does not include one as part of the standard
language, but a version of the CPP has been included as part of the utilites.

These are the most common directives that apply to use with ARMbasic: Unlike ARMbasic these keywords
and any parameters used in them ARE CASE SENSITIVE. The pre-processor is run on the PC, so it is nor
available when using the builtin compiler of the ARMweb. Howewver the compiler with preprocessor can be
used to generate files that can be downloaded to the ARMweb (use the Save Intermediates check box in the
Files menu of BASICtools).

#include "filename"
#include <filename>
#define

#ifdef

#ifndef

#if

#if (defined)

#else

#elif

#endif

#undef

#error

#warning

The CPP (C preprocessor) is a very powerful tool, most users use just a fraction of the features, but if you
want the full story check this 90+ page document from the Free Software Foundation.

CPP operation

The CPP is a multi-step process carried out automatically by the BASICtools program. All operations are
done in a temp file directory created at c:/Program Files/Coridium/temp. All files in this directory will be
deleted when a File>>Load is performed by BASICtools.

It starts with your source file, and it will be copied into the c:/Program Files/Coridium/temp directory. When
copied all comments will be stripped. All included files will be also copied into this temp directory. Then the
CPP will be run on the files in that temp directory creating a __temp.bpp file that is the result of all the
pre-processor operations. This __temp.bpp file will be combined with other information as __temp.bas and
then compiled by ARMbasic.exe and its output is __temp.out. This __temp.out file is a modified Intel hex
format of the code generated by the source BASIC program. __ temp.out will be downloaded to the
ARMexpress or ARMmite.

In addition __temp.bat and __errors.tmp files will be created. __temp.bat is a batch file used in the
compilation process. Errors from the compile or any of its steps will be contained in __errors.tmp.

Page 120

http://www.coridiumcorp.com/files/rhel-cpp-en.pdf

Frequently Asked Questions

<

ARMbasic questions:
What is ARMbasic?

ARMbasic is a compiler included in a family of modules using the ARM CPU from Coridium Corp. The
compiler runs on the ARM processor for the ARMexpress and ARMweb products or on the PC for the
ARMmite.

Aside from having a syntax generally compatible with Visual BASIC, ARMbasic introduces several
features of the popular PBASIC, including 12C, SERIAL, PWM, IN, OUT and FREQOUT.

ARMbasic is written in ANSI C, compiled with GCC.

Who is responsible for ARMbasic?

Coridium Corp. distributes and maintains ARMbasic. They can be contacted at
www.coridiumcorp.com .

Why should | use ARMbasic?

ARMbasic has innumerable advantages ower the alternatives.

= |t's fast.
= |t produces compiled machine code not interpreted tokens.
= |t's simple.
= |t has powerful hardware functions builtin for the popular serial control busses.
= It's cost effective.
= It's easy to use
= Did we say it's fast?

Why should | use ARMbasic rather than GCC?

There's no question that some problems require more complex languages. But many control problems are
quite simple and this is what ARMbasic exceeds at. In many cases ARMbasic will run faster than a
compiled C program. How is that possible, you ask? The answer is that ARMbasic has only global scope,
there is no stack frame in the majority of the user code. Control transfers are faster than procedure calls of
C or Java. ARMbasic is a compromise of speed and code size, but it compares favorably to programs
written in C.

How fast is ARMbasic?

The fastest loops use the WHILE ... LOOP, with a simple loop running 4 million iterations per second.
Loops take a number of instructions to execute, when running simple instructions such as X= X+1, it will
run at speeds exceeding 13 million lines per second.

What differences are there between ARMbasic and PBASIC?
See Differences between ARMbasic and PBASIC.

How compatible is ARMbasic with Windows Visual-BASIC code?

ARMbasic uses Visual BASIC syntax where compatible. Its unlikely you'll be porting a Visual BASIC
application to ARMbasic, but if you do let us know about it.

Being a subset of Visual BASIC opens a larger audience of programmers to this tool, including those who
may not have thought they'd be writing code for programmable controllers. .

Does ARMbasic support Object Oriented Programming?

ARMbasic does not support Object Oriented Programming.

Page 121

http://www.coridiumcorp.com

Variable Scope

= All labels and variables are global in ARMbasic. The advantage is that there is little stack overhead
which gives greater performance.

= As of version 6.24, of the PC compiler a local scope for functions has been added. At present this
only requires a change to the compiler running on the PC not firmware on the ARMexpress/mite.

Floating Point Math

= ARMbasic uses 32 bit math for all numeric operations. There is no plan to add floating point at this
point. Floats are available in C for the ARMexpress and ARMmite.

Why have any of the compiler on the ARM?

The original ARMexpress had the compiler completely on the ARM, and this was the heritage of where the
compiler came from and why it came into existance. But the intention was always to have an ARMweb
product, and for that product to support adding ARMbasic statements into a webpage that are executed on
the fly. The only reasonable way to do that was to be able to compile those statements at runtime during
page senice, and that means the compiler has to live at least on the ARMweb.

The 2103 group of products uses a very small ARM memory chip, so the runtime and hardware libraries that
are used by the ARMbasic are all that is included there.

Another side-effect of the compiler being onchip, is that it had to be small, and the smallest compilers are of
the recursive-decent type, which includes the ARMbasic compiler. What this means is that the syntax of the
language is included in the source of the compiler parser. An advantage of these compilers is the size and
normally they are also pretty fast. Some of the bad things are you can break the compiler with some odd
coding styles. As there is a stack being used for parsing, you can make that overflow with statements that
cause a lot of recursion like-

X =
§§§§§§§§§§§§§§§§§§((1 DIMMIMIMMMMIMMMIIIMMINIMIIIN))

But why would you need to write any code like that? Another "feature" of recursive decent compilers is that
error recovery can be poor. The way we chose to do this is to have any error reset the parser to the
"outermost" state. What this means is that if an error occurs inside a loop like

DO

X X =2
y=3
LOOP

will cause an error on the LOOP statement as well as the x x = 2 statement, as the loop has been broken
as the parser returns to the outermost state. Yes this causes errors on good statements, but its a prudent
choice from our perspective. You don't want the compiler guessing what you meant and correcting your code
(I believe PL1 tried that to comical results).

What are the planned future features for ARMbasic?

= more string functions

= more serial busses

= more hardware functions

= networking

= analog functions

= let us know what you need

Getting Started with ARMbasic questions

Advanced ARMbasic

Can ARMbasic be customized?

Page 122

Coridium Corporation is aimed to produce high performance modules based on the latest technologies.
Currently this includes the ARM processor. But Coridium also has the engineering resources to customize
our designs for the specific needs of our OEM customers. This may include an interface to a specific
peripheral chip with language extensions added to the ARMbasic. It may also include an FPGA solution to
extend the capabilities of both the hardware and software.

So if you need something special, but want the ease of use of ARMbasic, tell us about your application. We
are quick to respond, and have designed a custom hardware software combination that delivered prototypes
in a couple of weeks, and production volumes within a month.

What wlumes make sense for customization? It depends on the complexity, but at a few hundred units the
numbers begin to pencil out.

Page 123

Revision History

<

Revision History:
6.06

ARMbasic initial release summer of 2006

This version of hardware uses open drain 10s on 10(5) and 10(6), this will be changed in future versions.
6.07
Generalized the operation of the I2CIN (backward compatable) and I2COUT.

Optimized all index operations (includes arrays, input/output and strings). Gave 3x performance
improvement for these types of operations. Now no difference in using constants or expressions for indexes.

Added the ability to use SIN and SOUT pins for SERIN, SEROUT, BAUD(), RXD() and TXD() as pin 16.

Corrected STRCOMP function.
6.08
Extended break timeout on RESET to 0.5 second.

Accept either CR or LF to terminate a line.

SLEEP now goes into a power down mode using alarm function to wake up.
DEBUGIN string$ added

Enforce proper declaration of strings and arrays

Multiple string concatenations allowed per line

noted an error - BAUD rate for port 16 can not be changed currently.
6.09
Added string$ support as an Outputlist in hardware functions (zero terminated or constant string)

Expanded the space available for programs to 56K.
6.10

Support for ARMmite.
6.11

BAUD rate setting for port 16 (the hardware serial port) is now allowed. The ARMexpress transceivers limit
speed to 19.2Kb, but the ARMmite can run up to 942Kb on port 16.

6.12

Expanded symbol table on ARMexpress, and also allow PC to compile for ARMexpress, which allows
much larger symbol table.

6.13
Added SPIMODE and SPIBI.
6.14

Fixed a bug affecting ARMexpress only in large programs with certain GOSUBs. The bug resulted in
programs restarting at the GOSUB.

6.15

Improved SPI performance.

Page 124

6.16

Improved SERIN performance to accept 115.2 Kb streams. There is still a 30 uSec startup for SERIN, and
RXD() has better performance as long as the pin is not changed.

6.17

Added HWPWM for 8 channels, though there is a bug that times for channel 7 and 8 are swapped. Added
send of + character after Flash has been written, this was done as XON/XOFF was overrunning, and this is
used to handshake with BASICtools.

6.18

Fixed HWPWM swap of channel 7 and 8. Added gets() like support for SPIIN, SERIN, OWIN and I2CIN.
Also added I2CSPEED for slower 12C devices. Corrected subtract followed by divide bug.

6.19

Added I2CSPEED to slow down I2C operations for older parts or long cables. DATA statements can
contain negative numbers now. 32 bit constants on ARMmite or when using PC compiler. On ARMexpress
compiler constants while still limited to 16 bits are sign extended. ARMexpress was reporting missing
labels, but ARMmite was not, now fixed. Allow for multiple strings in data lists of SEROUT, I2COUT,...
Corrected error reporting of strings missing a final ". DEBUGIN now accepts negative numbers. INTERRUPT
keyword added. Support for ARMexpress LITE.

6.20
Support for STOP as a breakpoint.
6.21

SERIN_TIMEOUT added. Support for Wireless ARMmite. HWPWM supports duty cycles upto 40
seconds. Baud rates for SERIN/OUT 16,baud works again.

6.22
Support for ARMweb.
6.23

Refinements for ARMweb and STRSTR, STRCHR and TOUPPER string functions. SERIN, RXD was
filtering ESCAPE and ctIC characters on pin 16 (UARTO). This has been corrected.

6.24
Added DIM name AS INTEGER and SUB .. ENDSUB local scope (as this is an ARMbasic.exe feature it
is backward compatable to 6.17 and later firmware versions.

Firmware changes: only look for ESC/ctIC for 500/1000 msec after reset (1000 for wireless versions). RND

function added (uses an LCG algorithm). HWPWM now uses times in microseconds rather than duty-cycles.

6.25

Added FUNCTION ... END FUNCTION, BYREF and BYVAL parameters for SUB/FUNCTION. This change
affects the compiler on the PC or ARMweb.

7.05
Support for old and new firmware versions (new firmware mowes builtin functions into #include'd libraries).
fixes to FUNCTIONs and SUBs. Null strings (") allowed. String constants can be used in string BYREF

calls. DIM enforcement of variable declarations once used. VB style CALLs to FUNCTION/SUB, i.e. CALL
keyword is optional. Access to hardware registers via * is optiimized.

7.09

Firmware support and PC compiler support for interrupts (both are required).

Improved PC compiler generation of constants.
7.10

Minor fixes in PC compiler for calls to SUB/FUNCT with constant strings, flag embedded chr(0) in string
expressions. Improved some error messages in PC compiler.

Page 125

711
Support for VBstyle CGIIN, MAIL, UDPIN and UDPOUT for ARMweb.
713
Support for BAUDO to change UARTO speed. TXDO0 subroutine syntax supported.

Support for UART1 added with BAUD1, RXD1 and TXD1
Support for FREAD, WRITE to Flash.

Both PC compiler and firmware are required
717

reorganization for generic compiler.
7.18

fix for ARMexpress LITE AD. Inline TIMER code added. and improved constant generation.

7.20

Improved call/return. Expanded *pointer handling, and added & addressOf operator.

TXFIFO enabled.
741
changed call/return mechanism for better performance.
8.02
added support for Cortex parts.
8.05
initial bug fixes for Cortex parts.
8.08

added error reporting when an integer operand expected but not found.

Page 126

Notices

NO WARRANTY

1. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. CORIDIUM PROVIDES THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

2. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL CORIDIUM BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO
USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The ARMbasic© compiler is distributed as part of hardware sold by Coridium Corp. such as the ARMexpress
module. All rights to the compiler are reserved under copyright to Coridium Corp. It may not be copied or
reverse engineered..

Windows® is a registered trademark of Microsoft Corporation.
VisualBASIC® is a registered trademark of Microsoft Corporation.
BASIC Stamp® is a registered trademark of Parallax, Inc.
PBASIC™ is a trademark of Parallax, Inc.

’C®is a registered trademark of Philips Corporation.

1-Wire® is a registered trademark of Maxim/Dallas Semiconductor.
e SPI™ s a trademark of Motorola

This documentation is released under the GFDL license.

Page 127

The Language

0] - CORIDIUM 5
";_-g.ﬁR?Hmtg:PRD ;

(=]
w

The Language
Pre Processor

Simple Statements
Compound Statements
Other Statements
Functions

Operators

Data Types

Alphabetical Keyword List

Page 128

http://www.coridiumcorp.com

Preprocessor for BASIC

<

Most BASICs do not have a pre-processor. ARMbasic does not include one as part of the standard
language, but a version of the CPP has been included as part of the utilites.

These are the most common directives that apply to use with ARMbasic: Unlike ARMbasic these keywords
and any parameters used in them ARE CASE SENSITIVE. The pre-processor is run on the PC, so it is nor
available when using the builtin compiler of the ARMweb. Howewver the compiler with preprocessor can be
used to generate files that can be downloaded to the ARMweb (use the Save Intermediates check box in the
Files menu of BASICtools).

#include "filename"
#include <filename>
#define

#ifdef

#ifndef

#if

#if (defined)

#else

#elif

#endif

#undef

#error

#warning

The CPP (C preprocessor) is a very powerful tool, most users use just a fraction of the features, but if you
want the full story check this 90+ page document from the Free Software Foundation.

CPP operation

The CPP is a multi-step process carried out automatically by the BASICtools program. All operations are
done in a temp file directory created at c:/Program Files/Coridium/temp. All files in this directory will be
deleted when a File>>Load is performed by BASICtools.

It starts with your source file, and it will be copied into the c:/Program Files/Coridium/temp directory. When
copied all comments will be stripped. All included files will be also copied into this temp directory. Then the
CPP will be run on the files in that temp directory creating a __temp.bpp file that is the result of all the
pre-processor operations. This __temp.bpp file will be combined with other information as __temp.bas and
then compiled by ARMbasic.exe and its output is __temp.out. This __temp.out file is a modified Intel hex
format of the code generated by the source BASIC program. __ temp.out will be downloaded to the
ARMexpress or ARMmite.

In addition __temp.bat and __errors.tmp files will be created. __temp.bat is a batch file used in the
compilation process. Errors from the compile or any of its steps will be contained in __errors.tmp.

Page 129

http://www.coridiumcorp.com/files/rhel-cpp-en.pdf

#define

Syntax

#define IDname
or

#define IDname expression
or

#define IDname(param,...) expression (param,...)

Description

This statement directs the pre-processor to replace the word IDname with expression in the file before
compiling. This replacement can also contain parameters that will be replaced in corresponding positions as
defined in expression.

It may also be used to control #ifdef

Example

#define COMPILETHIS

#ifdef COMPILETHIS

#endif
Differences from other BASICs

= similar function in PBASIC
= no equivalent in Visual BASIC, but may be done with C-pre-processor
See also

= #Hifdef

Page 130

#else #elif #endif

Syntax

#if expression
#else
#endif

or
#if (defined name)
#elif expression
#endif

or
#if (defined name)
#endif
Description
These statements complete or extend #if statements.

These statements may nest. And unlimited #elif are allowed.

Example

#if someNAME ==

#elif someNAME ==

#elif (defined COMPILETHIS) || (defined COMPILETHAT)
#else

#endif
Differences from other BASICs

= only #else available in PBASIC

= no equivalent in Visual BASIC, but may be done with

C-pre-processor
See also

= #define

Page 131

#ifdef

Syntax

#ifdef IDname
#endif

or
#ifndef IDname

#endif
Description

This statement directs the pre-processor to copy the contents of file between the ifdef and the endif into the
source to be compiled by the BASIC compiler, if IDname is defined . #ifndef copies the statements if IDname
has not been defined.

These statements may nest.
Example

#define COMPILETHIS
#ifdef COMPILETHIS
... will now be included

#endif
Differences from other BASICs

= no equivalent in PBASIC
= no equivalent in Visual BASIC, but may be done with C-pre-processor
See also

= #define

Page 132

#if

Syntax

#if expression
#endif

or
#if (defined name)

#endif
Description

This statement directs the pre-processor to copy the contents of file between the if and the endif into the
source to be compiled by the BASIC compiler, if expressionis TRUE (non-zero).

#if (defined name) is equivalent to #ifdef, and can be used for more complex defines.

These statements may nest.
Example

#if someNAME ==

#endif

#if (defined COMPILETHIS) || (defined COMPILETHAT)

#endif
Differences from other BASICs

= similar function in PBASIC
= no equivalent in Visual BASIC, but may be done with C-pre-processor
See also

= #define

Page 133

#include

Syntax

#include " filename"

#include <filename>

Description

This statement directs the pre-processor to copy the contents of filename into the source to be compiled by
the BASIC compiler. After that file is copied, the compilation continues on with the next statement in the
original program.

These statements may nest, as one file can include another which can include another...

When filename is enclosed in " ", the directory of the main BASIC program is searched. The filename may

contain a relative path, and remember that path is always relative to the directory of the main BASIC program.

When the filename is enclosed in < >, the Program Files/Coridium/BASICIib directory is searched.

Normally #include statements are near the beginning of the BASIC program so that FUNCTIONs and SUBs
can be defined before their first use. When this is the case a MAIN: should be used so that code does not
try to execute the FUNCTION or SUB code inline.

Example

' include the module that controls VDRIVE
#include "Vdrive.bas"

compiler picks up here

Differences from other BASICs

= no equivalent in PBASIC
= no equivalent in Visual BASIC, but may be done with C-pre-processor

See also
= f#ifdef
= MAIN:

Page 134

#undef

Syntax

#undef IDname

Description

This statement directs the pre-processor to forget the word IDname for pre-processing.

So #ifdef IDname will now evaluate to FALSE.

Example

#define COMPILETHIS

#ifdef COMPILETHIS
... will now be included

#endif

#undef COMPILETHIS
#ifdef COMPILETHIS
... will now not be included

#endif
Differences from other BASICs

= no equivalent in PBASIC
= no equivalent in Visual BASIC, but may be done with C-pre-processor
See also

= #Hifdef

Page 135

#warning #error

Syntax

#warning Message
or
#error ErrorMessage
Description
#warning will issue a warning message visible in the progress window of BASICtools.

#error will generate a compiler error and prevent the BASIC program from being downloaded.

Example

#define COMPILETHIS
#ifdef COMPILETHIS
#else
#error No code available for this option

#endif
Differences from other BASICs

= similar function in PBASIC
= no equivalent in Visual BASIC, but may be done with C-pre-processor
See also

= #Hifdef

Page 136

Simple Statements

4-.1-114.-1-

-
seasanEdR

T R
FadEBRERNR

- nw

aEERE

am B R ERERE
e T L R B i =

Simple Statements

Assignment
CALL
Comments
END

EXIT
GOSUB
GOTO
DEBUGIN
PRINT
READ
RETURN

Page 137

http://www.coridiumcorp.com

assignment

Syntax

Ivalue = expression

Description

This statement changes the value of the variable, string, array element or hardware register Ivalue with that of

expression.
Example

DIM AB(10) AS STRING

AB = "this is a string"
AB(8) ="1" 'makes it thisis 1 string

IN(0) =1 'set pin 0 to be high

x = 100+(x*z-3)
Differences from other BASICs

= none from PBASIC
= some BASICs allow the archaic LET to precede this statement
See also

= Mathematical Functions

Page 138

GOSuUB CALL

Syntax

GOSUB label
or
CALL label
[CALL] function/sub
CALL (expr)

Description

GOSUB is supported for backward compatibility, now FUNCTIONs and SUBs and their implied CALL would
be a preferred method.

Execution jumps to a subroutine marked by line label. Always use RETURN to exit a GOSUB, execution will
continue on next statement after Gosub.

label may be defined as label: or as a SUB or FUNCTION
CALL for a FUNCTION or SUB is optional. When CALLing a FUNCTION the return value is discarded.

CALL (expr) was added in 7.40 compiler which allows calls to a pointer to a function. The parenthesis
are required. Parameter passing to this type of call is not supported.

Example

GOSUB message
END

message:
PRINT "Welcome!
return

sub print1111
print 1111
endsub

main:
fpointer = ADDRESSOF print1111

call (fpointer)
Differences from other BASICs

= CALL used in Visual BASIC and version 7.00 makes the CALL optional for FUNCTION/SUB like

VB
= GOSUB used in PBASIC
See also
= GOTO
= RETURN

Page 139

comment

<

Syntax

comment

Description

Comments in ARMbasic can follow a single quote character. All text after the single quote to the end of the
line is ignorred by the compiler.

Example
AB = "this is a string" ' double quotes are for strings, including single character strings
Xx=x+1 ' this is a comment for the instruction to increment x

' this entire line is a comment

Differences from other BASICs

= none from PBASIC
= most early BASICs used the REM statement, which ARMbasic does not support
See also

= Simple Statements

Page 140

END

Syntax

END
Description

END is used to terminate the program.

When the ARMbasic is used in a control application, the END would not normally be encountered. As most
control applications would be a loop, as when a program ends it would require the user to restart or a reboot.

There is an implied END added to any program. When a program ENDs, the last state of variables, IOs and
IO controls is maintained. If a program is then RUN again those states will probably be different than running
the program by hitting RESET. RESET sets all variables to 0, and all 10s to inputs. When a program is
restarted from RUN, the variables will be set to 0, but the last 10 state will be maintained.

Example

PRINT "An unrecoverable error has occurred "
END
Differences from other BASICs

= none
See also
= STOP
= SLEEP

Page 141

EXIT

Syntax

EXT

Description

Leaves a code block such as a DO...LOOP, FOR...NEXT, or a WHILE...LOOP block.
Example

'e.g. the print command will not be seen

DO
EXT ' Exit the DO...LOOP
PRINT "i will never be shown"
LOOP

Differences from other BASICs

= None
See also

= DO

= FOR

= WHILE

Page 142

GOSuUB CALL

Syntax

GOSUB label
or
CALL label
[CALL] function/sub
CALL (expr)

Description

GOSUB is supported for backward compatibility, now FUNCTIONs and SUBs and their implied CALL would
be a preferred method.

Execution jumps to a subroutine marked by line label. Always use RETURN to exit a GOSUB, execution will
continue on next statement after Gosub.

label may be defined as label: or as a SUB or FUNCTION
CALL for a FUNCTION or SUB is optional. When CALLing a FUNCTION the return value is discarded.

CALL (expr) was added in 7.40 compiler which allows calls to a pointer to a function. The parenthesis
are required. Parameter passing to this type of call is not supported.

Example

GOSUB message
END

message:
PRINT "Welcome!
return

sub print1111
print 1111
endsub

main:
fpointer = ADDRESSOF print1111

call (fpointer)
Differences from other BASICs

= CALL used in Visual BASIC and version 7.00 makes the CALL optional for FUNCTION/SUB like

VB
= GOSUB used in PBASIC
See also
= GOTO
= RETURN

Page 143

GOTO

Syntax

GOTO label

Description

Jumps code execution to a line label.

Goto's should be awided for more modern structures such as DO...LOOP, FOR...NEXT, and WHILE...LOOP

Example

GOTO message

message:
PRINT "Welcome!

Differences from other BASICs

= none from Visual BASIC
= none from PBASIC
See also

= GOSuUB

Page 144

DEBUGIN variable

Syntax

DEBUGIN variable | string
Description

Normally the programs running on an ARMexpress/ARMmite are running stand-alone and without direct
human input. Howewer, during the bringup phase a programmer may want to try different values. So a
simplified replacement of the normal BASIC INPUT has been added, called DEBUGIN.

INPUT is used to control the direction of one of the 10 pins.

DEBUGIN has a limited edit capacity: it allows to erase characters using the backspace key. If a better user
interface is needed, a custom input routine should be used.

DEBUGIN may also read a string from the control serial port.

On the ARMweb, this command is available only on the debug USB port.
Example

while 1
debugin a
print a*10

loop

Differences from other BASICs

= ARMexpress DEBUGIN can take numbers in hexadecimal, binary or decimal format by using $hex
%bin

Page 145

= PBASIC is taylored for more interaction and allows more complex DEBUGIN
= other BASICs calls this function INPUT
See also

Page 146

PRINT

Syntax

PRINT [expressionlist] [(, | ;)] ...

Description

Prints expressionlist to screen.

Expressionlist can be constant string, constant numbers, variables, string variables or expressions consisting
ov variables and numbers. Seperated by either , or ;

Using a comma (,) as separator or in the end of the expressionlist will place the cursor in the next column
(every 5 characters), using a semi-colon (;) won't mowve the cursor. If neither of them are used in the end of
the expressionlist, then a new-line will be printed.

PRINT statements send data out the serial port. There is a 16 byte FIFO in the serial port, once that is filled
BASIC will wait for space to be available.

Example

DIM AB(10) AS STRING

" new-line"Hello World!"™" no new-line
PRINT "Hello";AB; "!";

PRINT

" column separator
PRINT "Hello!", "World!"

PRINT "3+4 =",3+4

y=4321

x=1234

PRINT "sum=",x+y

Differences from other BASICs
= none from Visual BASIC

= PBASIC uses DEBUGIN and a non-standard syntax
See also

= DEBUGIN the opposite function that receives user input

Page 147

READ

Syntax

READ {constant,} variable_list

variable_list = variable | array_element | string_element {, variable_list }
Description

Reads data stored by the BASIC application with the DATA command.

The elements of the variable_list must be integer variables, elements of a string, or elements of arrays. Each
element read, will be filled from a 32bit value in the 4K space used to store the DATA statements. All the
DATA statements in the program behawe as a single list.

After the last element of a DATA is read, the first element of the following DATA will be read.

The RESTORE statement resets the next-element pointer to the start of the DATA. This allows the user to
alter the order in which the DATA are READ.

If the READ is followed by a constant, then the element will be filled from the nth DATA element where n =
constant.

Example

' Create an array of 5 integers.
DIM h(4

' Set up to loop 5 times (for 5 numbers... check the data)
FOR read_data=0 TO 4

'Read in an integer.
READ h(read_data

' Display it.
PRINT "Number"; read_data;" = "; h(read_data

NEXT

END

' Block of data.

DATA 3, 234, 4354, 23433, 87643
Differences from other BASICs

= Most classic BASICs contain this construct

= Does not exist in Visual BASIC

= PBASIC allows modifiers for size. In PBASIC the first element always sets the offset into the data
array. This is the case in ARMbasic only if the first element is a constant.

See also
= DATA
= RESTORE

Page 148

RETURN

Syntax

RETURN

inside function-
RETURN expression | string-expression

Description

RETURN is used to return control back to the statement immediately following a previous GOSUB call. When
used in combination with GOSUB, A GOSUB call must always have a matching RETURN statement, to awid
stack

If the RETURN is inside a function, an integer or string expression is expected.

RETURN will exit a FUNCTION or SUB even when inside a component statement such as WHILE, FOR,
SELECT ...

If a RETURN is executed without a corresponding GOSUB or CALL, a Prefetch Abort error will stop your
program.

Example

PRINT "Let's Gosub!"
GOSUB MyGosub

PRINT "Back from Gosub!"
END

MyGosub:

PRINT "In Gosub!"
RETURN

Differences from other BASICs

= asubset of the RETURN of Visual BASIC
= none from PBASIC
See also

= GOSUB.

Page 149

Compound Statements
<.

Compound Statements
DO...LOOP
FOR...NEXT
IF...THEN

SELECT CASE
WHILE...LOOP

Page 150

http://www.coridiumcorp.com

DO...LOOP

Syntax

[DO] WHILE condition
[statement block]
LOOP

DO
[statement block]
[LOOP] UNTIL condition

DO
[statement block]
LOOP

Description

Repeats a block of statements until/while the condition is met. The three above syntaxes show the different
types. The DO .. LOOP without a WHILE or UNTIL will loop forever, unless an EXIT statement is executed.

Example

"This will continue to print "hello" on the screen until the condition (a > 10) is met.

a=1

DO
PRINT "hello"
a+=1

LOOP UNTIL a > 10

Differences from other BASICs

= Some BASICs allow interchangeablilty of UNTIL as the equivalent of NOT WHILE

See also
= EXIT
= FOR...NEXT

= WHILE...LOOP

Page 151

FOR...NEXT

Syntax

FOR counter = startvalue TO endvalue [STEP stepvalue]
[statement block]
NEXT [counter]

FOR counter = startvalue DOWNTO endvalue [STEP stepvalue]
[statement block]
NEXT [counter]

Description

A FOR [...] NEXT loop initializes counter to startvalue, then executes the statement block's, incrementing
counter by stepvalue until it reaches endvalue. If stepvalue is not explicitly given it will set to 1.

If the DOWNTO is used, then the counter is decremented by the stepvalue or 1 if none is specified.

Example

PRINT "counting from 3 to 0, with a step of -1"
FOR i = 3 DOWNTO 0 STEP 1

PRINT "i is "; i
NEXT i

Differences from other BASICs
= PBASIC does not use DOWNTO, and must specify a negative step

= PBASIC does not allow the variable in the NEXT statement (while this is not necessary it is good
coding practice)

See also
= STEP
= NEXT
= DO..LOOP
= EXIT

Page 152

IF...THEN

Syntax
IF expression THEN statement(s) [ELSE statement(s)]

IF expression [THEN]
statement(s)

[ELSEIF expression [THEN]
statement(s)]

[ELSE
statement(s)]

ENDIF

Description

IF...THEN is a way to make decisions. It is a mechanism to execute code only if a condition is true, and can
provide alternative code to execute based on more conditions.

The syntax allows single line IF..THEN, or multi-line versions that end with ENDIF.

The single line version only allows simple statements. To use nested IFs the multi-line version must be used.

Version 7.00 allows ENDIF or END IF
Example

'e.g. here is a simple "guess the number" game using if...then for a decision.
PRINT "guess the number between 0 and 10"

DO 'Start a loop

PRINT "guess"
DEBUGIN y 'Input @ number from the user
IF x =y THEN
PRINT "right!" 'He/she guessed the right number!
EXIT

ELSEIF y > 10 THEN 'The number is higher then 10
PRINT "The number cant be greater then 10! Use the force!"
ELSEIF x >y THEN
PRINT "too low" 'The users guess is to low
ELSEIF x <y THEN
PRINT "too high" 'The users guess is to high
ENDIF
LOOP 'Go back to the start of the loop

Differences from other BASICS

= none
See also
= DO..LOOP

= SELECT CASE

Page 153

SELECT [CASE]

Syntax

SELECT [CASE] expression
[CASE expressionlist]
[statements]
[CASE ELSE]
[statements]
ENDSELECT

Description

Select case executes specific code depending on the value of an expression. If the expression matches the
first case then it's code is executed otherwise the next cases are compaired and if one case matches then
its code is executed. If no cases are matched and there is a 'case else' on the end then it wil be executed,
otherwise the whole select case block will be skipped.

Syntax of an expression list:
expression [{TO expression | relational operator expression}][, ...]

example of expression lists:

CASE "A" 'the "A" is equivalent to $41, multi-character strings can not be used in CASE
statements

CASE5TO 10

CASE > "e"

CASE1,3TO 10

CASE1,3,5,7,9

Example

PRINT "Choose a number between 1 and 10: "
DEBUGIN choice
SELECT choice
CASE 1

PRINT "number is 1"
CASE 2

PRINT "number is 2"
CASE 3, 4

PRINT "number is 3 or 4"
CASE 5TO 10

PRINT "number is in the range of 5 to 10"
CASE <= 20

PRINT "number is in the range of 11 to 20"
CASE ELSE

PRINT "number is outside the 1-20 range"
ENDSELECT
Differences from other BASICs

SELECT CASE is used in Visual BASIC
SELECT is used in PBASIC
either is allowed in ARMbasic
Visual BASIC uses an optional IS before relational operators
ENDSELECT is used to terminate the SELECT in both ARMbasic and PBASIC
= END SELECT (seperate words) are used in Visual BASIC and is allowed in ARMbasic
See also

= |F..THEN

Page 154

WHILE...LOOP

Syntax

[DO] WHILEcondition
[statements]
LOOP

Description

WHILE [...] LOOP will repeat the statements between WHILE and LOOP, while the condition is true.

If the condition isn't true when the WHILE statement begins, none of the statements will be run.
The DO is optional in ARMbasic.

WHILE loops hawe the lowest overhead of all looping constructs.
Example

WHILE x =0
x=1
LOOP

Differences from other BASICs
= Visual BASIC uses the syntax DO WHILE ... LOOP, which is allowed by ARMbasic

= PBASIC also requires the DO
= Some BASICs use WHILE ... WEND

See also
= DO..LOOP
= EXIT

Page 155

Other Statements

dil.iil!

-
.._.-.f_-i_-..'.-.

» B
L R

puded
FadEBRERNR

- nw

aadER AR EAER
e T L R B i =

Other Statements

CLEAR
CONST
DATA
DIM
END
label:
MAIN
ON
RESTORE
RUN
STOP

Page 156

http://www.coridiumcorp.com

CONST

Syntax

CONST symbolname = value

Description

Declares compiler-time constant symbols that can be an integer.
More complex CONST can now be handled by #define -- see pre-processor
under the hood-

Constants do not take up any program space on the ARMmite or when using the PC Compile option on the
ARMexpress. In this case the constants are used by the compiler running on the PC and compiled into code
when used. When using the ARMexpress compiler, constants do take up space in the symbol table.

Constants can be 32 bit values using the PC ARMbasic compiler, butconstants are limited to 16bit values for
the onchip ARMweb compiler.

Example

CONST reps =5

FOR1=1TO reps
PRINT I

NEXT |

-- will print out

A wN -

Differences from other BASICs

= Visual BASIC allows more complex CONST declarations
= syntax in PBASIC is symbolname CON value
See also

= Preprocessor

Page 157

DATA

<

Syntax

DATA constant1 [,constant?]...

Description

DATA statements are used to build up a list of elements in Flash. The compiler processes them in order of
appearance in the progam, NOT in order of execution. DATA statements are evaluated at compile time, so
they should contain constant integers. DATA statements may not be located within complex statements
(such as FOR..NEXT, SUB..ENDSUB ...)

RESTORE resets the READ data pointer to the first DATA element defined.

DATA is normally used to initialize variables.

On the ARMmite, DATA statements are stored abowe the code space. So using DATA will reduce the space
available for code by 1K. DATA space is shared with constant strings on the ARMmite, so the combined
space allowable is 1K.

The space between the end of your code and the start of DATA statements can be written and read with
FREAD and WRITE commands, see the memory map for details.

Example

' Create an array of 5 integers and a string to hold the data.
DIM h

' Set up to loop 5 times (for 5 numbers... check the data)
FOR read_data=0 TO 4

'Read in an integer.
READ h(read_data

' Display it.
PRINT "Number"; read_data;" = "; h(read_data

NEXT

DATA 3, 234, 435, 23, 87643

Differences from QB

= common to earlier BASICs
= no equivalent in Visual BASIC
= similar to PBASIC

See also
= READ
= RESTORE
= WRITE

Page 158

DIM

Syntax

Declaring Arrays:
DIM symbolname (max_element)

Declaring Strings:
DIM symbolname$ (max_element)
DIM symbolname (max_element) AS STRING

Declaring Integers:
DIM symbolname AS INTEGER

Description

Declares a named variable and allocates memory to accommodate it. Though ARMbasic does not require the
declaration of integer variables, DIM is used to assign arrays of integers or strings (arrays of bytes). The size
is the max_element in the array plus 1. This allows indexing from 0 to max_element .

For backward compatibilty strings may have the last character the dollar sign $.
Only one symbolname may be declared with each DIM statement.

Memory for simple variables is allocated from the start of a heap, and strings or arrays are allocated from the
top or end of the heap. Strings are packed as bytes and always word alligned, you must allow enough space
to accomodate the expected maximum size of the string plus 1 byte for a termination (0) character. String
operators rely on the terminator.

Simple variable will be automatically declared on first use, unless you use DIM symbolname AS INTEGER.
At which point all subsequent integers must be declared using a DIM.

SUB procedures also use DIM between SUB .. ENDSUB. Those variables will be local to the procedure.
Using DIM here does not change whether all subsequent integers must be declared using a DIM or not. In
other words the state whether DIM is required is saved upon entering a SUB procedure and is restored at the
ENDSUB.

In version 7.05, AS STRING arrays are no longer limited to 255 bytes, so that they may be used for larger
arrays of bytes. Howevwer, string operations and functions ARE limited to 255 bytes.

Example
DIM a$ (10)

DIM b$ (20)
DIM c$ (30)

a$ = "Hello World"

b$ ="... from ARMbasic!"
c$ =a$ +b$
print c$ ' displays Hello World... from ARMbasic

Differences from other BASICs

= Like Visual BASIC the first element uses an offset of 0, but also memory is allocated for 0, 1 to size

Page 159

elements. This is backward compatable with earlier BASICs which indexed from 1 to size .
= PBASIC uses the syntax symbolname VAR WORD |BYTE [(size)]

See also

Page 160

label-

<

Syntax

name :
Description

GOTO and GOSUB go to a label. Somewhere in the code is that target label. A label can be any valid
variable name followed by a colon : . A label can be the only element on a line.

MAIN: is a special case of label that will start execution of the program at somewhere other than the first line
of code.

Example

GOSUB sayHello

sayHello:
PRINT "Hello"
RETURN

Differences from other BASICs

= pone from Visual BASIC
= none from PBASIC
See also

= MAIN

Page 161

MAIN

Syntax

MAIN:

Description

Normally an ARMbasic program will start at the first statement in the BASIC source. This can be changed
by having a MAIN: somewhere else in the program. When a MAIN: does exist, the program will begin at this

point.

MAIN: is useful for programs that use FUNCTIONs or SUBs and have those FUNCTIONSs or SUBs at the
beginning of the source. This also includes FUNCTIONs or SUBs that are #include'd in the source.

Example

SUB1:
PRINT "Hello from sub1"
RETURN

MAIN:
GOSUB SUB1
END

Differences from other BASICs

= pone from Visual BASIC
= none from PBASIC
See also

« EXIT

Page 162

ON (version 7.30 and later on ARM7 parts)

For PROplus and SuperPRO see INTERRUPT SUB

Syntax

ON TIMER msec label
or

ON EINTO|EINT1|EINT2 RISE|FALL|HIGH|LOW [abel
Description

These statements will initialize interrupt senvice routines so that when the interrupt occurs the code at label
will be executed. Label must have been pre-defined and can either be a SUB (without parameters) or code
beginning with a label: and ending in a RETURN. The interrupt response time is approximately 3 usec. Other
interrupts may make this time longer.

TIMER interrupts will occur every msec milliseconds. msec may be a variable or constant, expressions are
not allowed. The value for msec must be greater than 1. If TIMER interrupts are used, then only 4 hardware
PWM channels are available.

EINTO and EINT2 are 2 pins that will interrupt when the defined event occurs. RISE and FALL are the
preferred method and will generate interrupts on rising or falling edges on those 2 pins. HIGH and LOW are
supported, but if the pin remains in that state interrupts will be continuously generated.

EINT1 is connected to the RTS line of the PC, and is normally high, so it can be used by a program on the
PC to interrupt the ARMmite, rather than having to reset the board. This pin is available on the wireless
ARMmite, but if you intend to use it, make sure it is pulled high normally, otherwise when the board is reset it
will go into the download C mode and will not run your BASIC program. EINT1 is also available on the
ARMexpress modules (pin 21), and should also be kept normally high if used.

Each time the ON statement is executed the interrupt will be initialized, so it is possible to change routines
within the program. Multiple interrupts can be used, but they are serviced in the order received, and each
interrupt senvice routine will complete before the next one is handled (interrupts that occur while one is being
senviced will be handled after the current interrupt is processed).

Interrupt routines should normally be short and simple. The state of the other user BASIC code will be
restored after the interrupt, with the exception of string functions, which should NOT be done inside an
interrupt. PRINT statements use strings, so other than a temporary debug to see if the interrupt occurs, they
should not be inside an interrupt routine.

To disable the interrupt use the following #define

#defineVICIntEnClear *$FFFFF014

#define TIMERoff VICIntEnClear = $20
#define EINTOoff VICIntEnClear = $4000
#define EINT10off VICIntEnClear = $8000
#define EINT20off VICIntEnClear = $10000

ON added in version 7.09
The LPC2106 based ARMexpress supports ONLY ON LOW, due to hardware limitations.

ON is a statement that is executed, so if multiple ON statements are in a program the last statement

Page 163

executed will be active command.

Cortex M3 and MO do not support ON, but use INTERRUPT SUB
Example

I015up =0 ' serves to declare 1015up

SUB 1015count
1015up = [015up + 1
ENDSUB

main:
ON EINT2 RISE 1015count

I015up =0
while 1
if I015up <> lastlO15count then
print I015up
lastlO15count = 1015up
endif

loop
every20msec:
checklO0 = checklOO0 + (I0(0) and 1)
I00samples = I00samples +1
RETURN

main:

ON TIMER 20 every20msec

PRINT "Percentage of time 100 is HIGH =", 100*checkIO0 / I00samples

bifferences from other BASICs

= VB???
= no equivalent in PBASIC
See also

= GOTO
= RETURN

Page 164

RESTORE

Syntax

RESTORE
Description

Sets the next-data-to-read pointer to the first element of the first DATA statement.

Example

' Create an 2 arrays of integers and a 2 strings to hold the data.
DIM h(4)
DIM h2(4)

' Set up to loop 5 times (for 5 numbers... check the data)
FOR read_data1=0TO 4

'Read in an integer.
READ h(read_data1)

' Display it.
PRINT "Bloc 1, number"; read_data1;" = "; h(read_data1)

NEXT

' Set the data read to the beginning
RESTORE

' Print it.
PRINT "Bloc 1 string =" + hs

' Spacers.

PRINT
Print

' Set the data read to the beginning
RESTORE

' Set up to loop 5 times (for 5 numbers... check the data)
FOR read_data2 =0 TO 4

'Read in an integer.
READ h2(read_data2)

' Display it.
PRINT "Bloc 2, number"; read_data2;" = "; h2(read_data2)

NEXT

DATA 3, 234, 4354, 23433, 87643

DATA 546, 7894, 4589, 64657, 34554

Page 165

Differences from QB

= common to many earlier BASICs
= no equivalent in Visual BASIC
= none from PBASIC

See also
= DATA
= READ

Page 166

STOP

Syntax

STOP

Description

Halt execution of the program.

STOP functions like a breakpoint when under control of BASICtools. When the STOP is executed the BASIC
program halts excecution, but allows BASICtools to dump variable values. Also in BASICtools RUN will
resume execution at the statement following STOP.

Example

'If pin 2 is low halt the processor

IF 10(2) =0 THEN
PRINT "Processor Stopped"
PRINT "Press Reset to Continue"
STOP

ENDIF

Differences from other BASICs

= none from Visual BASIC
= none from PBASIC, though the breakpoint features are not supported
See also

= EXIT

Page 167

Debugging

<

ARMbasic is an incremental compiler, meaning that you can enter a portion of a program, run it, check
some varialble values, enter some more code and run it again... This operates much like an interpreter, so
that debugging of code can be done very quickly.

It is also possible to execute a simple statement immediately. This can be very useful when interfacing to a
serial device, as you can step through operations manually, to test a program.

There are a number of operations that aid during the debug phase of programming an ARMexpress.

Debugging Functions
>

@
CLEAR
DEC
HEX
RUN

Page 168

@ (dump memory)

<

Syntax
@ [expression]

Description

This command will dump ARM memory starting at expression. It is useful for debugging direct control of the
ARM peripherals. If expression is omitted, then the next page of memory will be displayed. Normally @
expression will be used first, with following pages displayed by typing @ without the expression.

Expression can only be a hex value without the leading $ and no spaces between the @ and the hexvalue.
The ARMmite does not list the address or the ASCII values.

Example

The following example displays the area of ARM memory corresponding to the PWM registers. Memory
address on the left, followed by 4 words of memory displayed in hex and then displayed as printable ASCII
characters.

@e0014000

00000000 00000001 04BFE6BB 0000E663 E0014010: 0000A516 00000000 00000000
00000000

Differences from other BASICs

= non-existant function in Visual BASIC or PBASIC
See also

= | set memory

Page 169

! (set memory)

<

Syntax

! hex-number hex-number2
Description

This command will write hex-number?2 into location hex-numberin ARM memory. It is useful for debugging
direct control of the ARM peripherals.

Expression can only be a hex value without the leading $ or &H and no spaces between the ! and the
hexvalue. The ARMmite does not list the address or the ASCII values.

This function will be added in version 7.47 for ARM7 and 8.07 for Cortex parts. And also requires BASICtools
5.9 or later.

Example

The following example displays the area of ARM memory corresponding to the PWM registers. Memory
address on the left, followed by 4 words of memory displayed in hex and then displayed as printable ASCII
characters.

@e0014000

00000000 00000001 04BFE6BB 0000E663 E0014010: 0000A516 00000000 00000000
00000000

1e0014000 1234567
@e0014000

01234567 00000001 O4BFE6BB 0000E663 E0014010: 0000A516 00000000 00000000
00000000

Differences from other BASICs

= non-existant function in Visual BASIC or PBASIC
See also

= @ (dump memory)

Page 170

CLEAR

Syntax

CLEAR

Description

This is a compile time command that erases the current BASIC program in memory.

It should NOT be used as a statement inside a BASIC program.

Example

Example
PRINT "hi there"

RUN
hi there

CLEAR
Differences from other BASICs

= same as many BASICs
= no equivalent in Visual BASIC
= no equivalent in PBASIC
See also
= RUN

Page 171

DEBUGIN variable

Syntax

DEBUGIN variable | string
Description

Normally the programs running on an ARMexpress/ARMmite are running stand-alone and without direct
human input. Howewer, during the bringup phase a programmer may want to try different values. So a
simplified replacement of the normal BASIC INPUT has been added, called DEBUGIN.

INPUT is used to control the direction of one of the 10 pins.

DEBUGIN has a limited edit capacity: it allows to erase characters using the backspace key. If a better user
interface is needed, a custom input routine should be used.

DEBUGIN may also read a string from the control serial port.

On the ARMweb, this command is available only on the debug USB port.
Example

while 1
debugin a
print a*10

loop

Differences from other BASICs

= ARMexpress DEBUGIN can take numbers in hexadecimal, binary or decimal format by using $hex
%bin

Page 172

= PBASIC is taylored for more interaction and allows more complex DEBUGIN
= other BASICs calls this function INPUT
See also

Page 173

LIST

Syntax

LIST
Description

When typing commands into BASICtools a line at a time, use LIST to see what was typed.

Those lines can be captured into a file for further editing either by cut and paste or using the Save As under
files in BASICtools.

This command is not used by the BASIC compiler, so it should not be included in a file to be compiled

Example

fori=1to 10
print i
next i

LIST
fori=1to 10

print i
next

Page 174

RUN

Syntax

RUN

Description

RUN will compile the program and write it into Flash Memory. Then it will execute the program which has

been saved.

Now that the program is in Flash it will be executed when the board is either reset or powered on.
BASICtools can STOP a program that is being executed from Flash.

RUN is a command line function, it should NOT be included in a BASIC program. It is equivalent to the RUN
button in the BASICtools. Your BASIC program will start automatically when the ARM is reset.

Example

PRINT "hi there"

RUN

CLEAR

Differences from other BASICs

= same as many BASICs

= no equivalent in Visual BASIC

= no equivalent in PBASIC, done with the editor
See also

= CLEAR

Page 175

FUNCTIONs and SUBroutines

FUNCTION

Sub Programs
SUB

ENDFUNCTION
ENDSUB

Page 176

http://www.coridiumcorp.com

FUNCTION name (optional parameters)

Syntax

FUNCTION name [AS INTEGER | AS STRING]
or

FUNCTION name (parameter list) [AS INTEGER | AS STRING]
parameter list = parameter [, parameter list]
parameter = [BYVAL] paramname [AS INTEGER]
| [BYVAL] paramname(size) AS STRING
| BYREF paramname AS STRING
| BYREF paramname [AS INTEGER]

Description

FUNCTIONSs are an extension of SUB that will return a value. If no type for the FUNCTION is specified, then
INTEGER is assumed.

The FUNCTION .. ENDFUNCTION construct allows for a second scope of variables. Scope meaning the
region in which code can see a set of labels. ARMbasic has a global scope and a local scope for any
variable declared with DIM inside an FUNCTION. Local scope variables will be only accessable from within
that FUNCTION procedure (the local scope).

Parameters are assumed to be called BYVAL if not specified. In BYVAL calls, a copy of the parameter is
passed to the Function. Integer or string parameters may be called BYREF which means a pointer to the
integer/string is passed, and changes to that integer/string can be made by code inside the function.

Code labels for goto/gosub declared within the SUB procedure are also in the local scope. Call to global
labels are allowed within a FUNCTION ... END FUNCTION , but that global label must be defined BEFORE
the FUNCTION ... END FUNCTION .

An implied RETURN is compiled at the ENDFUNCTION , but code should also return to the caller with
RETURN <expression>. A FUNCTION may also be called with a GOSUB, but the returned value is ignored.

Recursive calls with parameters or local variables are not supported. And ENDFUNCTION or END
FUNCTION syntax are allowed.

Program structure:

FUNCTIONSs should be arranged ahead of the MAIN: body of code. In many cases they will be part of
#include files at the beginning of the user ARMbasic code. If FUNCTIONS are located at the start of a
program a MAIN: must be used.

FUNCTIONSs can access global variables that have been declared before the FUNCTION, this declaration can
either be implicit or use a DIM.

FUNCTIONs must be defined before they are called.
Example

function toupper(a(100) as string) as string
dim i as integer

for i=0 to 100

if a(i)=0 then exit

if a(i) <= "z" and a(i) >= "a" then a(i) = a(i) - $20
next i

Page 177

return a
end function

main:
print toupper("asdf") " will print ASDF

Differences from other BASICs

= simplification of Visual BASIC
= no equivalent in PBASIC

See also

DIM

GOsuB

ENDSUB

MAIN:

Page 178

SUB name (optional parameters)

Syntax

SUB name
or

SUB name (parameter list)
parameter list = parameter [, parameter list]
parameter = [BYVAL] paramname [AS INTEGER]
| [BYVAL] paramname(size) AS STRING
| BYREF paramname AS STRING
| BYREF paramname [AS INTEGER]

Description

GOSUB goes to a label. , but can also go to a defined SUB procedure.

The SUB.. ENDSUB construct allows for a second scope of variables. Scope meaning the region in which
code can see a set of labels. ARMbasic has a global scope and a local scope for any variable declared with
DIM inside an SUB. Local scope variables will be only accessable from within that SUB procedure (the local
scope).

Parameters are assumed to be called BYVAL if not specified. In BYVAL calls, a copy of the parameter is
passed to the SUB procedure. Integer or string parameters may be called BYREF which means a pointer to
the integer/string is passed, and changes to that integer/string can be made by code inside the SUB
procedure.

Code labels for goto/gosub declared within the SUB procedure are also in the local scope. Call to global
labels are allowed within a SUB .. ENDSUB, but that global label must be defined BEFORE the SUB ...
ENDSUB.

Recursive calls with parameters or local variables are not supported. And ENDSUB or END SUB syntax are
allowed.

Program structure:
SUB procedures should be arranged ahead of the MAIN: body of code. In many cases they will be part of
#include files at the beginning of the user ARMbasic code. If SUBs are located at the start of a program a

MAIN: must be used.

SUB procedures can access global variables that have been declared before the SUB, this declaration can
either be implicit or use a DIM.

An implied RETURN is compiled at the ENDSUB, but code may also return to the caller with RETURN

SUBs must be defined before they are called.

Example
SUB sayHello
DIM | as INTEGER ' this variable is local to the sayHello SUB procedure
FORI=1t0 3
PRINT "Hello"
NEXT |

Page 179

ENDSUB

MAIN:

| =55
PRINT | " will display 55

GOSUB sayHello

PRINT | " will still display 55, as this is the global |, different from sayHello local |

Differences from other BASICs

= simplification of Visual BASIC
= no equivalent in PBASIC

See also

DIM

GOsuB

ENDSUB

MAIN:

Page 180

ENDFUNCTION | END FUNCTION

Syntax

ENDFUNCTION

ENDFUNCTION or END FUNCTION syntax are allowed

Description

ENDFUNCTION terminates a FUNCTION procedure

FUNCTIONs must be defined before they are called.

Example

function toupper(a(100) as string) as string
dim i as integer
dim | as integer
I =len(a)
fori=0to |
if a(i) <= "z" and a(i) >= "a" then a(i) = a(i) - $20
next i
return a
end function

main:
print toupper("asdf") " will print ASDF

Differences from other BASICs

= simplification of Visual BASIC
= no equivalent in PBASIC
See also

DIM
GOosuB
SUB
MAIN:

Page 181

ENDSUB | END SUB

Syntax

ENDSUB

ENDSUB or END SUB syntax are allowed
Description

ENDSUB terminates a SUB procedure

SUBs must be defined before they are called.

Example

SUB sayHello
DIM | as INTEGER 'this variable is local to the sayHello SUB procedure

FORI=1t0 3
PRINT "Hello"
NEXT |

ENDSUB

MAIN:

| =55
PRINT | " will display 55

GOSUB sayHello

PRINT | " will still display 55, as this is the global |, different from sayHello local |

Differences from other BASICs

= simplification of Visual BASIC
= no equivalent in PBASIC
See also

DIM
GOsuB
SUB
MAIN:

Page 182

Operators List

Operator List
& (String concatenation)

* (Multiplication)

+ (Addition)

+ (String concatenation)

- (Negation)

- (Subtraction)

/ (Division)

< (Less than)

<= (Less than or equal)

<> (Inequality)

= (Equality)

> (Greater than)

>= (Greater than or equal)
ABS

AND (Conjunction)

COsS

MOD (Integer modulo)
NOT (Bit-wise complement)
OR (Disjunction, Inclusive Or)
<< (Shift-left)

>> (Shift-right)

REV

SIN

XOR (Exclusive Or)

Page 183

& (String concatenation)

<

Syntax

string1 & string 2

Description

The concatenation returns a string made of sticking both variables together. If some of the variables are not
strings, the STR function is called automatically to convert the variable to a string.

Multiple concatenations per line are supported, and the strings can include string functions such as LEFT,
RIGHT, HEXand STR. Also if a constant or integer is used it will be automatically converted to a string, as if
it had been enclosed in a STR().

Example

DIM A$(20)

DIM C$(20)
A$="The result is: "
B=1243

C$=A% & B

PRINT C$

SLEEP

The output would look like:

The result is: 1243

Differences from other BASICs

= same as Visual Basic functions
= no equivalent in PBASIC
See also

= + String Concatenation
= String Functions

Page 184

* (Multiplication)

<

Syntax
argument1 * argument2
Description

The multiplication operator is used to multiply two numbers.and is the inverse of division, /. The arguments
argument1 and argument2 can be any valid numerical expression.

Example

n=4%*5
PRINT n
SLEEP

The output would look like:
20

Differences from other BASICs

= None
See also

= /(Division)

= + (Addition)
= Mathematical Functions

Page 185

+ (Addition)

<

Syntax
argument1 + argument2
Description

The addition operator is used to find the sum of two numbers. Addition, +, is the inverse of subtraction, -. The
arguments argument1 and argument2 can be any valid numerical expression.

Example

n = 454 + 546
PRINT n
SLEEP

The output would look like:
1000

Differences from other BASICs

= None
See also

= - (Subtraction)
= Mathematical Functions

Page 186

+ (String concatenation)

<

Syntax

string1 + string2

Description

The concatenation operator takes two string variables and returns a string made of sticking both strings
together.

Multiple concatenations per line are supported, and the strings can include string functions such as LEFT,
RIGHT, HEXand STR. Also if a constant or integer is used it will be automatically converted to a string, as if
it had been enclosed in a STR().

Example

DIM A$(20)
DIM B$(20)
DIM C$(30)

A$="Hello,"
B$=" World!"
C$=A3$+B$
PRINT C$
SLEEP

The output would look like:
Hello, World!
Differences from other BASICs

= PBASIC does not hawe string function support
= Similar to Visual BASIC
See also

= & String Concatenation
= String Functions

Page 187

- (Negation)

Syntax

- number

Description

The negation operator is used to give the negitive value of number. number can be any valid numerical

expression.

Example

PRINT -5

n = 6543256
n=-n
PRINT n
SLEEP

The output would look like:
-5
-6543256

Differences from other BASICs

= None
See also

= Mathematical Functions

Page 188

- (Subtraction)

<

Syntax
argument1 - argument2
Description

The subtraction operator is used to find the difference between two numbers. Subtraction, -, is the inverse of
addition, +. The arguments argument1 and argument2 can be any valid numerical expression.

Example

n=4-5
PRINT n
SLEEP

The output would look like:
-1

Differences from other BASICs

= None
See also

= + (Addition)
= Mathematical Functions

Page 189

| (Division)

Syntax

argument1 | argument2

Description

The division operator is used to divide (or to find the ratio of) two numbers and return an integer result. Division
is the inverse of multiplication, *. The arguments argument1 and argument2 can be any valid numerical
expression. If either argument is an uninitialized variable, that argument will be evaluated as zero. If

argument2 is zero, a division by zero will be raised.

Example

PRINTn /5

n = 600000 / 23
PRINT n
SLEEP

The output would look like:
0
26086

Differences from other BASICs

= None with PBASIC
= Visual BASIC returns a floating point result
See also

= * (Multiplication)
= Mathematical Functions

Page 190

< (Less than)

Syntax

expressionLEFT < expressionRT

Description

The < (Less-than) Operator evaluates two expressions, compares them and returns the resulting condition.

The condition is false (0) if the left-hand side expression is greater than or equal to the right-hand side
expression, or true (1) if it is less than the right-hand side expression.

Example

The >= (Greater-than Or Equal) Operator is complement to the < (Less-than) Operator, and is functionally
identical when combined with the NOT (Bit-wise Complement) Operator:

IF(69 < 420) THEN PRINT "(69 < 420) is true."

IF NOT(69 >= 420) THEN PRINT "not(69 >= 420) is true."

Differences from other BASICs

u none

See also

<
<=

<>

>

>=

Mathematical Functions

Page 191

<= (Less than or equal)

Syntax

expressionLEFT <= expressionRT

Description

The <= (Less-than) or Equal Operator evaluates two expressions, compares them and returns the resulting

condition. The condition is false (0) if the left-hand side expression is greater than the right-hand side
expression, or true (1) if it is less than or equal to the right-hand side expression.

Example

The > (Greater-than) Operator is complement to the <= (Less-than or Equal) Operator, and is functionally
identical when combined with the NOT (Bit-wise Complement) Operator:

IF(69 <= 420) THEN PRINT "(69 <= 420) is true."
IF NOT(60 > 420) THEN PRINT "not(420 > 69) is true."

Differences from other BASICs

= the =< version of Visual BASIC is also supported
= none from PBASIC
See also

<

<=

<>

>

>=

Mathematical Functions

Page 192

<> (Inequality)

Syntax

expressionLEFT <> expressionRT

Description

The <> (Inequality) Operator evaluates two expressions, compares them for inequality and returns the

resulting condition. The condition is false (0) if the left-hand side expression and the right-hand side
expression are equal, or true (1) if they are unequal.

Example

In a number guessing game, the <> (Inequality Operator) can be used to check the player's guess with the
secret number:

guess =0

' <- get number from user and store in guess
IF(guess <> secret_number) THEN PRINT "Sorry, you guessed wrong. Try again."

The = (Equality) Operator is complement to the <> (Inequality) Operator, and is functionally identical when
combined with the NOT (Bit-wise Complement) Operator:

IF(420 <> 69) THEN PRINT "(420 <> 69) is true."
IF NOT(420 = 69) THEN PRINT "not(420 = 69) is true."

Differences from other BASICs

= none
See also

Mathematical Functions

Page 193

= (Equality)

Syntax

expressionLEFT = expressionRT

Description

The = (Equality) Operator evaluates two expressions, compares them for equality and returns the resulting
condition. The condition is false (0) if the left-hand side expression and the right-hand side expression are

unequal, or true (1) if they are equal.

Example

Equality comparisons should not be confused with Assignments, both of which also use the "=" symbol:

i =420 " assignment: assign the value of i as 420
IF(i=69)THEN " equation: compare the equality of the value of i and 69
PRINT "serious error: i should equal 420"
END
ENDIF

The <> (Inequality) Operator is complement to the = (Equality) Operator, and is functionally identical when
combined with the NOT (Bit-wise Complement) Operator:

IF(420 = 420) THEN PRINT "(420 = 420) is true."
IF NOT(69 <> 69) THEN PRINT "not(69 <> 69) is true."

Differences from other BASICs

= none
See also

<

<=

<>

>

>=

Mathematical Functions

Page 194

> (Greater than)

<

Syntax

expressionLEFT > expressionRT
Description

The > (Greater-than) Operator evaluates two expressions, compares them and returns the resulting condition.

The condition is false (0) if the left-hand side expression is less than or equal to the right-hand side
expression, or true (1) if it is greater than the right-hand side expression.

Example

The <= (Less-than Or Equal) Operator is complement to the > (Greater-than) Operator, and is functionally
identical when combined with the NOT (Bit-wise Complement) Operator:

IF(420 > 69) THEN PRINT "(420 > 69) is true."

IF NOT(420 <= 69) THEN PRINT "not(420 <= 69) is true."

Differences from other BASICs

= none
See also

<

<=

<>

>

>=

Mathematical Functions

Page 195

>= (Greater than or equal)

Syntax

lexpressionLEFT >= expressionRT

Description

The >= (Greater-than) or Equal Operator evaluates two expressions, compares them and returns the resulting
condition. The condition is false (0) if the left-hand side expression is less than the right-hand side

expression, or true (1) if it is greater than or equal to the right-hand side expression.

Example

The < (Less-than) Operator is complement to the >= (Greater-than or Equal) Operator, and is functionally
identical when combined with the NOT (Bit-wise Complement) Operator:

IF(420 >= 69) THEN PRINT "(420 >= 69) is true."
IF NOT(420 < 69) THEN PRINT "not(420 <69) is true."

Differences from other BASICs

= the => version of Visual BASIC is also supported
= none from PBASIC
See also

<

<=

<>

>

>=

Mathematical Functions

Page 196

AND

<

Syntax

number AND number

Description

And, at its most primitive lewel, is a boolean operation, a logic function that takes in two bits and outputs a
resulting bit.

If given two bits, this function returns true if both bits are true, and false for any other combination. The truth
table below demonstrates all combinations of a boolean and operation:

Bit1 Bit2 Result

0 0 0

1 0 0
0 1 0
1 1 1

This holds true for conditional expressions in ARMbasic . When using "And" encased in an If block, While
loop, or Do loop, the output will behave quite literally:
IF condition1 AND condition2 THEN expression1

Is translated as:
IF condition1 IS true, AND condition2 IS true, THEN perform expression1

When given two expressions, numbers, or variables that return a number that is more than a single bit, AND
is performed "bitwise". A bitwise operation compares each bit of one number, with each bit of another
number, performing a logic operation for every bit.

The boolean math expression below describes this:

00001111 AND

00011110

———————— equals

00001110

Notice how in the resulting number of the operation, reflects an AND operation performed on each bit of the
top operand, with each corresponding bit of the bottom operand. The same logic is also used when working
with conditions.

Example

' Using the AND operator on two numeric values
numeric_value1 = 15 '00001111
numeric_value2 = 30 '00011110

'Result = 14 = 00001110
PRINT numeric_value1 AND numeric_value2
END

' Using the AND operator on two conditional expressions
numeric_value1 = 15
numeric_value2 = 25

IF numeric_value1 > 10 AND numeric_value1 < 20 THEN PRINT "Numeric_Value1 is between 10 and 20"
IF numeric_value2 > 10 AND numeric_value2 < 20 THEN PRINT "Numeric_Value2 is between 10 and 20"
END

' This will output "Numeric_Value1 is between 10 and 20" because

" both conditions of the IF statement is true

"It will not output the result of the second IF statement because the first
' condition is true and the second is false.

Page 197

Differences from other BASICs

= none from Visual BASIC
= PBASIC AND is always logical, and & is bitwise

See also
= OR
= XOR
= NOT

Page 198

NOT

<

Syntax

NOT expression

Description

Not, at its most primitive level, is a operation, a logic function that takes one bit and returns a inverted bit.
This function returns true if the bit is false, and false if the bit is true. This also holds true for conditional
expressions in ARMbasic . When using "Not" encased in an If block, While loop, or Do loop, the output will
behave quite literally:

IF NOT condition1 THEN expression1

Is translated as:
IF condition1 =0 THEN perform expression1

When given a expression, number, or variable that return a number that is more than a single bit, Not is
performed "bitwise". A bitwise operation performs a logic operation for every bit.

The boolean math expression below describes this:

00001111 NOT

———————— equals

11110000

Notice how in the resulting number of the operation, reflects an NOT operation performed on each bit of the
expression.
When used with conditions NOT becomes a logical operation.

if NOT x>5 then ...
- eqjivalent to
if x <=5 then ...

In the above example if x is 7 and you PRINT NOT x>5 would print 0, and print 1 if x is 3.
Example

' Using the NOT operator on a numeric value

numeric_value = 15 '00001111

'Result=-16=111111111111111111111111111110000
PRINT NOT numeric_value
END

' Using the NOT operator on conditional expressions

numeric_value1 = 15
numeric_value2 = 25

IF NOT numeric_value1 = 10 THEN PRINT "Numeric_Value1 is not equal to 10"
IF NOT numeric_value2 = 25 THEN PRINT "Numeric_Value2 is not equal to 25"
END

' This will output "Numeric_Value1 is not equal to 10" because

' the first IF statement is false.

" It will not output the result of the second IF statement because the
' condition is true.

Page 199

Differences from other BASICs

= None
See also

= AND

= OR

= XOR

Page 200

OR

<

Syntax

number OR number

Description

Or, at its most primitive lewvel, is a boolean operation, a logic function that takes in two bits and outputs a
resulting bit. If given two bits, this function returns true if either bit is true, and false if both bits are false. The
truth table below demonstrates all combinations of a boolean or operation:

Bit1 Bit2 Result

0 0

_ O

1 0
0 1
1 1

This holds true for conditional expressions in ARMbasic. When using "Or" encased in an If block, While loop,
or Do loop, the output will behave quite literally:
IF condition1 OR condition2 THEN expression1

Is translated as:
IF condition1 IS true, OR condition2 IS true, THEN perform expression1

When given two expressions, numbers, or variables that return a number that is more than a single bit, Or is
performed "bitwise". A bitwise operation compares each bit of one number, with each bit of another number,
performing a logic operation for every bit.

The boolean math expression below describes this:

00001111 OR

00011110

———————— equals

00011111

Notice how in the resulting number of the operation, reflects an OR operation performed on each bit of the top
operand, with each corresponding bit of the bottom operand. The same logic is also used when working with
conditions.

Example

numeric_value1 = 15 '00001111
numeric_value2 = 30 '00011110

'Result= 31 = 00011111

PRINT numeric_value1 OR numeric_value2
END

' Using the OR operator on two conditional expressions
numeric_value = 10

IF numeric_value = 5 OR numeric_value = 10 THEN PRINT "Numeric_Value equals 5 or 10"
END

' This will output "Numeric_Value equals 5 or 10" because
' while the first condition of the first IF statement is false, the second is true

Differences from PBASIC

Page 201

= PBASIC OR is always logical, and | is bitwise

See also
= AND
= XOR
= NOT

Page 202

<<

Syntax

number << places

Description

<< shifts all bits in the argument number integer to the left by argument places. This has the effect of
multiplying the argument number by two for each shift given in the argument places. Both arguments,
numbers and places are integers. This is easiest to see in a binary number. For example %0101 << 1 return
the binary number %01010. In base 10 numbers this looks like 5 << 1 and returns 10.

Example

FORi=1TO 10
PRINT 1 <</i

NEXT i

SLEEP

The output would look like:
2

4

8

16
32
64
128
256
512
1024

Differences from other BASICs

= none
See also
[] >>

Page 203

>>

Syntax

number >> places

Description

>> shifts all bits in the argument number integer to the right by argument places. This has the effect of
dividing the argument number by two for each shift given in the argument places. Both arguments, numbers
and places are integers. This is easiest to see in a binary number. For example %0101 >> 1 return the binary
number %010. In base 10 numbers this looks like 5 >> 1 and returns 2.

If the number variable is signed, the sign bit is recopied into its place after the shift.

Example

FORi=1TO 10
PRINT 1000 >> i

NEXT i

SLEEP

The output would look like:
500

250

125

62

31

15

7

3
1
0

Differences from other BASICs

= none
See also
. <<

Page 204

REV

Syntax

(value) REV (number of bits)

Description

Function returning a reversed (mirrored) copy of a specified number of bits of a value, starting with the
rightmost bit (LSB).

For instance, OXFEED REV 4 would return OxB, a mirror image of the last four bits of the value.(The binary
representation of 0xD being 1101 and 0xB 1011)

Differences from PBASIC

= no equivalent in Visual BASIC
= same as PBASIC

See also
= AND
= XOR
= NOT

Page 205

XOR

<

Syntax

number XOR number
Description

Xor, at its most primitive level, is a boolean operation, a logic function that takes in two bits and outputs a
resulting bit. If given two bits, this function returns true if ONLY one of the bits are true, and false for any other
combination. The truth table below demonstrates all combinations of a boolean xor operation:

Bit1 Bit2 Result

0 0 0

1 0 1
0 1 1
1 1 0

This holds true for conditional expressions in ARMbasic. When using "Xor" encased in an If block, While
loop, or Do loop, the output will behave quite literally:
IF condition1 XOR condition2 THEN expression1

Is translated as:
IF condition1 IS only true, OR only condition2 IS true, THEN perform expression1

When given two expressions, numbers, or variables that return a number that is more than a single bit, Xor is
performed "bitwise". A bitwise operation compares each bit of one number, with each bit of another number,
performing a logic operation for every bit.

The boolean math expression below describes this:

00001111 XOR

00011110

———————— equals

00010001

Notice how in the resulting number of the operation, reflects an XOR operation performed on each bit of the
top operand, with each corresponding bit of the bottom operand. The same logic is also used when working
with conditions.

Example

" Using the XOR operator on two numeric values

numeric_value1 = 15 '00001111
numeric_value2 = 30 '00011110

'Result= 17 = 00010001
PRINT numeric_value1 AND numeric_value2
END

' Using the XOR operator on two conditional expressions

numeric_value1 = 10
numeric_value2 = 15

IF numeric_value1 = 10 XOR numeric_value2 = 20 THEN PRINT "Numeric_Value1 equals 10 or
Numeric_Value2 equals 20"
END

' This will output "Numeric_Value1 equals 10 or Numeric_Value2 equals 20"
' because only the first condition of the IF statement is true

Page 206

Differences from PBASIC

= PBASIC XOR is always logical, and * is bitwise

See also
= AND
= OR
= NOT

Page 207

Operator Precedence

<

Description

When seeral operations occur in a single expression, each operation is evaluated and resolved in a
predetermined order. This called the order of operation or operator precedence. There are three main
categories of operators; arithmetic, comparison, and logical. If an expression contains operators from more
than one category, arithmetic operators are evaluated first, comparison operators next, and finally logical
operators are evaluated last. If operators have equal precedence, they then are evaluated in the order in which
they appear in the expression from left to right. Comparison operators all have equal precedence.

The following table gives the operator precedence for each operator in each category. Operators lower on
the list have a lower operator precedence. Operators on the right have lower precedence than ALL operators
in the column to the left. Arithmetic operators are evaluated before comparison operations, and logical
operators are last.

Parentheses can be used to override operator precedence. Operations within parentheses are performed
before other operation. However, within the parentheses operator precedence is used.

|Arithmetic ||Comparison ||Logica| |
- (Negation) |= < < > <= >= |AND |
*, I (Multiplication and division) || ||OR |
'MOD (Modulus Operator) I [XOR |
|+, - (Addition and subtraction) || ||NOT |

|

<<, >> (Shift Bit Left and Shift Bit Right) I |

See also

= Operator List

Page 208

Data Types

L]
L]
[]
-
-
]
-
L
L]
L]
L]
L]

Data Types

Constants

Variables

Arrays

Strings

ARM Hardware Access
Address Operator
Converting Data Types

Page 209

http://www.coridiumcorp.com

Constants

<

Description

Constants are numbers which cannot be changed after they are defined. For example, 5 will always mean
the same number.

In ARMbasic, variable names can be told to be constants by defining them with the CONST command.

Such constants are then available globally, meaning that once defined, you can use the word to refer to a
constant anywhere in your program.

After being defined with the CONST command, constants cannot be altered. If code tries to alter a
constant, an error message will result upon code compilation.

Only the first 32 characters of a constant name are used, beyond that they are truncated.

By default, constants are defined by decimal numbers. Versions of the compiler after 7.43 also support VB
style hex constants defined by &H, such as &H1000 = 4096.

PBASIC style hex and binary constants may also be used. A hex constant will begin with $, such as

$3FAB. Binary constants begin with %, such as %010101111. While decimal constants can be signed,
hex and binary constants are always unsigned.

Example

CONST FirstNumber =1
CONST SecondNumber = - 2

PRINT FirstNumber, SecondNumber 'This will print 1~ -2

See also

= CONST

Page 210

Variables

Syntax

symbolname = expression ' automatic declaration

or

DIM symboliname AS INTEGER
Description

Variables are values which can be manipulated. They are referenced using names composed of letters,
numbers, and character "_". These reference names cannot contain most other symbols because such
symbols are part of the ARMbasic programming language. They also cannot contain spaces.

32-bit signed whole-number data type. Can hold values from -2147483648 to 2147483647.

Variables are declared automatically on first use. A DIM statement is not required, but can be used.
Once a simple variable is declared using a DIM, then all following variables must be declared that way

Only the first 32 characters of a variable name are used, beyond that they are truncated. Also names are
not case sensitive.

Example

FirstNumber = 1
SecondNumber = -2
ThirdNumber = &H20

PRINT FirstNumber, SecondNumber, ThirdNumber 'This will print 1 -2 32

DIM FirstNumber AS INTEGER
DIM SecondNumber AS INTEGER
DIM ThirdNumber AS INTEGER

FirstNumber = 1
SecondNumber = -2
ThirdNumber = &H20

PRINT FirstNumber, SecondNumber, ThirdNumber 'This will print 1 -2 32
Differences from other BASICs

= similar to Visual BASIC
= different syntac in PBASIC

See also

DIM

Page 211

Arrays

<

Description

Arrays are Variables which contain more than one value. The value decided upon is chosen using an
index which is an integer value between 0 and the number of elements in the array. In ARMbasic , any array
must be declared before it's first use using the DIM command.

The best way to conceptualize an array is look at it like a spreadsheet. For example, if you had an array
called myArray which contained elements (0 to 10), and was filled with random numbers, you could look at it
like this:

Index Data
0 4
1 5
2 2
3 6
4 5
5 9
6 1
7 0
8 4
9 5
10 7

Keep in mind that the numbers in the Data column are completely arbitrary in our example. When you
create an array in ARMbasic using the DIM command, the elements are all set to 0.

If you were to look at myArray(1), you'd find it's equal to 5. If you were tolook at myArray(5),you'd find it
equal to 9. In ARMbasic , you can for the most part treat arrays with indexes the same as you would all
Variables.

Page 212

Example

DIM Numbers(10
DIM OtherNumbers(10

Numbers(1) = 1
Numbers(2) = 2
OtherNumbers(1) = 3
OtherNumbers(2) = 4

GOSUB PrintArray

FORa=1TO 10
PRINT Numbers(a
NEXT a

PRINT OtherNumbers(1
PRINT OtherNumbers(2
PRINT OtherNumbers(3
PRINT OtherNumbers(4
PRINT OtherNumbers(5
PRINT OtherNumbers(6
PRINT OtherNumbers(7
PRINT OtherNumbers(8
PRINT OtherNumbers(9
PRINT OtherNumbers(10

PrintArray:
FORi=1TO 10
PRINT otherNumbers
NEXT i

RETURN

See also

= Strings
= DIM

Page 213

Strings

Syntax

DIM symbolname$ (maxlength) ' kept for backward compatibility

or

DIM symbolname (maxlength) AS STRING
Description

A STRING is an array of characters, and is limited to 256 characters. Larger strings may be allocated, but
string operations should be limited to the first 256 characters (no runtime check).

Despite the use of the maxlength , an implicit CHR (0) is added to the end of the STRING, to allow for variable
length during program execution. For this reason a &HO may not be used as a portion of a string. Byte
arrays can be used using an allocation as a string, and they may exceed 256 characters. They may also
contain embedded &HO elements. But if they do, string operations can not be used. For instance a byte
array of &HO0, &H1, &H2 can be built as-

a$(0) =0
a$(1) = 1
a$(2) =2
a$(3) =3

But the following will NOT work-
a$ = chr(0) + chr(1) + chr(2) + chr(3) 'fails as the first 0 terminates this string operation
But it can be done as-

a$ = chr(1) + chr(1) + chr(2) + chr(3)
a$0)=0 ' replace the first character with a $0

STRINGs are not checked for length at run time, so care must be taken to awoid filling it beyond the declared
DIM.

Individual characters within a string can be accessed like an array, such as a$(12) returns the character in
position 13, with the first element at offset 0.

Single character strings are a special case, and usually replaced by the byte constant representing that
character. So "A" can be used interchangeably with &H41 or 63.

Example

' Fixed-length declaration, but value varies during execution
DIM a$ (20)
a$ = "Hello"

a$ = a$+chr(32)+ "World"

PRINT a$ ' ="Hello World"

Differences from other BASICs

= Similar to Visual BASIC strings. In VB strings can have implied length when declared, but ARMbasic
requires an explicit length when declared.
= PBASIC has Arrays of BYTEs but no specific strings

Page 214

See also

= STR

Page 215

ARM Hardware Access

<

Description
While ARMbasic provides access to many hardware functions through various keywords, there are cases

where the user may want to program the available control registers directly.

Example
DayOfWeek = * ($E0024034) 'read the real time clock day of week register
* ($E0024034) = DayOfWeek ' write the real time clock day of week register

Differences from other BASICs

= no equivalent in Visual BASIC
= no equivalent in PBASIC
See also

= CPU Register Details

Page 216

AdressOf

Syntax
... = ADDRESSOF sub/function ' get the starting address of the sub/function
or

... = ADRESSOF variable/string

Description

The address of a variable or function can be determined with the ADRESSOF operator.

Example
xx=0
sub doit

XX = xx+1

end sub

VICVectAddr3 = ADRESSOF doit ' setup the 3rd interrupt to execute doit

Differences from other BASICs

= no equivalent in Visual BASIC
= no equivalent in PBASIC
See also

Page 217

Converting Data Types

To/From Strings
ASC implied
CHR

HEX

STR

VAL

Page 218

ASC -- implied function

Syntax

In ARMbasic this is an automatic type conversion
But if you want to do it explicity, in your code add the following do-nothing #define

#define ASC(x) x
Description

ARMbasic allows individual elements of a string to be accessed, and when they are assigned or compared to
integer variable/constants, the ASCII value will be used.

Example

PRINT "the character represented by the ASCII code of 97 is:"; CHR(97) ' will print a

DIM astr(10) as string ' examples of automatic type conversion complimentary to CHR
PRINT astr(0), chr(astr(0)) "will print 97 a

x = astr(0)

PRINT x "will print 97

if x ="a" then PRINT "it is a" "will printitis a

Differences from other BASICs

= does not exist in PBASIC
= same function exists in Visual BASIC

See also
= ASCIl table
= HEX
= VAL

Page 219

CHR
(4
Syntax

CHR(expression)
Description

CHR returns a single byte string containing the character represented by the ASCII code passed to it. For
example, CHR(97) returns "a".

Note:
There is no need for a complimentary function, as that type conversion is automatic, see sample code below.

Example

PRINT "the character represented by the ASCII code of 97 is:"; CHR(97) ' will print a

DIM a$(10) ' examples of automatic type conversion complimentary to CHR
a$="asdf"

PRINT a$(0), chr(a$(0)) "willprint 97 a

x = a$(0)

PRINT x "will print 97

if x = "a" then PRINT "it is a" "will printitis a

Differences from other BASICs

= does not exist in PBASIC
= same function exists in Visual BASIC/

See also
= STR
= HEX
= VAL
= [ASC]

Page 220

HEX

<

Syntax

HEX (expression)

Description

This returns the hexadecimal string representation of the integer expression. Hexadecimal values contain 0-9,
and A-F. The size of the result string depends on the integer type passed, it's not fixed.

This may also be used during debuging to change the default base to Hexadecimal, do this by typing just
HEXon the line, opposite of DEC when used this way.

Example

DIM text$(10)

text$ = HEX(4096)
PRINT "0x";text$ ' will display 0x1000

Differences from other BASICs

= same function as Visual BASIC
= similar to PBASIC format directive available in SHIFTIN, SERIN, DEBUGIN

See also
= CHR
= STR
= VAL

Page 221

STR

Syntax

STR(expression)
Description

STR will convert a expression into a string.
For example, STR(3) will become "3", or STR(333) will become "333".
Incidentally, this is the opposite of the VAL function, which converts a string into a number.

STRis also used in certain routines of the Hardware Library to designate that a series of bytes should be
read or written to a string.

Also in the following case the STR function is implied and is not required.
b$ = 333 + " sent" " will save the ASCI string "333 sent" into b$

The implied STR will work for simple expressions, but anything complex should use STR(), this would include
any function call, array element fetches.

Example

DIM b$ (10)

a = 8421

b$ = STR(a

PRINT a, b$ 'will display 8421 8421

Differences from other BASICs

= same function in Visual BASIC
= similar to DEC formatting function in PBASIC

See also
= VAL
= CHR
= HEX

Hardware Library, Function List

Page 222

VAL

<

Syntax

VAL(string)
Description

VAL converts a string to a decimal number. For example, VAL("10") will return 10. The function parses the
string from the left and returns the longest number it can read, stopping at the first non-suitable charater it
finds.

Incidentally, this function is the opposite of STR , which converts a number to a string.
Example

DIM a$(20)

a$ = "20xa211"
b = VAL(a$)
PRINT a$, b

20xa2l11l 20

Differences from other BASICs

= None from Visual BASIC
= similar to formatting directives DEC, HEXin PBASIC

See also
= STR
= HEX
= CHR

Page 223

Alphabetical Keyword List

<

With Version 7, most of the builtin firmware hardware routines have been replaced by ARMbasic routines that
can be accessed by #include <filename>. Version 7 frees up space for more user code (20K vs 12K in the
ARMmite). Version 7 is more Visual BASIC like.

The Welcome message shows the firmware version level of the ARMexpress Family device. This is

displayed when the device is stopped in the BASICtools or when reset and no user program has been loaded.

Version 7 Firmware Keywords

OPERATORS
M
= See Operator List
A MAIL
MAIN
= ABS
MOD
= AD N
= AND NEXT
= [ASC] NOT
- AS 0
B ON
= BAUD OR
= BAUDO ouT
= BAUD1 OUTPUT
- BYREF B
= BYVAL PRINT
C R
= CALL READ
= CASE RESTORE
= CHR RETURN
= CLEAR REV
= CONST RIGHT
D RND
= DATA RUN
= DEBUGIN RXD
= DIM RXDO

Page 224

Im

™

I

= o

=

DIR

DO...LOOP

DOWNTO

ELSE

ELSEIF

END

ENDFUNCTION

ENDIF

ENDSELECT

ENDSUB

EXIT

FOR

FREAD

GOosuB

GOTO

HEX

HIGH

IF...THEN

IN

INPUT

INTEGER

INTERRUPT

10

LEFT

LEN

()

I~

c

<

=

X

RXD1

SELECT CASE

SERIN

SEROUT

STEP

STOP

STR

STRCOMP

STRING

SUB

THEN

TIMER

TO

TXD

TXDO

TXD1

UDPIN

UDPOUT

UNTIL

VAL

WAIT
WHILE

WRITE

Page 225

LIST

LOOP

LOW

* pointer

Page 226

* (ARM peripheral access)

Syntax

* variable

* constant

* (expression) " added in version 8.04 of the compiler

Description

The C pointer syntax is used to give direct access to the ARM peripheral registers.

This gives the programmer the ability to directly control the ARM hardware. Details on what the registers do
can be found in the NXP User Manuals for the corresponding chip (LPC2103 for ARMmite, ARMexpress LITE,
PRO, LPC2106 for ARMexpress, LPC2138 for ARMweb, and LPC1751/6 for the PROplus and SuperPRO)

Examples of programming the registers can be found in the BASIClib directory which contains sub-programs
that control various hardware functions.

Example

' from the HWPWNM.bas library

"* —-- Timer 2

#define T2 TCR * &HE0070004

#define T2 TC * &HE0070008

#define T2_PR * &HE007000C
#define T2 MCR * &HEO0070014

#define T2_MRO * &HE0070018
#define T2_MR1 * &HEO007001C
#define T2 MR2 * &HE0070020
#define T2_MR3 * &HE0070024

T2_PR = prescale
T2 TCR =TxTCR_COUNTER_ENABLE

T2_MR3 = cycletime -1

T2_MCR = 0x400

' rollover when count reaches MR3

Differences from other BASICs

= No equivalent in Visual BASIC

= no direct equivalent in PBASIC, CONFIGPIN is a similar function

See also

= Hardware Library Functions

' Timer1 Enable

Page 227

ABS

Syntax

ABS (number)

Description

The absolute value of a number is its unsigned magnitude. For example, ABS(-1) and ABS(1) both return 1.
The required number argument can be any valid numeric expression. If number is an uninitialized variable,

zero is returned.

Example
PRINT ABS (-1
PRINT ABS (42
PRINT ABS (N
N =-69

PRINT ABS (N

The output would look like:
1

42

0

69

Differences from other BASICs

= none from Visual BASIC
= none from PBASIC

See also
= OR
= XOR
= NOT

Page 228

AD

Syntax

FUNCTION AD (expression)

Description --- not available on the original ARMexpress

ARMmite and ARMmite PRO version

AD will return 0..65472 that corresponds to the wltage on the pin corresponding to expression . The value
returned will have the top 10 bits of significance followed by bits 5..0 will be 0. 0 would be read for 0V and
65472 for 3.3V.

An analog conwersion on pin expression is performed when this builtin FUNCTION is called. This process
takes less than 6 usec.

Dual Use AD pins

On reset or power up the AD pins are configured as AD inputs. To change those to digital IOs, the user must
individually specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that
they will remain digital IOs until the next reset or power up.

ARMexpress LITE version
The ARMexpress LITE supports up to 6 channels of AD conwerters.

On the ARMexpress LITE and ARMweb these pins are configured as digital I0s at reset, but will be switched
to AD operation when AD(x) is read.

AD(0) 10(7)
AD(1) 10(10)
AD(2) 10(8)
AD(3) not available
AD(4) not available
AD(5) 10(9)
AD(6) 10(11)
AD(7) 10(12)

Stand-Alone Compilers

Because the hardware is not compatible between LPC types, this must be implemented as a FUNCTION in
BASIC and is not part of the firmware.

Example

wltage = AD (0) ' this will read the woltage on pin 0

Differences from other BASICs

= no equivalent in Visual BASIC
= no equivalent in PBASIC

See also
= |0
= DIR
= OUTPUT

Page 229

ADDRESSOF

Syntax

ADDRESSOF variable_name
or

ADDRESSOF subroutine_name
Description

ADDRESSOF will return the address of a variable or subroutine.

Example

sub print1111
print 1111
endsub

main:
fpointer = ADDRESSOF print1111

call (fpointer)
Differences from other BASICs

= similar to VB
= no equivalent in PBASIC
See also

= CALL

Page 230

AND

<

Syntax

number AND number

Description

And, at its most primitive lewel, is a boolean operation, a logic function that takes in two bits and outputs a
resulting bit.

If given two bits, this function returns true if both bits are true, and false for any other combination. The truth
table below demonstrates all combinations of a boolean and operation:

Bit1 Bit2 Result

0 0 0

1 0 0
0 1 0
1 1 1

This holds true for conditional expressions in ARMbasic . When using "And" encased in an If block, While
loop, or Do loop, the output will behave quite literally:
IF condition1 AND condition2 THEN expression1

Is translated as:
IF condition1 IS true, AND condition2 IS true, THEN perform expression1

When given two expressions, numbers, or variables that return a number that is more than a single bit, AND
is performed "bitwise". A bitwise operation compares each bit of one number, with each bit of another
number, performing a logic operation for every bit.

The boolean math expression below describes this:

00001111 AND

00011110

———————— equals

00001110

Notice how in the resulting number of the operation, reflects an AND operation performed on each bit of the
top operand, with each corresponding bit of the bottom operand. The same logic is also used when working
with conditions.

Example

' Using the AND operator on two numeric values
numeric_value1 = 15 '00001111
numeric_value2 = 30 '00011110

'Result = 14 = 00001110
PRINT numeric_value1 AND numeric_value2
END

' Using the AND operator on two conditional expressions
numeric_value1 = 15
numeric_value2 = 25

IF numeric_value1 > 10 AND numeric_value1 < 20 THEN PRINT "Numeric_Value1 is between 10 and 20"
IF numeric_value2 > 10 AND numeric_value2 < 20 THEN PRINT "Numeric_Value2 is between 10 and 20"
END

' This will output "Numeric_Value1 is between 10 and 20" because

" both conditions of the IF statement is true

"It will not output the result of the second IF statement because the first
' condition is true and the second is false.

Page 231

Differences from other BASICs

= none from Visual BASIC
= PBASIC AND is always logical, and & is bitwise

See also
= OR
= XOR
= NOT

Page 232

AS

Syntax

FUNCTION name [AS INTEGER | AS STRING]
or

FUNCTION name (parameter list) [AS INTEGER | AS STRING]
parameter list = parameter [, parameter list]
parameter = [BYVAL] paramname [AS INTEGER]
| [BYVAL] paramname(size) AS STRING
| BYREF paramname AS STRING

or
DIM symbolname (size) AS STRING

DIM symbolname AS INTEGER
Description

Used as a modifier in parameter declarations for FUNCTIONs or SUBs or DIMs

Differences from other BASICs

= simplification of Visual BASIC
= no equivalent in PBASIC

See also

'« FUNCTION
. SUB
= DIM

Page 233

ASC -- implied function

Syntax

In ARMbasic this is an automatic type conversion
But if you want to do it explicity, in your code add the following do-nothing #define

#define ASC(x) x
Description

ARMbasic allows individual elements of a string to be accessed, and when they are assigned or compared to
integer variable/constants, the ASCII value will be used.

Example

PRINT "the character represented by the ASCII code of 97 is:"; CHR(97) ' will print a

DIM astr(10) as string ' examples of automatic type conversion complimentary to CHR
PRINT astr(0), chr(astr(0)) "will print 97 a

x = astr(0)

PRINT x "will print 97

if x ="a" then PRINT "it is a" "will printitis a

Differences from other BASICs

= does not exist in PBASIC
= same function exists in Visual BASIC

See also
= ASCIl table
= HEX
= VAL

Page 234

BYREF

Syntax

FUNCTION name [AS INTEGER | AS STRING]
or

FUNCTION name (parameter list) [AS INTEGER | AS STRING]
parameter list = parameter [, parameter list]
parameter = [BYVAL] paramname [AS INTEGER]
| [BYVAL] paramname(size) AS STRING
| BYREF paramname AS STRING

Description

Used as a modifier in parameter declarations for FUNCTIONs or SUBs.

When used a pointer to the parameter will be used in the FUNCTION or SUB. This allows a function to read
AND write the original source parameter.

An advantage in use with STRINGsS, is that extra space is not required and the STRING does not have to be
copied for the FUNCTION or SUB procedure. Constant strings may be passed BYREF, but any code that
attempts to modify a constant string will cause a Data Abort.

Differences from other BASICs

= simplification of Visual BASIC
= no equivalent in PBASIC

See also
"« FUNCTION
. SUB

Page 235

BYTEBUS (ARMweb only)

<

Syntax

BYTEBUS (control)
Description

BYTEBUS reads or writes the 8 bit + 2 control lines on Port1 of the LPC2138. The control field sets the state
of the 2 control lines, with the intention of line 0 being used as a R/W line and line 1 being used as a CS line-

0 -- set control line 0 low, and pulse line 1 low
1 -- set control line 0 high, and pulse line 1 low
2 -- set control line 0 low, and pulse line 1 high
3 -- set control line 0 high, and pulse line 1 high

4 -- use the 10 lines as a block of inputs or outputs (added in version 7 firmware)
For 0-3:

The pulsewidth on line 1 is 250 nsec for write, and 550 nsec for read.

Back to back operations occur 2.4 usec apart for writes, 2 usec for read.

None of these lines are driven on reset, and should be biased with resistors if devices connected to this bus
require it.

Example

'write to byte bus - negative true CS and W
BYTEBUS(0) = $A5

'read from byte bus - negative true CS, R-notW line
x = BYTEBUS(1)

block control added in version 7 firmware-
'write to 10 pins as a block
BYTEBUS(4) = $2A5

'read from 10 pins as a block
x = BYTEBUS(4)

Differences from other BASICs
= no equivalent in Visual BASIC
= no equivalent in PBASIC

See also

« HIGH

Page 236

BYVAL

Syntax

FUNCTION name [AS INTEGER | AS STRING]
or

FUNCTION name (parameter list) [AS INTEGER | AS STRING]
parameter list = parameter [, parameter list]
parameter = [BYVAL] paramname [AS INTEGER]
| [BYVAL] paramname(size) AS STRING
| BYREF paramname AS STRING

Description

Used as a modifier in parameter declarations for FUNCTIONs or SUBs.

When used a copy of the parameter will be used in the FUNCTION or SUB. And the FUNCTION or SUB
procedure can change the copy of the parameter, BUT not the original.

Differences from other BASICs

= simplification of Visual BASIC
= no equivalent in PBASIC

See also
"« FUNCTION
. SUB

Page 237

GOSuUB CALL

Syntax

GOSUB label
or
CALL label
[CALL] function/sub
CALL (expr)

Description

GOSUB is supported for backward compatibility, now FUNCTIONs and SUBs and their implied CALL would
be a preferred method.

Execution jumps to a subroutine marked by line label. Always use RETURN to exit a GOSUB, execution will
continue on next statement after Gosub.

label may be defined as label: or as a SUB or FUNCTION
CALL for a FUNCTION or SUB is optional. When CALLing a FUNCTION the return value is discarded.

CALL (expr) was added in 7.40 compiler which allows calls to a pointer to a function. The parenthesis
are required. Parameter passing to this type of call is not supported.

Example

GOSUB message
END

message:
PRINT "Welcome!
return

sub print1111
print 1111
endsub

main:
fpointer = ADDRESSOF print1111

call (fpointer)
Differences from other BASICs

= CALL used in Visual BASIC and version 7.00 makes the CALL optional for FUNCTION/SUB like

VB
= GOSUB used in PBASIC
See also
= GOTO
= RETURN

Page 238

CASE

Syntax

CASE expression

Description

CASE is used in a SELECT CASE statement to determine conditions for running a branch of code.

See SELECT CASE.
See also

= SELECT CASE

Page 239

CHR
(4
Syntax

CHR(expression)
Description

CHR returns a single byte string containing the character represented by the ASCII code passed to it. For
example, CHR(97) returns "a".

Note:
There is no need for a complimentary function, as that type conversion is automatic, see sample code below.

Example

PRINT "the character represented by the ASCII code of 97 is:"; CHR(97) ' will print a

DIM a$(10) ' examples of automatic type conversion complimentary to CHR
a$="asdf"

PRINT a$(0), chr(a$(0)) "willprint 97 a

x = a$(0)

PRINT x "will print 97

if x = "a" then PRINT "it is a" "will printitis a

Differences from other BASICs

= does not exist in PBASIC
= same function exists in Visual BASIC/

See also
= STR
= HEX
= VAL
= [ASC]

Page 240

CLEAR

Syntax

CLEAR

Description

This is a compile time command that erases the current BASIC program in memory.

It should NOT be used as a statement inside a BASIC program.

Example

Example
PRINT "hi there"

RUN
hi there

CLEAR
Differences from other BASICs

= same as many BASICs
= no equivalent in Visual BASIC
= no equivalent in PBASIC
See also
= RUN

Page 241

CONST

Syntax

CONST symbolname = value

Description

Declares compiler-time constant symbols that can be an integer.
More complex CONST can now be handled by #define -- see pre-processor
under the hood-

Constants do not take up any program space on the ARMmite or when using the PC Compile option on the
ARMexpress. In this case the constants are used by the compiler running on the PC and compiled into code
when used. When using the ARMexpress compiler, constants do take up space in the symbol table.

Constants can be 32 bit values using the PC ARMbasic compiler, butconstants are limited to 16bit values for
the onchip ARMweb compiler.

Example

CONST reps =5

FOR1=1TO reps
PRINT I

NEXT |

-- will print out

A wN -

Differences from other BASICs

= Visual BASIC allows more complex CONST declarations
= syntax in PBASIC is symbolname CON value
See also

= Preprocessor

Page 242

DATA

<

Syntax

DATA constant1 [,constant?]...

Description

DATA statements are used to build up a list of elements in Flash. The compiler processes them in order of
appearance in the progam, NOT in order of execution. DATA statements are evaluated at compile time, so
they should contain constant integers. DATA statements may not be located within complex statements
(such as FOR..NEXT, SUB..ENDSUB ...)

RESTORE resets the READ data pointer to the first DATA element defined.

DATA is normally used to initialize variables.

On the ARMmite, DATA statements are stored abowe the code space. So using DATA will reduce the space
available for code by 1K. DATA space is shared with constant strings on the ARMmite, so the combined
space allowable is 1K.

The space between the end of your code and the start of DATA statements can be written and read with
FREAD and WRITE commands, see the memory map for details.

Example

' Create an array of 5 integers and a string to hold the data.
DIM h

' Set up to loop 5 times (for 5 numbers... check the data)
FOR read_data=0 TO 4

'Read in an integer.
READ h(read_data

' Display it.
PRINT "Number"; read_data;" = "; h(read_data

NEXT

DATA 3, 234, 435, 23, 87643

Differences from QB

= common to earlier BASICs
= no equivalent in Visual BASIC
= similar to PBASIC

See also
= READ
= RESTORE
= WRITE

Page 243

DEBUGIN variable

Syntax

DEBUGIN variable | string
Description

Normally the programs running on an ARMexpress/ARMmite are running stand-alone and without direct
human input. Howewer, during the bringup phase a programmer may want to try different values. So a
simplified replacement of the normal BASIC INPUT has been added, called DEBUGIN.

INPUT is used to control the direction of one of the 10 pins.

DEBUGIN has a limited edit capacity: it allows to erase characters using the backspace key. If a better user
interface is needed, a custom input routine should be used.

DEBUGIN may also read a string from the control serial port.

On the ARMweb, this command is available only on the debug USB port.
Example

while 1
debugin a
print a*10

loop

Differences from other BASICs

= ARMexpress DEBUGIN can take numbers in hexadecimal, binary or decimal format by using $hex
%bin

Page 244

= PBASIC is taylored for more interaction and allows more complex DEBUGIN
= other BASICs calls this function INPUT
See also

Page 245

DIM

Syntax

Declaring Arrays:
DIM symbolname (max_element)

Declaring Strings:
DIM symbolname$ (max_element)
DIM symbolname (max_element) AS STRING

Declaring Integers:
DIM symbolname AS INTEGER

Description

Declares a named variable and allocates memory to accommodate it. Though ARMbasic does not require the
declaration of integer variables, DIM is used to assign arrays of integers or strings (arrays of bytes). The size
is the max_element in the array plus 1. This allows indexing from 0 to max_element .

For backward compatibilty strings may have the last character the dollar sign $.
Only one symbolname may be declared with each DIM statement.

Memory for simple variables is allocated from the start of a heap, and strings or arrays are allocated from the
top or end of the heap. Strings are packed as bytes and always word alligned, you must allow enough space
to accomodate the expected maximum size of the string plus 1 byte for a termination (0) character. String
operators rely on the terminator.

Simple variable will be automatically declared on first use, unless you use DIM symbolname AS INTEGER.
At which point all subsequent integers must be declared using a DIM.

SUB procedures also use DIM between SUB .. ENDSUB. Those variables will be local to the procedure.
Using DIM here does not change whether all subsequent integers must be declared using a DIM or not. In
other words the state whether DIM is required is saved upon entering a SUB procedure and is restored at the
ENDSUB.

In version 7.05, AS STRING arrays are no longer limited to 255 bytes, so that they may be used for larger
arrays of bytes. Howevwer, string operations and functions ARE limited to 255 bytes.

Example
DIM a$ (10)

DIM b$ (20)
DIM c$ (30)

a$ = "Hello World"

b$ ="... from ARMbasic!"
c$ =a$ +b$
print c$ ' displays Hello World... from ARMbasic

Differences from other BASICs

= Like Visual BASIC the first element uses an offset of 0, but also memory is allocated for 0, 1 to size

Page 246

elements. This is backward compatable with earlier BASICs which indexed from 1 to size .
= PBASIC uses the syntax symbolname VAR WORD |BYTE [(size)]

See also

Page 247

DIR

<

Syntax

DIR (expression)
Description

DIR (expression) can be used to set or read the direction of the 16 configurable pins. If DIR (expression) is 1
then the corresponding pin is an output. If the value is 0 then that pin is an input.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital 10s, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they will remain
digital IOs until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance DIR 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIOODIR.
Example

' Set pin 4 as an input
DIR4)=0

' Set pin 12 as an output
DIR(12) =1

Differences from other BASICs

= no equivalent in Visual BASIC
= equivalent to DIR0..15 in PBASIC

See also
= INPUT
= OUTPUT

Page 248

DO...LOOP

Syntax

[DO] WHILE condition
[statement block]
LOOP

DO
[statement block]
[LOOP] UNTIL condition

DO
[statement block]
LOOP

Description

Repeats a block of statements until/while the condition is met. The three above syntaxes show the different
types. The DO .. LOOP without a WHILE or UNTIL will loop forever, unless an EXIT statement is executed.

Example

"This will continue to print "hello" on the screen until the condition (a > 10) is met.

a=1

DO
PRINT "hello"
a+=1

LOOP UNTIL a > 10

Differences from other BASICs

= Some BASICs allow interchangeablilty of UNTIL as the equivalent of NOT WHILE

See also
= EXIT
= FOR...NEXT

= WHILE...LOOP

Page 249

DOWNTO

Syntax

FOR counter = startvalue DOWNTO endvalue [STEP stepvalue]
[statement block]
NEXT [counter]

Description

This has been added for FOR loops that count down, which are ambiguous when startvalue or endvalue
are variables.

Example

PRINT "counting from 3 to 0, with a step of -1"
FOR i = 3 DOWNTO 0 STEP 1

PRINT "iis "; i
NEXT i

Page 250

ELSE

Syntax

if [condition] then [action] ELSE [action]

Description

see IF...THEN.
Example

IF 1 THEN
PRINT "One!"
ELSE

PRINT “Nope!"
ENDIF

Differences from QB

= none from Visual BASIC
= none from PBASIC
See also

= |F THEN

Page 251

ELSEIF

Syntax

if [condition] then [action] ELSEIF [condition] then [action]

Description

see IF...THEN.
Example

IFA=1THEN
PRINT "ONE!"
ELSEIF A = 2 THEN
PRINT "TWO!"
ENDIF

Differences from other BASICs

= None from PBASIC
= Visual BASIC uses a two word END IF, rather than the ARMbasic ENDIF
See also

= |F..THEN

Page 252

END

Syntax

END
Description

END is used to terminate the program.

When the ARMbasic is used in a control application, the END would not normally be encountered. As most
control applications would be a loop, as when a program ends it would require the user to restart or a reboot.

There is an implied END added to any program. When a program ENDs, the last state of variables, IOs and
IO controls is maintained. If a program is then RUN again those states will probably be different than running
the program by hitting RESET. RESET sets all variables to 0, and all 10s to inputs. When a program is
restarted from RUN, the variables will be set to 0, but the last 10 state will be maintained.

Example

PRINT "An unrecoverable error has occurred "
END
Differences from other BASICs

= none
See also
= STOP
= SLEEP

Page 253

ENDFUNCTION | END FUNCTION

Syntax

ENDFUNCTION

ENDFUNCTION or END FUNCTION syntax are allowed

Description

ENDFUNCTION terminates a FUNCTION procedure

FUNCTIONs must be defined before they are called.

Example

function toupper(a(100) as string) as string
dim i as integer
dim | as integer
I =len(a)
fori=0to |
if a(i) <= "z" and a(i) >= "a" then a(i) = a(i) - $20
next i
return a
end function

main:
print toupper("asdf") " will print ASDF

Differences from other BASICs

= simplification of Visual BASIC
= no equivalent in PBASIC
See also

DIM
GOosuB
SUB
MAIN:

Page 254

ENDIF | END IF

Syntax
if [statement] then

[action]
ENDIF

Description

ENDIF is used to denote the end of a block IF statement.

Version 7.00 allows ENDIF or END IF syntax

Example
IFa=1THEN

PRINT "A is equal to one!"
ENDIF

See also

« |F..THEN

Page 255

ENDSELECT | END SELECT

Syntax

SELECT [CASE] expression
[CASE expressionlist]
[statements]
[CASE ELSE]
[statements]
ENDSELECT

ENDSELECT or END SELECT syntax are allowed
Description

ENDSELECT is used to terminate the SELECT..CASE statement.

Example

SELECT choice
CASE 1

PRINT "number is 1"
CASE 2

PRINT "number is 2"
CASE 3, 4

PRINT "number is 3 or 4"
CASE 5 TO 10

PRINT "number is in the range of 5 to 10"
CASE <= 20

PRINT "number is in the range of 11 to 20"
CASE ELSE

PRINT "number is outside the 1-20 range"
ENDSELECT

bifferences from other BASICs

= ENDSELECT is used to terminate the SELECT in PBASIC
= END SELECT used in Visual BASIC
See also

« |F..THEN
= SELECT CASE

Page 256

ENDSUB | END SUB

Syntax

ENDSUB

ENDSUB or END SUB syntax are allowed
Description

ENDSUB terminates a SUB procedure

SUBs must be defined before they are called.

Example

SUB sayHello
DIM | as INTEGER 'this variable is local to the sayHello SUB procedure

FORI=1t0 3
PRINT "Hello"
NEXT |

ENDSUB

MAIN:

| =55
PRINT | " will display 55

GOSUB sayHello

PRINT | " will still display 55, as this is the global |, different from sayHello local |

Differences from other BASICs

= simplification of Visual BASIC
= no equivalent in PBASIC
See also

DIM
GOsuB
SUB
MAIN:

Page 257

EXIT

Syntax

EXT

Description

Leaves a code block such as a DO...LOOP, FOR...NEXT, or a WHILE...LOOP block.
Example

'e.g. the print command will not be seen

DO
EXT ' Exit the DO...LOOP
PRINT "i will never be shown"
LOOP

Differences from other BASICs

= None
See also

= DO

= FOR

= WHILE

Page 258

FOR...NEXT

Syntax

FOR counter = startvalue TO endvalue [STEP stepvalue]
[statement block]
NEXT [counter]

FOR counter = startvalue DOWNTO endvalue [STEP stepvalue]
[statement block]
NEXT [counter]

Description

A FOR [...] NEXT loop initializes counter to startvalue, then executes the statement block's, incrementing
counter by stepvalue until it reaches endvalue. If stepvalue is not explicitly given it will set to 1.

If the DOWNTO is used, then the counter is decremented by the stepvalue or 1 if none is specified.

Example

PRINT "counting from 3 to 0, with a step of -1"
FOR i = 3 DOWNTO 0 STEP 1

PRINT "i is "; i
NEXT i

Differences from other BASICs
= PBASIC does not use DOWNTO, and must specify a negative step

= PBASIC does not allow the variable in the NEXT statement (while this is not necessary it is good
coding practice)

See also
= STEP
= NEXT
= DO..LOOP
= EXIT

Page 259

FREAD

Syntax

SUB FREAD (FlashAddr, Destination, size)
Destination = arrayname | stringname

size in bytes
Description -- added version 7.13

The builtin subroutine FREAD copies data stored in the Flash memory to the Destination array, for size
bytes. When a string is used, it is treated like a byte array, not a 0 terminated string

Example

simple example of write and read
DIM A(511) as string
DIM B(511) as string

WRITE (&H6000, A, 512) ' this will erase the &H6000 sector, as its the first encountered

WRITE (&H6200, A, 512) ' no erasure is required, as it was erased in the last call

FREAD (&H6200, B, 512)

WRITE (&H6000, A, 0) ' this forces an erase of sector &H6000, needed as it was the last sector

erased
WRITE (&H6000, A, 512)

WRITE (&H6000, A, 512) 'as the same block is being written it will automatically be erased
WRITE (&H6000, A, 512)

Differences from other BASICs

= Does not exist in Visual BASIC
= PBASIC has a similar function
See also

= WRITE
= Memory Map
= CPU details

Page 260

FUNCTION name (optional parameters)

Syntax

FUNCTION name [AS INTEGER | AS STRING]
or

FUNCTION name (parameter list) [AS INTEGER | AS STRING]
parameter list = parameter [, parameter list]
parameter = [BYVAL] paramname [AS INTEGER]
| [BYVAL] paramname(size) AS STRING
| BYREF paramname AS STRING
| BYREF paramname [AS INTEGER]

Description

FUNCTIONSs are an extension of SUB that will return a value. If no type for the FUNCTION is specified, then
INTEGER is assumed.

The FUNCTION .. ENDFUNCTION construct allows for a second scope of variables. Scope meaning the
region in which code can see a set of labels. ARMbasic has a global scope and a local scope for any
variable declared with DIM inside an FUNCTION. Local scope variables will be only accessable from within
that FUNCTION procedure (the local scope).

Parameters are assumed to be called BYVAL if not specified. In BYVAL calls, a copy of the parameter is
passed to the Function. Integer or string parameters may be called BYREF which means a pointer to the
integer/string is passed, and changes to that integer/string can be made by code inside the function.

Code labels for goto/gosub declared within the SUB procedure are also in the local scope. Call to global
labels are allowed within a FUNCTION ... END FUNCTION , but that global label must be defined BEFORE
the FUNCTION ... END FUNCTION .

An implied RETURN is compiled at the ENDFUNCTION , but code should also return to the caller with
RETURN <expression>. A FUNCTION may also be called with a GOSUB, but the returned value is ignored.

Recursive calls with parameters or local variables are not supported. And ENDFUNCTION or END
FUNCTION syntax are allowed.

Program structure:

FUNCTIONSs should be arranged ahead of the MAIN: body of code. In many cases they will be part of
#include files at the beginning of the user ARMbasic code. If FUNCTIONS are located at the start of a
program a MAIN: must be used.

FUNCTIONSs can access global variables that have been declared before the FUNCTION, this declaration can
either be implicit or use a DIM.

FUNCTIONs must be defined before they are called.
Example

function toupper(a(100) as string) as string
dim i as integer

for i=0 to 100

if a(i)=0 then exit

if a(i) <= "z" and a(i) >= "a" then a(i) = a(i) - $20
next i

Page 261

return a
end function

main:
print toupper("asdf") " will print ASDF

Differences from other BASICs

= simplification of Visual BASIC
= no equivalent in PBASIC

See also

DIM

GOsuB

ENDSUB

MAIN:

Page 262

GOSuUB CALL

Syntax

GOSUB label
or
CALL label
[CALL] function/sub
CALL (expr)

Description

GOSUB is supported for backward compatibility, now FUNCTIONs and SUBs and their implied CALL would
be a preferred method.

Execution jumps to a subroutine marked by line label. Always use RETURN to exit a GOSUB, execution will
continue on next statement after Gosub.

label may be defined as label: or as a SUB or FUNCTION
CALL for a FUNCTION or SUB is optional. When CALLing a FUNCTION the return value is discarded.

CALL (expr) was added in 7.40 compiler which allows calls to a pointer to a function. The parenthesis
are required. Parameter passing to this type of call is not supported.

Example

GOSUB message
END

message:
PRINT "Welcome!
return

sub print1111
print 1111
endsub

main:
fpointer = ADDRESSOF print1111

call (fpointer)
Differences from other BASICs

= CALL used in Visual BASIC and version 7.00 makes the CALL optional for FUNCTION/SUB like

VB
= GOSUB used in PBASIC
See also
= GOTO
= RETURN

Page 263

GOTO

Syntax

GOTO label

Description

Jumps code execution to a line label.

Goto's should be awided for more modern structures such as DO...LOOP, FOR...NEXT, and WHILE...LOOP

Example

GOTO message

message:
PRINT "Welcome!

Differences from other BASICs

= none from Visual BASIC
= none from PBASIC
See also

= GOSuUB

Page 264

HEX

<

Syntax

HEX (expression)

Description

This returns the hexadecimal string representation of the integer expression. Hexadecimal values contain 0-9,
and A-F. The size of the result string depends on the integer type passed, it's not fixed.

This may also be used during debuging to change the default base to Hexadecimal, do this by typing just
HEXon the line, opposite of DEC when used this way.

Example

DIM text$(10)

text$ = HEX(4096)
PRINT "0x";text$ ' will display 0x1000

Differences from other BASICs

= same function as Visual BASIC
= similar to PBASIC format directive available in SHIFTIN, SERIN, DEBUGIN

See also
= CHR
= STR
= VAL

Page 265

HIGH

Syntax

HIGH expression
Description

HIGH will set the pin corresponding to expression to a positive value (3.3V) and then set it to an output.

HIGH and LOW have been added for PBASIC compatablity.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in theHardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance HIGH 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands.

Example

SUB DIRS (x) ' similar to PBASIC keyword
DIMi AS INTEGER
FORi=0to 15
DIR(i) = x and (1 <<i)
NEXT i
END SUB
main:

DIRS (&HOOFF) ' set pins 0 to 7 to output

FORI=0TO 7

WAIT (1000)

HIGH | ' set each pin HIGH one after the other every second
NEXT |

Differences from other BASICs

= no equivalent in Visual BASIC
= none from PBASIC
See also

= LOW

Page 266

IF...THEN

Syntax
IF expression THEN statement(s) [ELSE statement(s)]

IF expression [THEN]
statement(s)

[ELSEIF expression [THEN]
statement(s)]

[ELSE
statement(s)]

ENDIF

Description

IF...THEN is a way to make decisions. It is a mechanism to execute code only if a condition is true, and can
provide alternative code to execute based on more conditions.

The syntax allows single line IF..THEN, or multi-line versions that end with ENDIF.

The single line version only allows simple statements. To use nested IFs the multi-line version must be used.

Version 7.00 allows ENDIF or END IF
Example

'e.g. here is a simple "guess the number" game using if...then for a decision.
PRINT "guess the number between 0 and 10"

DO 'Start a loop

PRINT "guess"
DEBUGIN y 'Input @ number from the user
IF x =y THEN
PRINT "right!" 'He/she guessed the right number!
EXIT

ELSEIF y > 10 THEN 'The number is higher then 10
PRINT "The number cant be greater then 10! Use the force!"
ELSEIF x >y THEN
PRINT "too low" 'The users guess is to low
ELSEIF x <y THEN
PRINT "too high" 'The users guess is to high
ENDIF
LOOP 'Go back to the start of the loop

Differences from other BASICS

= none
See also
= DO..LOOP

= SELECT CASE

Page 267

IN
(4
Syntax

IN (expression)
Description

When reading from IN (expression), -1 or 0 will be returned corresponding to the woltage level on the pin
numbered expression. Why -1 and 0? The main reason is that operations of operators like NOT are assumed
to be bitwise until there is a Boolean operation in the expression, and NOT 0 is equal to -1.

This directive does not change the input/output configuration of the pin.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital 10s, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they will remain
digital IOs until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in theHardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond to the port assigned by NXP, for instance IN(3) corresponds to P0.3

For port pins after port 0, use the P1 .. P4 commands .

Example

' Set pin 9 as an input
INPUT (9)

' Assume an external device has driven pin 9 high
PRINT "The current value of Input pin 9 is "; IN(9) AND 1
The current value of Input pins is 1

Differences from other BASICs

= no equivalent in Visual BASIC
= equivalent to INO..15 PBASIC

See also
= OUT
= |0

Page 268

INPUT

Syntax

INPUT expression

Description

INPUT will set the pin corresponding to expression to an input.

INPUT and OUTPUT were added for PBASIC compatability, same function as DIR(x)= 0.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital 10s, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or I0(x) commands. After that they will remain
digital 10s until the next reset or power up.

Making a pin an INPUT will also tri-state that pin.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance INPUT 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIOODIR.
Example

INPUT (0) ' this will make pin 0 an input

Differences from other BASICs

= INPUT gets a value from the user in some BASICs, in ARMbasic get a value from the debug serial port

with DEBUGIN
= none from PBASIC
See also
= DIR
= OUTPUT
= DEBUGIN

Page 269

INTEGER

Syntax

FUNCTION name [AS INTEGER | AS STRING]
or

FUNCTION name (parameter list) [AS INTEGER | AS STRING]
parameter list = parameter [, parameter list]
parameter = [BYVAL] paramname [AS INTEGER]
| [BYVAL] paramname(size) AS STRING
| BYREF paramname AS STRING

or
DIM symbolname (size) AS STRING

DIM symbolname AS INTEGER
Description

Used as a modifier in parameter declarations for FUNCTIONs or SUBs or DIMs

Differences from other BASICs

= simplification of Visual BASIC
= no equivalent in PBASIC

See also

'« FUNCTION
. SUB
= DIM

Page 270

INTERRUPT

<

Syntax

INTERRUPT expression
Description

INTERRUPT will disable interrupts if expression is 0. And it will enable interrupts if expression is non-zero.
The default case is to have interrupts enabled.

Use this routine with caution, such as generating fixed time signals, or doing synchronous input. Do NOT
disable interrupts around large sections of the program. Serial input will stop functioning and characters may
be lost if interrupts are off for too long.

Example

' read a synchronous byte from a device with ready on pin 0, clock pin 1 and data on pin 2

FUNCTION ReadBit
WHILE IN(1)=0 ' wait for clock to go high
RETURN IN(2) AND 1

END FUNCTION

WHILE IN(0) ' wait for ready signal
LOOP

INTERRUPT 0

BITO = ReadBit
BIT1 = ReadBit
BIT2 = ReadBit
BIT3 = ReadBit
BIT4 = ReadBit
BIT5 = ReadBit
BIT6 = ReadBit
BIT7 = ReadBit
INTERRUPT 1

VALUE = BITO + (BIT1<<1) + (BIT2<<2)+ (BIT3<<3)+ (BIT4<<4)+(BIT5<<5)+ (BIT6<<6)+ (BIT7<<7)
Differences from other BASICs

= no equivalent in Visual BASIC
= no equivalent in PBASIC
See also

= ON

Page 271

10

Syntax

1O (expression)
Description

10 is a more complex way to access or control the pins. When 10 (expression) is read, the pin
corresponding to expression is converted to an input and the value on that pin is returned.

When assiging a value to 10(expression), then pin expression is converted to an output and the logic value is
written to the pin, O writes a low level any other value sets the pin high. When read 10 returns a 0 or -1. Why
-1 and 0?7 The main reason is that operations of operators like NOT are assumed to be bitwise until there is a
Boolean operation in the expression, and NOT 0 is equal to -1. When setting a pin state with 10(x) = 0 then
the pin becomes low, any other value and the pin becomes high, so 10(x) =1 and 10(x) = -1 both set the pin
high.

Using 10 simplifies pins that are being used as both inputs and outputs. As it also sets direction it will be
slower than IN, OUT, HIGH or LOW.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital I0s, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they will remain
digital IOs until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance 10(3) corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIOODIR.
Example

' Set pin 9 as an output and drive it high
10(9) =1

10(9) = NOT IN(9) '"invert pin DO NOT USE 10(9) as that would be ambiguous for controlling the direction of
the pin

' Set pin 8 as an input and reads its value
x =10(8)

Differences from other BASICs

= no equivalent in Visual BASIC
= no equivalent in PBASIC

See also
= OUT
= [N

Page 272

LEFT

Syntax

LEFT(string, characters)
Description

Returns n-characters starting from the left of string. String may be a constant or variable string.
String functions may not be nested.
A$ = LEFT("this is a test",5) + RIGHT(B$,3) ' valid string operation

A$ = LEFT("this "+b$,5) "NOT ALLOWED nested operation
Example

text$ = "hello world"
PRINT LEFT(text$, 5) 'displays "hello"

Differences from other BASICs

= none from Visual BASIC
= no equivalent in PBASIC

See also
= RIGHT
= LEN

Page 273

LEN

Syntax
LEN(string)
Description

LEN will return the length of a string in characters.
Example

PRINT LEN("hello world") 'returns "11"

Differences from PBASIC

= This function does not exist in PBASIC.
See also

Page 274

LIST

Syntax

LIST
Description

When typing commands into BASICtools a line at a time, use LIST to see what was typed.

Those lines can be captured into a file for further editing either by cut and paste or using the Save As under
files in BASICtools.

This command is not used by the BASIC compiler, so it should not be included in a file to be compiled

Example

fori=1to 10
print i
next i

LIST
fori=1to 10

print i
next

Page 275

LOOP

Description

Part of Do [...] Loop.
See DO...LOOP.

Page 276

LOW

Syntax

LOW expression
Description

LOW will set the pin corresponding to expression to a low value (0V) and then set it to an output.

HIGH and LOW have been added for PBASIC compatablity.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance LOW 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIOODIR.

Example

SUB OUTS (x) ' similar to PBASIC keyword
DIMi AS INTEGER

FORi=0to 15
OUT(i) = x and (1 << i)
NEXT i
END SUB

SUB DIRS (x) ' similar to PBASIC keyword
DIMi AS INTEGER

FORi=0to 15
DIR(i) = x and (1 <<)

NEXT i
END SUB

main:

DIRS (&HOOFF) ' set pins 0 to 7 to output

OUTS (255) ' and then set them hign or to 3.3 V
FORI=0TO 7

WAIT (1000)

LOW (1) ' set each pin LOW one after the other every second
NEXT |

Differences from other BASICs

= no equivalent in Visual BASIC
= none from PBASIC

See also
= HIGH
= |0

Page 277

MAIN

Syntax

MAIN:

Description

Normally an ARMbasic program will start at the first statement in the BASIC source. This can be changed
by having a MAIN: somewhere else in the program. When a MAIN: does exist, the program will begin at this

point.

MAIN: is useful for programs that use FUNCTIONs or SUBs and have those FUNCTIONSs or SUBs at the
beginning of the source. This also includes FUNCTIONs or SUBs that are #include'd in the source.

Example

SUB1:
PRINT "Hello from sub1"
RETURN

MAIN:
GOSUB SUB1
END

Differences from other BASICs

= pone from Visual BASIC
= none from PBASIC
See also

« EXIT

Page 278

MOD

Syntax

argument1 MOD argument2

Description

MOD is the modulus or "remainder" arthimetic operator. The result of MOD is the integer remainder of
argument1 divided by argument?2.
Example

PRINT 47 MOD 7
PRINT 56 MOD 2
PRINT 5 MOD 3

The output would look like:
5
0
2

Differences from other BASICs

= none from Visual BASIC
= PBASIC uses //
See also

Page 279

NEXT

Syntax

NEXT [identifier list]

Description

Indicates the end of a statement block associated with a matching FOR statement. identifier_list, if given,
must match the identifiers used in the associated FOR statements in reverse order.

There should be exactly one NEXT statement (or one item in the identifier list) for every FOR statement.

Example

FOR i=1 TO 10
FOR j=1TO 2

NEXT
next

FOR i=1 TO 10
FOR j=1TO 2

NEXT |
NEXT i

FOR i=1 TO 10
FOR j=1TO 2

NEXT j,i

See also

= FOR statement

Page 280

NOT

<

Syntax

NOT expression

Description

Not, at its most primitive level, is a operation, a logic function that takes one bit and returns a inverted bit.
This function returns true if the bit is false, and false if the bit is true. This also holds true for conditional
expressions in ARMbasic . When using "Not" encased in an If block, While loop, or Do loop, the output will
behave quite literally:

IF NOT condition1 THEN expression1

Is translated as:
IF condition1 =0 THEN perform expression1

When given a expression, number, or variable that return a number that is more than a single bit, Not is
performed "bitwise". A bitwise operation performs a logic operation for every bit.

The boolean math expression below describes this:

00001111 NOT

———————— equals

11110000

Notice how in the resulting number of the operation, reflects an NOT operation performed on each bit of the
expression.
When used with conditions NOT becomes a logical operation.

if NOT x>5 then ...
- eqjivalent to
if x <=5 then ...

In the above example if x is 7 and you PRINT NOT x>5 would print 0, and print 1 if x is 3.
Example

' Using the NOT operator on a numeric value

numeric_value = 15 '00001111

'Result=-16=111111111111111111111111111110000
PRINT NOT numeric_value
END

' Using the NOT operator on conditional expressions

numeric_value1 = 15
numeric_value2 = 25

IF NOT numeric_value1 = 10 THEN PRINT "Numeric_Value1 is not equal to 10"
IF NOT numeric_value2 = 25 THEN PRINT "Numeric_Value2 is not equal to 25"
END

' This will output "Numeric_Value1 is not equal to 10" because

' the first IF statement is false.

" It will not output the result of the second IF statement because the
' condition is true.

Page 281

Differences from other BASICs

= None
See also

= AND

= OR

= XOR

Page 282

ON (version 7.30 and later on ARM7 parts)

For PROplus and SuperPRO see INTERRUPT SUB

Syntax

ON TIMER msec label
or

ON EINTO|EINT1|EINT2 RISE|FALL|HIGH|LOW [abel
Description

These statements will initialize interrupt senvice routines so that when the interrupt occurs the code at label
will be executed. Label must have been pre-defined and can either be a SUB (without parameters) or code
beginning with a label: and ending in a RETURN. The interrupt response time is approximately 3 usec. Other
interrupts may make this time longer.

TIMER interrupts will occur every msec milliseconds. msec may be a variable or constant, expressions are
not allowed. The value for msec must be greater than 1. If TIMER interrupts are used, then only 4 hardware
PWM channels are available.

EINTO and EINT2 are 2 pins that will interrupt when the defined event occurs. RISE and FALL are the
preferred method and will generate interrupts on rising or falling edges on those 2 pins. HIGH and LOW are
supported, but if the pin remains in that state interrupts will be continuously generated.

EINT1 is connected to the RTS line of the PC, and is normally high, so it can be used by a program on the
PC to interrupt the ARMmite, rather than having to reset the board. This pin is available on the wireless
ARMmite, but if you intend to use it, make sure it is pulled high normally, otherwise when the board is reset it
will go into the download C mode and will not run your BASIC program. EINT1 is also available on the
ARMexpress modules (pin 21), and should also be kept normally high if used.

Each time the ON statement is executed the interrupt will be initialized, so it is possible to change routines
within the program. Multiple interrupts can be used, but they are serviced in the order received, and each
interrupt senvice routine will complete before the next one is handled (interrupts that occur while one is being
senviced will be handled after the current interrupt is processed).

Interrupt routines should normally be short and simple. The state of the other user BASIC code will be
restored after the interrupt, with the exception of string functions, which should NOT be done inside an
interrupt. PRINT statements use strings, so other than a temporary debug to see if the interrupt occurs, they
should not be inside an interrupt routine.

To disable the interrupt use the following #define

#defineVICIntEnClear *$FFFFF014

#define TIMERoff VICIntEnClear = $20
#define EINTOoff VICIntEnClear = $4000
#define EINT10off VICIntEnClear = $8000
#define EINT20off VICIntEnClear = $10000

ON added in version 7.09
The LPC2106 based ARMexpress supports ONLY ON LOW, due to hardware limitations.

ON is a statement that is executed, so if multiple ON statements are in a program the last statement

Page 283

executed will be active command.

Cortex M3 and MO do not support ON, but use INTERRUPT SUB
Example

I015up =0 ' serves to declare 1015up

SUB 1015count
1015up = [015up + 1
ENDSUB

main:
ON EINT2 RISE 1015count

I015up =0
while 1
if I015up <> lastlO15count then
print I015up
lastlO15count = 1015up
endif

loop
every20msec:
checklO0 = checklOO0 + (I0(0) and 1)
I00samples = I00samples +1
RETURN

main:

ON TIMER 20 every20msec

PRINT "Percentage of time 100 is HIGH =", 100*checkIO0 / I00samples

bifferences from other BASICs

= VB???
= no equivalent in PBASIC
See also

= GOTO
= RETURN

Page 284

OR

<

Syntax

number OR number

Description

Or, at its most primitive lewvel, is a boolean operation, a logic function that takes in two bits and outputs a
resulting bit. If given two bits, this function returns true if either bit is true, and false if both bits are false. The
truth table below demonstrates all combinations of a boolean or operation:

Bit1 Bit2 Result

0 0

_ O

1 0
0 1
1 1

This holds true for conditional expressions in ARMbasic. When using "Or" encased in an If block, While loop,
or Do loop, the output will behave quite literally:
IF condition1 OR condition2 THEN expression1

Is translated as:
IF condition1 IS true, OR condition2 IS true, THEN perform expression1

When given two expressions, numbers, or variables that return a number that is more than a single bit, Or is
performed "bitwise". A bitwise operation compares each bit of one number, with each bit of another number,
performing a logic operation for every bit.

The boolean math expression below describes this:

00001111 OR

00011110

———————— equals

00011111

Notice how in the resulting number of the operation, reflects an OR operation performed on each bit of the top
operand, with each corresponding bit of the bottom operand. The same logic is also used when working with
conditions.

Example

numeric_value1 = 15 '00001111
numeric_value2 = 30 '00011110

'Result= 31 = 00011111

PRINT numeric_value1 OR numeric_value2
END

' Using the OR operator on two conditional expressions
numeric_value = 10

IF numeric_value = 5 OR numeric_value = 10 THEN PRINT "Numeric_Value equals 5 or 10"
END

' This will output "Numeric_Value equals 5 or 10" because
' while the first condition of the first IF statement is false, the second is true

Differences from PBASIC

Page 285

= PBASIC OR is always logical, and | is bitwise

See also
= AND
= XOR
= NOT

Page 286

ouT

<

Syntax

OUT (expression)
Description

When writing to OUT (expression), the pin corresponding to expression will be set a wltage level
corresponding to TRUE or FALSE, non-zero or 0. When setting a pin state with OUT(x) = 0 then the pin
becomes low, any other value and the pin becomes high, so OUT(x) =1 and OUT(x) = -1 both set the pin
high.

The OUT directive does not change the input/output configuration of the pin. Following reset all pins are
inputs, before an OUT () will have an effect on a pin, that pin must be made an output using an OUTPUT
command. The reason for this is to make OUT faster, if the pin direction were changed each OUT, then the
speed of one OUT to the next would be slower.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital 10s, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or I0(x) commands. After that they will remain
digital 10s until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance OUT(3) corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIOODIR.
Example

' Set pin 9 as an output
OUTPUT (9)

' Drive pin 9 high
ouT@9) =1

PRINT "The current value of Output pin 9is "; OUT(9)
The current value of Output pins is 1

Differences from other BASICs

= no equivalent in Visual BASIC
= equivalent to OUTO0..15 in PBASIC

See also
= |IN
= |0

Page 287

OUTPUT

Syntax

OUTPUT expression

Description

OUTPUT will set the pin corresponding to expression to an output.

INPUT and OUTPUT were added for PBASIC compatability, same function as DIR(x)= 0.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital 10s, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or I0(x) commands. After that they will remain
digital 10s until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance OUTPUT 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIOODIR.
Example

' Set pin 9 as an output
OUTPUT (9)

Differences from other BASICs

= no equivalent in Visual BASIC
= none from PBASIC

See also
= DIR
= INPUT

Page 288

PRINT

Syntax

PRINT [expressionlist] [(, | ;)] ...

Description

Prints expressionlist to screen.

Expressionlist can be constant string, constant numbers, variables, string variables or expressions consisting
ov variables and numbers. Seperated by either , or ;

Using a comma (,) as separator or in the end of the expressionlist will place the cursor in the next column
(every 5 characters), using a semi-colon (;) won't mowve the cursor. If neither of them are used in the end of
the expressionlist, then a new-line will be printed.

PRINT statements send data out the serial port. There is a 16 byte FIFO in the serial port, once that is filled
BASIC will wait for space to be available.

Example

DIM AB(10) AS STRING

" new-line"Hello World!"™" no new-line
PRINT "Hello";AB; "!";

PRINT

" column separator
PRINT "Hello!", "World!"

PRINT "3+4 =",3+4

y=4321

x=1234

PRINT "sum=",x+y

Differences from other BASICs
= none from Visual BASIC

= PBASIC uses DEBUGIN and a non-standard syntax
See also

= DEBUGIN the opposite function that receives user input

Page 289

READ

Syntax

READ {constant,} variable_list

variable_list = variable | array_element | string_element {, variable_list }
Description

Reads data stored by the BASIC application with the DATA command.

The elements of the variable_list must be integer variables, elements of a string, or elements of arrays. Each
element read, will be filled from a 32bit value in the 4K space used to store the DATA statements. All the
DATA statements in the program behawe as a single list.

After the last element of a DATA is read, the first element of the following DATA will be read.

The RESTORE statement resets the next-element pointer to the start of the DATA. This allows the user to
alter the order in which the DATA are READ.

If the READ is followed by a constant, then the element will be filled from the nth DATA element where n =
constant.

Example

' Create an array of 5 integers.
DIM h(4

' Set up to loop 5 times (for 5 numbers... check the data)
FOR read_data=0 TO 4

'Read in an integer.
READ h(read_data

' Display it.
PRINT "Number"; read_data;" = "; h(read_data

NEXT

END

' Block of data.

DATA 3, 234, 4354, 23433, 87643
Differences from other BASICs

= Most classic BASICs contain this construct

= Does not exist in Visual BASIC

= PBASIC allows modifiers for size. In PBASIC the first element always sets the offset into the data
array. This is the case in ARMbasic only if the first element is a constant.

See also
= DATA
= RESTORE

Page 290

RESTORE

Syntax

RESTORE
Description

Sets the next-data-to-read pointer to the first element of the first DATA statement.

Example

' Create an 2 arrays of integers and a 2 strings to hold the data.
DIM h(4)
DIM h2(4)

' Set up to loop 5 times (for 5 numbers... check the data)
FOR read_data1=0TO 4

'Read in an integer.
READ h(read_data1)

' Display it.
PRINT "Bloc 1, number"; read_data1;" = "; h(read_data1)

NEXT

' Set the data read to the beginning
RESTORE

' Print it.
PRINT "Bloc 1 string =" + hs

' Spacers.

PRINT
Print

' Set the data read to the beginning
RESTORE

' Set up to loop 5 times (for 5 numbers... check the data)
FOR read_data2 =0 TO 4

'Read in an integer.
READ h2(read_data2)

' Display it.
PRINT "Bloc 2, number"; read_data2;" = "; h2(read_data2)

NEXT

DATA 3, 234, 4354, 23433, 87643

DATA 546, 7894, 4589, 64657, 34554

Page 291

Differences from QB

= common to many earlier BASICs
= no equivalent in Visual BASIC
= none from PBASIC

See also
= DATA
= READ

Page 292

RETURN

Syntax

RETURN

inside function-
RETURN expression | string-expression

Description

RETURN is used to return control back to the statement immediately following a previous GOSUB call. When
used in combination with GOSUB, A GOSUB call must always have a matching RETURN statement, to awid
stack

If the RETURN is inside a function, an integer or string expression is expected.

RETURN will exit a FUNCTION or SUB even when inside a component statement such as WHILE, FOR,
SELECT ...

If a RETURN is executed without a corresponding GOSUB or CALL, a Prefetch Abort error will stop your
program.

Example

PRINT "Let's Gosub!"
GOSUB MyGosub

PRINT "Back from Gosub!"
END

MyGosub:

PRINT "In Gosub!"
RETURN

Differences from other BASICs

= asubset of the RETURN of Visual BASIC
= none from PBASIC
See also

= GOSUB.

Page 293

REV

Syntax

(value) REV (number of bits)

Description

Function returning a reversed (mirrored) copy of a specified number of bits of a value, starting with the
rightmost bit (LSB).

For instance, OXFEED REV 4 would return OxB, a mirror image of the last four bits of the value.(The binary
representation of 0xD being 1101 and 0xB 1011)

Differences from PBASIC

= no equivalent in Visual BASIC
= same as PBASIC

See also
= AND
= XOR
= NOT

Page 294

RIGHT

Syntax

RIGHT(string, characters)
Description

Returns n-characters starting from the right of the string. String may be a constant or variable string.
String functions may not be nested.

A = LEFT("this is a test",5) + RIGHT(B,3) ' valid string operation

A = RIGHT(("this "+b,5) "NOT ALLOWED nested operation
Example

DIM text(20) as string
text = "hello world"
PRINT RIGHT(text, 5 'displays "world"
Differences from other BASICs
= this function does not exist in PBASIC
= similar function to Visual BASIC

See also

= LEFT

Page 295

RND

<

Syntax

RND (number)

Description -- added in version 7

This is an LCG random number generator, that takes number in as a seed and produces a 32 bit integer
pseudo-random number.

Example

PRINT RND
PRINT RND
PRINT RND (55

N = 69

PRINT RND (N

The output would look like:
632584417

632584417

-1809004169
2103579653

Differences from other BASICs

= none from Visual BASIC
= none from PBASIC
See also

= OR

= XOR
= NOT

Page 296

RUN

Syntax

RUN

Description

RUN will compile the program and write it into Flash Memory. Then it will execute the program which has

been saved.

Now that the program is in Flash it will be executed when the board is either reset or powered on.
BASICtools can STOP a program that is being executed from Flash.

RUN is a command line function, it should NOT be included in a BASIC program. It is equivalent to the RUN
button in the BASICtools. Your BASIC program will start automatically when the ARM is reset.

Example

PRINT "hi there"

RUN

CLEAR

Differences from other BASICs

= same as many BASICs

= no equivalent in Visual BASIC

= no equivalent in PBASIC, done with the editor
See also

= CLEAR

Page 297

SELECT [CASE]

Syntax

SELECT [CASE] expression
[CASE expressionlist]
[statements]
[CASE ELSE]
[statements]
ENDSELECT

Description

Select case executes specific code depending on the value of an expression. If the expression matches the
first case then it's code is executed otherwise the next cases are compaired and if one case matches then
its code is executed. If no cases are matched and there is a 'case else' on the end then it wil be executed,
otherwise the whole select case block will be skipped.

Syntax of an expression list:
expression [{TO expression | relational operator expression}][, ...]

example of expression lists:

CASE "A" 'the "A" is equivalent to $41, multi-character strings can not be used in CASE
statements

CASE5TO 10

CASE > "e"

CASE1,3TO 10

CASE1,3,5,7,9

Example

PRINT "Choose a number between 1 and 10: "
DEBUGIN choice
SELECT choice
CASE 1

PRINT "number is 1"
CASE 2

PRINT "number is 2"
CASE 3, 4

PRINT "number is 3 or 4"
CASE 5TO 10

PRINT "number is in the range of 5 to 10"
CASE <= 20

PRINT "number is in the range of 11 to 20"
CASE ELSE

PRINT "number is outside the 1-20 range"
ENDSELECT
Differences from other BASICs

SELECT CASE is used in Visual BASIC
SELECT is used in PBASIC
either is allowed in ARMbasic
Visual BASIC uses an optional IS before relational operators
ENDSELECT is used to terminate the SELECT in both ARMbasic and PBASIC
= END SELECT (seperate words) are used in Visual BASIC and is allowed in ARMbasic
See also

= |F..THEN

Page 298

STEP

Syntax

FOR iterator = initial_value TO end_value STEP increment

Description

In a FOR statement, STEP specifies the increment of the loop iterator with each loop.

If no STEP value is specified in the FOR loop the default of + 1 is used.
Example

FOR =10 TO 1 STEP -1
See also

= FOR

Page 299

STOP

Syntax

STOP

Description

Halt execution of the program.

STOP functions like a breakpoint when under control of BASICtools. When the STOP is executed the BASIC
program halts excecution, but allows BASICtools to dump variable values. Also in BASICtools RUN will
resume execution at the statement following STOP.

Example

'If pin 2 is low halt the processor

IF 10(2) =0 THEN
PRINT "Processor Stopped"
PRINT "Press Reset to Continue"
STOP

ENDIF

Differences from other BASICs

= none from Visual BASIC
= none from PBASIC, though the breakpoint features are not supported
See also

= EXIT

Page 300

STR

Syntax

STR(expression)
Description

STR will convert a expression into a string.
For example, STR(3) will become "3", or STR(333) will become "333".
Incidentally, this is the opposite of the VAL function, which converts a string into a number.

STRis also used in certain routines of the Hardware Library to designate that a series of bytes should be
read or written to a string.

Also in the following case the STR function is implied and is not required.
b$ = 333 + " sent" " will save the ASCI string "333 sent" into b$

The implied STR will work for simple expressions, but anything complex should use STR(), this would include
any function call, array element fetches.

Example

DIM b$ (10)

a = 8421

b$ = STR(a

PRINT a, b$ 'will display 8421 8421

Differences from other BASICs

= same function in Visual BASIC
= similar to DEC formatting function in PBASIC

See also
= VAL
= CHR
= HEX

Hardware Library, Function List

Page 301

STRCOMP

Syntax

STRCOMP(string1, string2)
Description

<

This compares the two strings returning -1 if string1 would sort before string2. Returning 0 if the two strings

are equal, and 1 if string1 would sort after string2.

String1 and String2 may be constant or variable strings.

String functions may not be nested.

Example

DIM text$(10)

text$ = "BAT"

PRINT STRCOMP(text$, text$) " will display 0
PRINT STRCOMP(text$, "BAT") " will display 0)
PRINT STRCOMP(text$, "BOOT") ' will display -1)

PRINT STRCOMP(text$, "BAA") " will display 1

Differences from other BASICs

= same function as Visual BASIC
= no equivalent in PBASIC

See also
= CHR
= STR
= VAL

Page 302

STRING

Syntax

FUNCTION name [AS INTEGER | AS STRING]
or

FUNCTION name (parameter list) [AS INTEGER | AS STRING]
parameter list = parameter [, parameter list]
parameter = [BYVAL] paramname [AS INTEGER]
| [BYVAL] paramname(size) AS STRING
| BYREF paramname AS STRING

or
DIM symbolname (size) AS STRING

DIM symbolname AS INTEGER
Description

Used as a modifier in parameter declarations for FUNCTIONs or SUBs or DIMs

Differences from other BASICs

= simplification of Visual BASIC
= no equivalent in PBASIC

See also

'« FUNCTION
. SUB
= DIM

Page 303

SUB name (optional parameters)

Syntax

SUB name
or

SUB name (parameter list)
parameter list = parameter [, parameter list]
parameter = [BYVAL] paramname [AS INTEGER]
| [BYVAL] paramname(size) AS STRING
| BYREF paramname AS STRING
| BYREF paramname [AS INTEGER]

Description

GOSUB goes to a label. , but can also go to a defined SUB procedure.

The SUB.. ENDSUB construct allows for a second scope of variables. Scope meaning the region in which
code can see a set of labels. ARMbasic has a global scope and a local scope for any variable declared with
DIM inside an SUB. Local scope variables will be only accessable from within that SUB procedure (the local
scope).

Parameters are assumed to be called BYVAL if not specified. In BYVAL calls, a copy of the parameter is
passed to the SUB procedure. Integer or string parameters may be called BYREF which means a pointer to
the integer/string is passed, and changes to that integer/string can be made by code inside the SUB
procedure.

Code labels for goto/gosub declared within the SUB procedure are also in the local scope. Call to global
labels are allowed within a SUB .. ENDSUB, but that global label must be defined BEFORE the SUB ...
ENDSUB.

Recursive calls with parameters or local variables are not supported. And ENDSUB or END SUB syntax are
allowed.

Program structure:
SUB procedures should be arranged ahead of the MAIN: body of code. In many cases they will be part of
#include files at the beginning of the user ARMbasic code. If SUBs are located at the start of a program a

MAIN: must be used.

SUB procedures can access global variables that have been declared before the SUB, this declaration can
either be implicit or use a DIM.

An implied RETURN is compiled at the ENDSUB, but code may also return to the caller with RETURN

SUBs must be defined before they are called.

Example
SUB sayHello
DIM | as INTEGER ' this variable is local to the sayHello SUB procedure
FORI=1t0 3
PRINT "Hello"
NEXT |

Page 304

ENDSUB

MAIN:

| =55
PRINT | " will display 55

GOSUB sayHello

PRINT | " will still display 55, as this is the global |, different from sayHello local |

Differences from other BASICs

= simplification of Visual BASIC
= no equivalent in PBASIC

See also

DIM

GOsuB

ENDSUB

MAIN:

Page 305

THEN

Description

A component of an IF [...] Then decision statement.
See IF...THEN.

Page 306

TIMER

<

Syntax

TIMER

Description

TIMER is a free running timer that increments every microsecond. Its it readable and writeable using this
keyword.

Operations that require more precise timing should use the dedicated hardware routines, as interupts that are
occuring for other time functions and serial input may make times using TIMER look longer than actual.

Example

START = TIMER< /EM >
WHILE (TIMER-START < WAIT_MICROSECONDS)
LOOP

Differences from other BASICs

= no equivalent in PBASIC
= no equivalent in Visual BASIC
See also

MINUTE
HOUR
DAY
MONTH
YEAR
WEEKDAY

Page 307

TO

Syntax

FOR iterator intial_value TO ending_value
NEXT [iterator]

SELECT case_comparison_value
CASE lower_bound TO upper_bound

END SELECT
Description

The TO keyword is used to define a certain numerical range. This keyword is valid only if used with FOR ...

NEXT and SELECT / CASE .

In the first syntax, the TO keyword defines the initial value of the iterator in a FOR statement, and the ending

value.

In the second syntax, the TO keyword defines lower and upper bounds for CASE comparisons.
Example

" this program uses bound variables along with the TO keyword to create an array, store random
FOR it = minimum_temp_count TO maximum_temp_count

" display a message based on temperature using our min/max danger zone bounds
SELECT array(it)
CASE min_low_danger TO max_low_danger
COLOR 11
PRINT "Temperature" ; it ; " is in the low danger zone at" ; array(it) ; " degrees!"
CASE min_medium_danger TO max_medium_danger
COLOR 14
PRINT "Temperature" ; it ; " is in the medium danger zone at" ; array(it) ; " degrees!"
CASE min_high_danger TO max_high_danger
COLOR 12
PRINT "Temperature" ; it ; " is in the high danger zone at" ; array(it) ; " degrees!"
CASE ELSE
COLOR 3
PRINT "Temperature" ; it ; " is safe at" ; array(it) ; " degrees."
END SELECT

NEXT it
SLEEP

Differences from other BASICs

= none
See also
= FOR...NEXT

= SELECT CASE

Page 308

UNTIL

Syntax

See DO..UNTIL
Description

UNTIL is used with the DO...LOOP structure. See it for more info.
Example

a=1
DO
PRINT "hello"
a=a+1
LOOP UNTIL a > 10

"This will continue to print "hello" on the screen until the condition (a > 10) is met.

Differences from other BASICs

= LOORP is required with UNTIL in Visual BASIC
= LOORP is optional in ARMbasic
See also

Page 309

VAL

<

Syntax

VAL(string)
Description

VAL converts a string to a decimal number. For example, VAL("10") will return 10. The function parses the
string from the left and returns the longest number it can read, stopping at the first non-suitable charater it
finds.

Incidentally, this function is the opposite of STR , which converts a number to a string.
Example

DIM a$(20)

a$ = "20xa211"
b = VAL(a$)
PRINT a$, b

20xa2l11l 20

Differences from other BASICs

= None from Visual BASIC
= similar to formatting directives DEC, HEXin PBASIC

See also
= STR
= HEX
= CHR

Page 310

WAIT

Syntax

WAIT (milliseconds)
Description

Delay program execution a number of milliseconds.

1000 milliseconds is one second

Example

Print tick once per second for ever.
WHILE 1
PRINT "tick"
WAIT(1000)
LOOP
Differences from other BASICs

= no equivalent in Visual BASIC

= PBASIC has a similar function PAUSE that uses a CPU dependent "tick" value

See also
= SLEEP
= TIMER

Page 311

WHILE...LOOP

Syntax

[DO] WHILEcondition
[statements]
LOOP

Description

WHILE [...] LOOP will repeat the statements between WHILE and LOOP, while the condition is true.

If the condition isn't true when the WHILE statement begins, none of the statements will be run.
The DO is optional in ARMbasic.

WHILE loops hawe the lowest overhead of all looping constructs.
Example

WHILE x =0
x=1
LOOP

Differences from other BASICs
= Visual BASIC uses the syntax DO WHILE ... LOOP, which is allowed by ARMbasic

= PBASIC also requires the DO
= Some BASICs use WHILE ... WEND

See also
= DO..LOOP
= EXIT

Page 312

WRITE

Syntax

FUNCTION WRITE (FlashAddr, Source, subblocksize)
Source = arrayname | stringname

subblocksize = 0| 256* | 512 | 1024 | 2048 | 4096 | 8192*
Description -- added version 7.13

WRITE copies data into the Flash memory space shared with the user code Flash space. Generally space
above 0x4000 is available, but there is no protection for writing over your program. Flash is organized in
sectors, 4K in ARMmite, ARMexpressLITE, 8K sectors in the ARMexpress, the ARMweb has a mix of 4K
and 32K sectors. (details in the NXP User Manual).

Writing consists of erasing the whole sector and then writing a subblock or all.
Erases will erase the entire sector.

subblocksize portions may be written (ARMexpress allows upto 8K but not 256). FlashAddr must be
alligned to subblocksize.

Data is copied from a string or array to the Flash. Only fixed subblocksize sizes are allowed. This function
does not look for 0 terminators when a string is the source.

To force a sector to be erased use a block size of 0. Once a portion is written after an erase, it can not be
written again without being erased.

WRITE assumes that the sector is to be erased when first written, or when the same subblock as the

last call to WRITE is being written. When different subblocks of the same sector are being written, an erase
will only occur when WRITE is called with a subblocksize of 0. The WRITE routine only keeps track of which
sector and sublock were last written, you must manage sectors

These routines call the IAP routines for write, erase and prep commands. More details in the user manual for
the corresponding CPU.

0 is returned on success, Non-zero error code when there is an error refer to IAP section in CPU user
manual for definitions .

Example

simple example of write and read
DIM A(511) as string
DIM B(511) as string

WRITE (&H6000, A, 512) ' this will erase the &H6000 sector, as its the first encountered
WRITE (&H6200, A, 512) 'no erasure is required, as it was erased in the last call

WRITE (&H6000, A, 0) " this forces an erase of sector &H6000, needed as it was the last
sector erased
WRITE (&H6000, A, 512)

WRITE (&H6000, A, 512) 'as the same block is being written it will automatically be erased

Page 313

Differences from other BASICs

= Does not exist in Visual BASIC
= PBASIC has a similar function
See also

= FREAD
= Memory Map
= CPU details

Page 314

XOR

<

Syntax

number XOR number
Description

Xor, at its most primitive level, is a boolean operation, a logic function that takes in two bits and outputs a
resulting bit. If given two bits, this function returns true if ONLY one of the bits are true, and false for any other
combination. The truth table below demonstrates all combinations of a boolean xor operation:

Bit1 Bit2 Result

0 0 0

1 0 1
0 1 1
1 1 0

This holds true for conditional expressions in ARMbasic. When using "Xor" encased in an If block, While
loop, or Do loop, the output will behave quite literally:
IF condition1 XOR condition2 THEN expression1

Is translated as:
IF condition1 IS only true, OR only condition2 IS true, THEN perform expression1

When given two expressions, numbers, or variables that return a number that is more than a single bit, Xor is
performed "bitwise". A bitwise operation compares each bit of one number, with each bit of another number,
performing a logic operation for every bit.

The boolean math expression below describes this:

00001111 XOR

00011110

———————— equals

00010001

Notice how in the resulting number of the operation, reflects an XOR operation performed on each bit of the
top operand, with each corresponding bit of the bottom operand. The same logic is also used when working
with conditions.

Example

" Using the XOR operator on two numeric values

numeric_value1 = 15 '00001111
numeric_value2 = 30 '00011110

'Result= 17 = 00010001
PRINT numeric_value1 AND numeric_value2
END

' Using the XOR operator on two conditional expressions

numeric_value1 = 10
numeric_value2 = 15

IF numeric_value1 = 10 XOR numeric_value2 = 20 THEN PRINT "Numeric_Value1 equals 10 or
Numeric_Value2 equals 20"
END

' This will output "Numeric_Value1 equals 10 or Numeric_Value2 equals 20"
' because only the first condition of the IF statement is true

Page 315

Differences from PBASIC

= PBASIC XOR is always logical, and * is bitwise

See also
= AND
= OR
= NOT

Page 316

Additional Reserved Words

The Future

The ARMexpress is the first in a new generation of ARM-based controllers. The ARMbasic language has
provisions for some of the features for the next members in the family. For this reason a number of words are

resened for future use.

In order to maintain compatability with future ARMbasic instructions the following words have been reserved.

FLOAT
QUIT
QUITDUMP

QUITNOW

READONLY
WEB

WEBGET

Page 317

Runtime Library

Runtime Library

Math Functions
String Functions

Page 318

http://www.coridiumcorp.com

Mathematical Functions

PR

assassREREEAR
T rassamansun
sEnm

Mathematical Functions

ABS
MOD
RND
SIN, COS

Page 319

http://www.coridiumcorp.com

ABS

Syntax

ABS (number)

Description

The absolute value of a number is its unsigned magnitude. For example, ABS(-1) and ABS(1) both return 1.
The required number argument can be any valid numeric expression. If number is an uninitialized variable,

zero is returned.

Example
PRINT ABS (-1
PRINT ABS (42
PRINT ABS (N
N =-69

PRINT ABS (N

The output would look like:
1

42

0

69

Differences from other BASICs

= none from Visual BASIC
= none from PBASIC

See also
= OR
= XOR
= NOT

Page 320

MOD

Syntax

argument1 MOD argument2

Description

MOD is the modulus or "remainder" arthimetic operator. The result of MOD is the integer remainder of
argument1 divided by argument?2.
Example

PRINT 47 MOD 7
PRINT 56 MOD 2
PRINT 5 MOD 3

The output would look like:
5
0
2

Differences from other BASICs

= none from Visual BASIC
= PBASIC uses //
See also

Page 321

RND

<

Syntax

RND (number)

Description -- added in version 7

This is an LCG random number generator, that takes number in as a seed and produces a 32 bit integer
pseudo-random number.

Example

PRINT RND
PRINT RND
PRINT RND (55

N = 69

PRINT RND (N

The output would look like:
632584417

632584417

-1809004169
2103579653

Differences from other BASICs

= none from Visual BASIC
= none from PBASIC
See also

= OR

= XOR
= NOT

Page 322

FREQOUT

<

Library

#include <FREQOUT .bas>

This library has some initialization code that can either be copied into your program or the code can be run
inline as in the following-

initFREQOUT:
#include <FREQOUT .bas>
return

main:
gosub initFREQOUT

c

= COS
E

= FREQOUT
S

= SIN
Interface

#define SIN(x) sin_tbl(x)
#define COS(x) sin_tbl(x-64)

" duration is in milliseconds
'freq1 and freq2 in Hz
SUB FREQOUT (pin, duration, freq1, freq2)

Internals

ARMbasic uses integers, but there may be a need for certain functions that normally use floating point
calculations. One of these is the cosine function, which normally operates on degrees or radians. But for
simplicity and the binary world, these values and the result value have been normalized to fit in a byte value.
but in this case it is expressed as -127 to +127 or the cos() multiplied by 127.

These SIN and COS functions are identical to the PBASIC wersions and are used by FREQOUT. Rather
than degrees or radians there are 256 divisions (360/256 degrees) which returns a value of -127 to +127 which
correspond to -1 to 1 for normal sine and cosine function.

The SIN function is implemented using string, and accessed a byte at a time to generate the 256 values.
COS is the SIN function shifted 90 degrees or 64 places

Example

#include <FREQOUT.bas>

Page 323

'Generate a soothing dual frequency tone on pin 4 for 8 seconds
'using frequncies 2500 and 6000

FREQOUT (4, 8000, 2500, 6000)

Page 324

String Functions

Builtin String Functions VBSTRING.bas Library (VB style)
CHR MID
HEX INSTR
LEFT UCASE
LEN LCASE
RIGHT
STR STRING.bas Library (C style
STRCOMP MIDSTR
VAL STRCHR
STRSTR
TOLOWER
TOUPPER

String functions may not be nested. What does this mean?

String functions are built using a string accumulator which is a 256 byte buffer. There is only one string

accumulator due to memory constraints. The general expression evaluation for integers involves a stack, but
it is impractical in the ARMmite to have a string stack. So when a string is built from an expression, it uses

this string accumulator. String FUNCTIONSs also use this string accumulator to return the string value. So
string FUNCTIONSs can not be used after the first operand in a string expression.

String expressions are parsed left to right, and parenthesis for grouping are not allowed as that is the
equivalent of nesting. Howewer a string expression can have any number of strings being combined into a
single string. So the following is proper-

DIM ast(30) as string

DIM bst(30) as string

DIM cst(30) as string

ast = ast + "abcd" + str(2 + 44 / 33) + str(len(a)) + "zcxv' + chr(13) + "more stuff" + bst

The chr(13) inserts a carriage return into this string so it spans 2 lines. This is proper as strings only have
two limitations. First that they are less that 256 bytes, and they are terminated by a 0 or null character.

Note that the str(2 + 44 / 33) inwlwves the integer evaluation stack and is OK as that is a seperate entity.
Also the str(len(a$)) is valid as that involves a string as stored in memory.

What would not be allowed is something like
ast = "length is " + str(len(cst + bst)) " THIS IS INVALID NESTING

because cst + bst would have to be evaluated before ast could be built, and there is no room to do that.

Page 325

http://www.coridiumcorp.com

ast = "length is " + str(len(cst) + len(bst)) 'allowed as len is called with simple pointers

User FUNCTIONSs

Now with the addition of user defined functions, there is the possibility of a nested string function that the
compiler can not detect. If a string expression calls a user function, and that user function does ANY string
expressions or PRINT statements; then this is a nested string operation. The compiler will not be able to
detect this, and its possible to get unexpected string results or even data abort errors.

ast = user_string_function (1,2,3) "is OK
ast = str (user_integer_function (1,2,3)) "is OK
ast = "result of " + user_string_function (1,2,3) " INVALID string nesting

ast = "result of "+ str(user_integer_function (1,2,3)) ' valid only if no string op or PRINT statement in
user_integer_function

ast = user_string_function (1,2,3) + " returned" "is OK, as the string function was the first called

ast = str(user_int_function (1,2,3)) + " returned" "is OK, as the user function was the first called

VB vs C style String Functions

VB accesses the first character by Stringname.Chars(0) In ARMbasic that first character is accessed by
Stringname(0)

But VB's MID ("This is a string",1,3) returns "Thi".

The existing library of string functions was translated from C, which is always 0 based for the first element.
So

MIDSTR ("This is a string",1,3) returns "his"

Page 326

String Comparisons

Syntax

string1 compare_op string2

string1 = string-variable | byref_string_pointer | string_constant
compare op = > | >=|=]|<>]| =<| <

string2 = string1_types | string_functions

Description

This compares the two strings returning -1 if string1 satisfies the comparison_op with string2. Returning O if
the comparison_op is not true.

String1 and String2 may be constant or variable strings. String2 may also be a FUNCTION of type STRING.
Example

DIM text(10) as STRING

text = "BAT"

PRINT text > "BBB" " will display 0
PRINT "BBB" <= text ' will display O
PRINT text < "BOOT" ' will display 1
PRINT text > "BAA" " will display 1

Differences from other BASICs

= similar to Visual BASIC
= no equivalent in PBASIC

See also
= CHR
= STR
= VAL

Page 327

ASC -- implied function

Syntax

In ARMbasic this is an automatic type conversion
But if you want to do it explicity, in your code add the following do-nothing #define

#define ASC(x) x
Description

ARMbasic allows individual elements of a string to be accessed, and when they are assigned or compared to
integer variable/constants, the ASCII value will be used.

Example

PRINT "the character represented by the ASCII code of 97 is:"; CHR(97) ' will print a

DIM astr(10) as string ' examples of automatic type conversion complimentary to CHR
PRINT astr(0), chr(astr(0)) "will print 97 a

x = astr(0)

PRINT x "will print 97

if x ="a" then PRINT "it is a" "will printitis a

Differences from other BASICs

= does not exist in PBASIC
= same function exists in Visual BASIC

See also
= ASCIl table
= HEX
= VAL

Page 328

CHR
(4
Syntax

CHR(expression)
Description

CHR returns a single byte string containing the character represented by the ASCII code passed to it. For
example, CHR(97) returns "a".

Note:
There is no need for a complimentary function, as that type conversion is automatic, see sample code below.

Example

PRINT "the character represented by the ASCII code of 97 is:"; CHR(97) ' will print a

DIM a$(10) ' examples of automatic type conversion complimentary to CHR
a$="asdf"

PRINT a$(0), chr(a$(0)) "willprint 97 a

x = a$(0)

PRINT x "will print 97

if x = "a" then PRINT "it is a" "will printitis a

Differences from other BASICs

= does not exist in PBASIC
= same function exists in Visual BASIC/

See also
= STR
= HEX
= VAL
= [ASC]

Page 329

HEX

<

Syntax

HEX (expression)

Description

This returns the hexadecimal string representation of the integer expression. Hexadecimal values contain 0-9,
and A-F. The size of the result string depends on the integer type passed, it's not fixed.

This may also be used during debuging to change the default base to Hexadecimal, do this by typing just
HEXon the line, opposite of DEC when used this way.

Example

DIM text$(10)

text$ = HEX(4096)
PRINT "0x";text$ ' will display 0x1000

Differences from other BASICs

= same function as Visual BASIC
= similar to PBASIC format directive available in SHIFTIN, SERIN, DEBUGIN

See also
= CHR
= STR
= VAL

Page 330

INSTR ' VB style

Syntax

#include <VBSTRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION INSTR(start , searchee, lookfor)
Description

This FUNCTION written in BASIC searches the string searchee looking for the string lookfor, starting at the
start-th.

If it is found, the position of the first character of lookfor in searchee is returned, otherwise 0.
start is based on 1 being the first character, which is consistant with the InStr VB function, but inconsistant

with the VB searchee.Chars(0) being the first character. The C style STRSTR version of this routine uses 0
as the first character.

Example

#include <VBSTRING.bas>

DIM text(10)

text = "HELLO WORLD"

PRINT INSTR(1, text, "LLO") " will display 3

Differences from other BASICs

= similar function as Visual BASIC
= no equivalent in PBASIC

See also
= UCASE
= MID

Page 331

LCASE

Syntax

#include <VBSTRING.bas>

FUNCTION LCASE(string) as STRING
Description

This FUNCTION written in BASIC shifts the letters of string to lower case .String may be a constant or

variable string.

Example

#include <VBSTRING.bas>

DIM text(10)

text = "HELLO WORLD"

PRINT LCASE(text) ' will display hello world
Differences from other BASICs

= similar function as Visual BASIC
= no equivalent in PBASIC

See also
= UCASE
= INSTR

' source in /Program Files/Coridium/BASIClib

Page 332

LEFT

Syntax

LEFT(string, characters)
Description

Returns n-characters starting from the left of string. String may be a constant or variable string.
String functions may not be nested.
A$ = LEFT("this is a test",5) + RIGHT(B$,3) ' valid string operation

A$ = LEFT("this "+b$,5) "NOT ALLOWED nested operation
Example

text$ = "hello world"
PRINT LEFT(text$, 5) 'displays "hello"

Differences from other BASICs

= none from Visual BASIC
= no equivalent in PBASIC

See also
= RIGHT
= LEN

Page 333

LEN

Syntax

LEN(string)
Description

This returns the length of string in characters.String may be a constant or variable string.

String functions may not be nested.

Example
DIM text$(10)
text$ = "0x"+HEX(4096)
PRINT LEN(text$) ' will display 6
Differences from other BASICs
= same function as Visual BASIC

= no equivalent in PBASIC
See also

= CHR
= STR
= VAL

Page 334

MID ' VB style

Syntax

#include <VBSTRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION MID(string , start, length) as STRING
Description

This FUNCTION written in BASIC returning the portion of string from the start character for length characters.
String may be a constant or variable string.

start is based on 1 being the first character, which is consistant with the MID VB function, but inconsistant
with the VB searchee.Chars(0) being the first character. The C style MIDSTR wersion of this routine uses 0

as the first character.

Extracting or setting a single byte in a string can be done with an index STRING(3) refers to the 4th byte of
the string (starts from 0).

Example

#include <VBSTRING.bas>

DIM text(10)

text = "HELLO WORLD"

PRINT MID(text, 4,5) ' will display LO WO

Differences from other BASICs

= similar function as Visual BASIC
= no equivalent in PBASIC

See also
= UCASE
= [INSTR

Page 335

MIDSTR ' C style

Syntax

#include <STRING.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION MIDSTR(string , start, length) as STRING

Description

This FUNCTION written in BASIC returning the portion of string from the start character for length characters.
String may be a constant or variable string.

MIDSTR is written in C style with 0 being the first character of the string, consistent with VB string.Chars(0).

Extracting or setting a single byte in a string can be done with an index STRING(3) refers to the 4th byte of
the string (starts from 0).

Example

#include <STRING.bas>

DIM text(10)

text = "HELLO WORLD"

PRINT MIDSTR(text, 4,5) ' will display O WOR
Differences from other BASICs

= similar function as Visual BASIC
= no equivalent in PBASIC

See also
= TOUPPER
= STRSTR

Page 336

RIGHT

Syntax

RIGHT(string, characters)
Description

Returns n-characters starting from the right of the string. String may be a constant or variable string.
String functions may not be nested.

A = LEFT("this is a test",5) + RIGHT(B,3) ' valid string operation

A = RIGHT(("this "+b,5) "NOT ALLOWED nested operation
Example

DIM text(20) as string
text = "hello world"
PRINT RIGHT(text, 5 'displays "world"
Differences from other BASICs
= this function does not exist in PBASIC
= similar function to Visual BASIC

See also

= LEFT

Page 337

Single Byte access

Syntax

someString(index)
Description

A string is just an array of bytes, terminated by a 0. Strings are limited to 256 characters (no bounds
checking). So individual bytes can be accessed like individual elements in an array.

Extracting or setting a single byte in a string can be done with an index STRING(3) refers to the 4th byte of
the string (starts from 0).

Example

DIM text(10) as string

text(0) = chr("H") ' single character strings like "H" are treated like a character constant
text(1) = chr("E")
text(2) = chr("L")

text(3) = text(2) ' copy the previous character
text(4) = text(3) + 3 'expressions are OK too, the result is truncated to 8 bits
text(5) =0

PRINT text ' will display HELLO

Differences from other BASICs

= same as Visual BASIC
= same as PBASIC

See also
= UCASE
= INSTR

Page 338

Single Byte access

Syntax

someString(index)
Description

A string is just an array of bytes, terminated by a 0. Strings are limited to 256 characters (no bounds
checking). So individual bytes can be accessed like individual elements in an array.

Extracting or setting a single byte in a string can be done with an index STRING(3) refers to the 4th byte of
the string (starts from 0).

Example

DIM text(10) as string

text(0) = chr("H") ' single character strings like "H" are treated like a character constant
text(1) = chr("E")
text(2) = chr("L")

text(3) = text(2) ' copy the previous character
text(4) = text(3) + 3 'expressions are OK too, the result is truncated to 8 bits
text(5) =0

PRINT text ' will display HELLO

Differences from other BASICs

= same as Visual BASIC
= same as PBASIC

See also
= UCASE
= INSTR

Page 339

STR

Syntax

STR(expression)
Description

STR will convert a expression into a string.
For example, STR(3) will become "3", or STR(333) will become "333".
Incidentally, this is the opposite of the VAL function, which converts a string into a number.

STRis also used in certain routines of the Hardware Library to designate that a series of bytes should be
read or written to a string.

Also in the following case the STR function is implied and is not required.
b$ = 333 + " sent" " will save the ASCI string "333 sent" into b$

The implied STR will work for simple expressions, but anything complex should use STR(), this would include
any function call, array element fetches.

Example

DIM b$ (10)

a = 8421

b$ = STR(a

PRINT a, b$ 'will display 8421 8421

Differences from other BASICs

= same function in Visual BASIC
= similar to DEC formatting function in PBASIC

See also
= VAL
= CHR
= HEX

Hardware Library, Function List

Page 340

STRCHR ' C style

Syntax

#include <STRING.bas> " source in /Program Files/Coridium/BASIClib

FUNCTION STRCHR(string , char)
Description

This FUNCTION written in BASIC searches string looking for the first instance of char .String may be a
constant or variable string.
If char is not found -1 is returned, otherwise the position of char.

STRCHR is written in C style with 0 being the first character of the string, consistent with VB string.Chars(0).
Example

#include <STRING.bas>

DIM text(10)

text = "HELLO WORLD"

PRINT STRCHR(text, "W") ' will display 6

Differences from other BASICs

= similar function as Visual BASIC
= no equivalent in PBASIC

See also
= TOUPPER
= STRSTR

Page 341

STRCOMP

Syntax

STRCOMP(string1, string2)
Description

<

This compares the two strings returning -1 if string1 would sort before string2. Returning 0 if the two strings

are equal, and 1 if string1 would sort after string2.

String1 and String2 may be constant or variable strings.

String functions may not be nested.

Example

DIM text$(10)

text$ = "BAT"

PRINT STRCOMP(text$, text$) " will display 0
PRINT STRCOMP(text$, "BAT") " will display 0)
PRINT STRCOMP(text$, "BOOT") ' will display -1)

PRINT STRCOMP(text$, "BAA") " will display 1

Differences from other BASICs

= same function as Visual BASIC
= no equivalent in PBASIC

See also
= CHR
= STR
= VAL

Page 342

STRSTR ' C style

Syntax

#include <STRING.bas> " source in /Program Files/Coridium/BASIClib
FUNCTION STRSTR(searchee, lookfor)

Description

This FUNCTION written in BASIC searches the string searchee looking for the string lookfor.
If it is found, the position of the first character of lookfor in searchee is returned, otherwise -1.

STRSTR is written in C style with 0 being the first character of the string, consistent with VB string.Chars(0).
Example

#include <STRING.bas>

DIM text(10)

text = "HELLO WORLD"

PRINT STRSTR(text, "LLO") ' will display 2

Differences from other BASICs

= similar function as Visual BASIC
= no equivalent in PBASIC

See also
= TOUPPER
= STRCHR

Page 343

TOLOWER

Syntax

#include <STRING.bas> " source in /Program Files/Coridium/BASIClib

FUNCTION TOLOWER(string) as STRING
Description

This FUNCTION written in BASIC shifts the letters of string to lower case .String may be a constant or
variable string.

Example

#include <STRING.bas>

DIM text(10)

text = "HELLO WORLD"

PRINT TOLOWER(text) ' will display hello world
Differences from other BASICs

= similar function as Visual BASIC
= no equivalent in PBASIC

See also
= TOUPPER
= STRSTR

Page 344

TOUPPER

Syntax

#include <STRING.bas> " source in /Program Files/Coridium/BASIClib

FUNCTION TOUPPER(string) as STRING

Description

This FUNCTION written in BASIC upshifts the letters of string .String may be a constant or variable string.
Example

#include <STRING.bas>

DIM text(10)

text = "hello world"

PRINT TOUPPER(text) 'will display HELLO WORLD
Differences from other BASICs

= similar function as Visual BASIC
= no equivalent in PBASIC

See also
= TOLOWER
= STRSTR

Page 345

UCASE

Syntax

#include <VBSTRING.bas> ' source in /Program Files/Coridium/BASIClib
FUNCTION UCASE(string) as STRING

Description

This FUNCTION written in BASIC upshifts the letters of string .String may be a constant or variable string.
Example

#include <VBSTRING.bas>

DIM text(10)

text = "hello world"

PRINT UCASE(text) ' will display HELLO WORLD
Differences from other BASICs

= similar function as Visual BASIC
= no equivalent in PBASIC

See also
= LCASE
= INSTR

Page 346

VAL

<

Syntax

VAL(string)
Description

VAL converts a string to a decimal number. For example, VAL("10") will return 10. The function parses the
string from the left and returns the longest number it can read, stopping at the first non-suitable charater it
finds.

Incidentally, this function is the opposite of STR , which converts a number to a string.
Example

DIM a$(20)

a$ = "20xa211"
b = VAL(a$)
PRINT a$, b

20xa2l11l 20

Differences from other BASICs

= None from Visual BASIC
= similar to formatting directives DEC, HEXin PBASIC

See also
= STR
= HEX
= CHR

Page 347

Version 7 Hardware Library

With Version 7, most of the builtin firmware hardware routines have been replaced by ARMbasic routines that
can be accessed by #include <filename>.

Version 7 is more Visual BASIC like, and frees up space for more user code (20K vs 12K in the ARMmite).
The Welcome message shows the firmware version level of the ARMexpress Family device. This is

displayed when the device is STOPped in the BASICtools or when reset and no user program has been
loaded.

Hardware Library
Date and Time Functions

Function List

Hardware Specs
Interrupts

Logic Scope
Mathematical Functions
Pin Controls

Page 348

http://www.coridiumcorp.com

* (ARM peripheral access)

Syntax

* variable

* constant

* (expression) " added in version 8.04 of the compiler

Description

The C pointer syntax is used to give direct access to the ARM peripheral registers.

This gives the programmer the ability to directly control the ARM hardware. Details on what the registers do
can be found in the NXP User Manuals for the corresponding chip (LPC2103 for ARMmite, ARMexpress LITE,
PRO, LPC2106 for ARMexpress, LPC2138 for ARMweb, and LPC1751/6 for the PROplus and SuperPRO)

Examples of programming the registers can be found in the BASIClib directory which contains sub-programs
that control various hardware functions.

Example

' from the HWPWNM.bas library

"* —-- Timer 2

#define T2 TCR * &HE0070004

#define T2 TC * &HE0070008

#define T2_PR * &HE007000C
#define T2 MCR * &HEO0070014

#define T2_MRO * &HE0070018
#define T2_MR1 * &HEO007001C
#define T2 MR2 * &HE0070020
#define T2_MR3 * &HE0070024

T2_PR = prescale
T2 TCR =TxTCR_COUNTER_ENABLE

T2_MR3 = cycletime -1

T2_MCR = 0x400

' rollover when count reaches MR3

Differences from other BASICs

= No equivalent in Visual BASIC

= no direct equivalent in PBASIC, CONFIGPIN is a similar function

See also

= Hardware Library Functions

' Timer1 Enable

Page 349

Date and Time Functions

The ARMmite USB has a provision to add a battery to keep these time functions running when power is
removed. This is not the case for the ARMexpress, ARMexpress LITE, or ARMmite Wireless.

Date and Time Functions
DAY
HOUR
MINUTE
MONTH
SECOND
SLEEP
TIMER
WAIT
WEEKDAY
YEAR

Page 350

http://www.coridiumcorp.com

DAY

<

Syntax
#include <RTC.bas> " source in /Program Files/Coridium/BASIClib
#include <RTC17.bas> ' for the PROplus and SuperPRO LPC175x

FUNCTION DAY(value) 'when called with 0, the current day is returned, otherwise set the current day
Description

Function setting or returning the day of the month.

When called with a non-zero value, the DAY is changed.
Range 1 to 28, 29, 30, or 31
(depending on the month and whether it is a leap year).

Example

#include <RTC.bas>
DAY (14)
PRINT "This is "; MONTH(0); "/"; DAY(0); "/"; YEAR(O), "at"; HOUR(-1); ™:"; MINUTE(-1); ":"; SECOND(-1)

The output would look like:
This is 4/14/2006 at 13:15:30

Page 351

HOUR

Syntax
#include <RTC.bas> " source in /Program Files/Coridium/BASIClib
#include <RTC17.bas> ' for the PROplus and SuperPRO LPC175x

FUNCTION HOUR(value) 'When called with -1 the current value for HOUR is returned.
Description

Function setting or returning the hour.

When called with a value >= 0, the HOUR is changed.
Range 0 to 23.

Example

#include <RTC.bas>

HOUR (13)

PRINT "This is "; MONTH(0); "/"; DAY(0); "/"; YEAR(0), "at"; HOUR(-1); ":"; MINUTE(-1); ":"; SECOND(-1)

The output would look like:
This is 4/14/2006 at 13:15:30

Page 352

MINUTE

Syntax
#include <RTC.bas> ' source in /Program Files/Coridium/BASIClib
#include <RTC17.bas> ' for the PROplus and SuperPRO LPC175x

FUNCTION MINUTE(value) 'When called with -1 the current value for MINUTE is returned.
Description

Function setting or returning the day of the month.

When called with a value >= 0, the MINUTE is changed.
Range 0 to 59

Example

#include <RTC.bas>

MINUTE (15)

PRINT "This is "; MONTH(0); "/"; DAY(0); "/"; YEAR(0), "at"; HOUR(-1); ":"; MINUTE(-1); ":"; SECOND(-1)
The output would look like:
This is 4/14/2006 at 13:15:30

Page 353

MONTH

<

Syntax

#include <RTC.bas> " source in /Program Files/Coridium/BASIClib
#include <RTC17.bas> ' for the PROplus and SuperPRO LPC175x

FUNCTION MONTH(value) " call with 0 or less to return the present MONTH, >0 will set the MONTH
Description

Function setting or returning the month.

When called with a non-zero value, the MONTH is changed.
Range 1 to 12.

Example

#include <RTC.bas>
MONTH (4)
PRINT "This is "; MONTH(0); "/"; DAY(0); /"; YEAR(0), "at"; HOUR(-1); " MINUTE(-1); ":"; SECOND(-1)

The output would look like:
This is 4/14/2006 at 13:15:30

Page 354

SECOND

Syntax
#include <RTC.bas> ' source in /Program Files/Coridium/BASIClib
#include <RTC17.bas> ' for the PROplus and SuperPRO LPC175x

FUNCTION SECOND(value) 'When called with -1 the current value for SECOND is returned.
Description

Function setting or returning the current SECOND.

When called with a value >= 0, the SECOND is changed.
Range 0 to 59

Example

#include <RTC.bas>

SECOND (30)

PRINT "This is "; MONTH(0); "/"; DAY(0); "/"; YEAR(0), "at"; HOUR(-1); ":"; MINUTE(-1); ":"; SECOND(-1)

The output would look like:
This is 4/14/2006 at 13:15:30

Page 355

SLEEP

Syntax
#include <RTC.bas> " source in /Program Files/Coridium/BASIClib
#include <RTC17.bas> ' for the PROplus and SuperPRO LPC175x

SLEEP (seconds)
Description

Delay program execution a number of seconds.
Example

#include <RTC.bas>

FORI=0TO 7

OUTPUT |

LOW | ' set each pin as output and low
NEXT |

FORI=0TO 7

SLEEP (1)

HIGH | ' set each pin HIGH one after the other every second
NEXT |

Differences from other BASICs
= no equivalent in Visual BASIC
= none from PBASIC

See also

= WAIT

Page 356

TIMER

<

Syntax

TIMER

Description

TIMER is a free running timer that increments every microsecond. Its it readable and writeable using this
keyword.

Operations that require more precise timing should use the dedicated hardware routines, as interupts that are
occuring for other time functions and serial input may make times using TIMER look longer than actual.

Example

START = TIMER< /EM >
WHILE (TIMER-START < WAIT_MICROSECONDS)
LOOP

Differences from other BASICs

= no equivalent in PBASIC
= no equivalent in Visual BASIC
See also

MINUTE
HOUR
DAY
MONTH
YEAR
WEEKDAY

Page 357

WAIT

Syntax

WAIT (milliseconds)
Description

Delay program execution a number of milliseconds.

1000 milliseconds is one second

Example

Print tick once per second for ever.
WHILE 1
PRINT "tick"
WAIT(1000)
LOOP
Differences from other BASICs

= no equivalent in Visual BASIC

= PBASIC has a similar function PAUSE that uses a CPU dependent "tick" value

See also
= SLEEP
= TIMER

Page 358

WEEKDAY

Syntax
#include <RTC.bas> ' source in /Program Files/Coridium/BASIClib
#include <RTC17.bas> ' for the PROplus and SuperPRO LPC175x

FUNCTION WEEKDAY (value) 'When called with -1 the current value for WEEKDAY is returned.
Description

Function setting or returning the day of the week.

When called with zero or greater value, the WEEKDAY is changed.
0 corresponding to Sunday through 6 corresponding to Saturday

Example

#include <RTC.bas>
DIM dayname(15) as string

SECOND (30)
MINUTE (15)
HOUR (13)
DAY (14)
MONTH (4)
YEAR (2006)

SELECT WEEKDAY(-1)
CASE 0

dayname = "Sunday"
CASE 1

dayname = "Monday"
CASE 2

dayname = "Tuesday"
CASE 3

dayname = "Wednesday"
CASE 4

dayname = "Thursday"
CASE 5

dayname = "Friday"
CASE 6

dayname = "Saturday"
CASE ELSE

dayname = "not possible
ENDSELECT

PRINT "This is "; dayname, MONTH(0); "/*; DAY(0); "/"; YEAR(O0), "at"; HOUR(-1); ":"; MINUTE(-1); ":";
SECOND(-1)

The output would look like:

This is Friday 4/14/2006 at 13:15:30

Page 359

YEAR

Syntax
#include <RTC.bas> ' source in /Program Files/Coridium/BASIClib
#include <RTC17.bas> ' for the PROplus and SuperPRO LPC175x

FUNCTION YEAR(value) 'When called with 0 the current value for YEAR is returned.
Description

Function setting or returning the year.

When called with a non-zero value, the YEAR is changed.
Range 1 to 4095.

Example

#include <RTC.bas>

YEAR (2006)

PRINT "This is "; MONTH(0); "/"; DAY (0); "/"; YEAR(0), "at"; HOUR(-1); ":"; MINUTE(-1); ":"; SECOND(-1)
The output would look like:
This is 4/14/2006 at 13:15:30

Page 360

Flash Access

FREAD

Flash Control Functions
WRITE

Page 361

http://www.coridiumcorp.com

FREAD

Syntax

SUB FREAD (FlashAddr, Destination, size)
Destination = arrayname | stringname

size in bytes
Description -- added version 7.13

The builtin subroutine FREAD copies data stored in the Flash memory to the Destination array, for size
bytes. When a string is used, it is treated like a byte array, not a 0 terminated string

Example

simple example of write and read
DIM A(511) as string
DIM B(511) as string

WRITE (&H6000, A, 512) ' this will erase the &H6000 sector, as its the first encountered

WRITE (&H6200, A, 512) ' no erasure is required, as it was erased in the last call

FREAD (&H6200, B, 512)

WRITE (&H6000, A, 0) ' this forces an erase of sector &H6000, needed as it was the last sector

erased
WRITE (&H6000, A, 512)

WRITE (&H6000, A, 512) 'as the same block is being written it will automatically be erased
WRITE (&H6000, A, 512)

Differences from other BASICs

= Does not exist in Visual BASIC
= PBASIC has a similar function
See also

= WRITE
= Memory Map
= CPU details

Page 362

WRITE

Syntax

FUNCTION WRITE (FlashAddr, Source, subblocksize)
Source = arrayname | stringname

subblocksize = 0| 256* | 512 | 1024 | 2048 | 4096 | 8192*
Description -- added version 7.13

WRITE copies data into the Flash memory space shared with the user code Flash space. Generally space
above 0x4000 is available, but there is no protection for writing over your program. Flash is organized in
sectors, 4K in ARMmite, ARMexpressLITE, 8K sectors in the ARMexpress, the ARMweb has a mix of 4K
and 32K sectors. (details in the NXP User Manual).

Writing consists of erasing the whole sector and then writing a subblock or all.
Erases will erase the entire sector.

subblocksize portions may be written (ARMexpress allows upto 8K but not 256). FlashAddr must be
alligned to subblocksize.

Data is copied from a string or array to the Flash. Only fixed subblocksize sizes are allowed. This function
does not look for 0 terminators when a string is the source.

To force a sector to be erased use a block size of 0. Once a portion is written after an erase, it can not be
written again without being erased.

WRITE assumes that the sector is to be erased when first written, or when the same subblock as the

last call to WRITE is being written. When different subblocks of the same sector are being written, an erase
will only occur when WRITE is called with a subblocksize of 0. The WRITE routine only keeps track of which
sector and sublock were last written, you must manage sectors

These routines call the IAP routines for write, erase and prep commands. More details in the user manual for
the corresponding CPU.

0 is returned on success, Non-zero error code when there is an error refer to IAP section in CPU user
manual for definitions .

Example

simple example of write and read
DIM A(511) as string
DIM B(511) as string

WRITE (&H6000, A, 512) ' this will erase the &H6000 sector, as its the first encountered
WRITE (&H6200, A, 512) 'no erasure is required, as it was erased in the last call

WRITE (&H6000, A, 0) " this forces an erase of sector &H6000, needed as it was the last
sector erased
WRITE (&H6000, A, 512)

WRITE (&H6000, A, 512) 'as the same block is being written it will automatically be erased

Page 363

Differences from other BASICs

= Does not exist in Visual BASIC
= PBASIC has a similar function
See also

= FREAD
= Memory Map
= CPU details

Page 364

Version 7 -- Hardware Function List

(9]

™

(= o

(o]

o

BAUD_
BAUDO_

BAUD1

COUNT

FREQOUT

FREAD

HWPWM

12CIN

12COUT

ON
OWIN

owouT

PULSIN
PULSOUT

PWM

I~

(7))

I~

=

RCTIME

RXD

RXDO0

RXD1

SERIN

SERINtimeout

SEROUT

SHIFTIN

SHIFTOUT

SPIBI

SPIIN

SPIOUT

TXD

TXDO

TXD1

WRITE

Page 365

FREQOUT

<

Library

#include <FREQOUT .bas>

This library has some initialization code that can either be copied into your program or the code can be run
inline as in the following-

initFREQOUT:
#include <FREQOUT .bas>
return

main:
gosub initFREQOUT

c

= COS
E

= FREQOUT
S

= SIN
Interface

#define SIN(x) sin_tbl(x)
#define COS(x) sin_tbl(x-64)

" duration is in milliseconds
'freq1 and freq2 in Hz
SUB FREQOUT (pin, duration, freq1, freq2)

Internals

ARMbasic uses integers, but there may be a need for certain functions that normally use floating point
calculations. One of these is the cosine function, which normally operates on degrees or radians. But for
simplicity and the binary world, these values and the result value have been normalized to fit in a byte value.
but in this case it is expressed as -127 to +127 or the cos() multiplied by 127.

These SIN and COS functions are identical to the PBASIC wersions and are used by FREQOUT. Rather
than degrees or radians there are 256 divisions (360/256 degrees) which returns a value of -127 to +127 which
correspond to -1 to 1 for normal sine and cosine function.

The SIN function is implemented using string, and accessed a byte at a time to generate the 256 values.
COS is the SIN function shifted 90 degrees or 64 places

Example

#include <FREQOUT.bas>

Page 366

'Generate a soothing dual frequency tone on pin 4 for 8 seconds
'using frequncies 2500 and 6000

FREQOUT (4, 8000, 2500, 6000)

Page 367

COS

Syntax

#include <FREQOUT.bas>

FUNCTION COS (expression) " declared in FREQOUT .bas
Description

ARMbasic uses integers, but there may be a need for certain functions that normally use floating point
calculations. One of these is the cosine function, which normally operates on degrees or radians. But for
simplicity and the binary world, these values and the result value have been normalized to fit in a byte value.
So rather than taking an argument of 0..359 or 0..2 p , the argument is 0-255 which is equal to the number of
degrees times 0.7103 (256/360). The result would normally be between -1 and 1, but in this case it is
expressed as -127 to +127 or the cos() multiplied by 127.

Example

#include <FREQOUT.bas>

PRINT "Please enter an angle in degrees: ",

DEBUGIN a

r=a* 256 /360 'Convert the degrees to "binary radians"
PRINT ""

PRINT "The cosine of 8" ; a; " degree angle is"; COS (r
END

The output would look like:
Please enter an angle in degrees: 30

The cosine of a 30 degree angle IS 111
Differences from other BASICs
= Floating point routine in Visual BASIC
= The () around expression are enforced in ARMbasic, but not PBASIC

See also

= SIN

Page 368

FREQOUT

Syntax

#include <FREQOUT.bas>

SUB FREQOUT (pin, milliseconds, freq1, freq2) 'declared in FREQOUT.bas
Description

Generate a sine-wave signal on pin for milliseconds.

A single frequency or mixed dual frequncy tone may be generated. Set freq2 to 0 for a single frequency.
The 10 direction of the pin will be set to output.

The output pin might be connected to a speaker or audio amplifier.

The sine wawe signal is generated using pulse width modulation, for more details see that link.
A sample filter to make this signal compatible with an audio amp would be similar to that below
R Rz

| = s LINE-IN

—

0. 1uF

i
4
il
=t

SauF —— _»LINE-GND

]

Example

#include <FREQOUT .bas>

'Generate a soothing dual frequency tone on pin 4 for 8 seconds
'using frequncies 2500 and 6000 Hz

FREQOUT (4, 8000, 2500, 6000)

Differences from other BASICs

= no equivalent in Visual BASIC
= none from PBASIC
See also

= PWM

Page 369

http://en.wikipedia.org/wiki/Pulse-width_modulation
http://en.wikipedia.org/wiki/Pulse-width_modulation

SIN

Syntax

#include <FREQOUT .bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION SIN (number) 'declared in FREQOUT.bas
Description

ARMbasic uses integers, but there may be a need for certain functions that normally use floating point
calculations. One of these is the sine function, which normally operates on degrees or radians. But for
simplicity and the binary world, these values and the result value have been normalized to fit in a byte value.
So rather than taking an argument of 0..359 or 0..2 p , the argument is 0-255 which is equal to the number of
degrees times 0.7103 (256/360). The result would normally be between -1 and 1, but in this case it is
expressed as -127 to +127 or the sin() multiplied by 127.

Example

PRINT "Please enter an angle in degrees: ";
DEBUGIN a

r=a*256 /360 '‘Convert the degrees to Radians
PRINT ""

PRINT "The sine of a" ; a; " degree angle is"; SIN (r
END

The output would look like:
Please enter an angle in degrees: 30

The sine of a 30 degree angle IS 64
Differences from otber BASICs

= SINis a floating point routine in Visual BASIC
= () are enforced in ARMbasic not PBASIC
See also

= COS

Page 370

HWPWM

This function is available on ARMmite, ARMmite Wireless, ARMexpress LITE and ARMmite PRO.
Library

#include <HWPWM.bas>

#include <HWPWM17.bas> ' for the PROplus and SuperPRO LPC17xx based boards.
H

= HWPWM

Interface

' channels are 1-8
' cycletime and hightime are in microseconds

SUB HWPWM (channel, cycletime, hightime)
Cycletime should be the same for all channels, and will be set to the last value programmed.
If TIMER interrupts are used, then only 4 hardware PWM channels are available.

ARMmite and Wireless ARMmite version

The ARMmite supports up to 8 channels of hardware driven PWM. The IO direction of the pin will be set to
output. Once programmed these will continue to generate the specified PWM until re-programmed or reset.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds and
represent the amount of time during the cycle that the corresponding outputs are high. It is assumed, but not
enforced that cycletimes for all channels will be the same.

channelt 10(0)
channel2 10(1)
channel3 10(2)
channel4 10(3)
channel5 10(4)
channel6 10(9)
channel7 10(10)
channel8 10(11)

ARMmite PRO version

The ARMmite PRO also supports up to 8 channels of hardware driven PWM. The 10 direction of the pin will
be set to output. Once programmed these will continue to generate the specified PWM until re-programmed
or reset.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds and
represent the amount of time during the cycle that the corresponding outputs are high. It is assumed, but not
enforced that cycletimes for all channels will be the same.

channelt | 10(0)

Page 371

channel2 10(1)
channel3 10(8)
channel4 10(5)
channel5 10(14)
channel6 10(10)
channel7 10(11)
channel8 10(3)

ARMexpress LITE version

The ARMexpress LITE supports up to 6 channels of hardware driven PWM. The 10 direction of the pin will be
set to output. Once programmed these will continue to generate the specified PWM until re-programmed or
reset. 2 of the channels are not available on the pins.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds and
represent the amount of time during the cycle that the corresponding outputs are high. It is assumed, but not
enforced that cycletimes for all channels will be the same.

channelt 10(5)
channel2 10(6)
channel3 10(3)
channel4 not available
channel5 I0(14)
channel6 not available
channel7 10(13)
channel8 I0(15)

SuperPRO version

The PROplus and SuperPRO support up to 6 channels of hardware driven PWM. The IO direction of the pin
will be set to output. Once programmed these will continue to generate the specified PWM until
re-programmed or reset.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds and
represent the amount of time during the cycle that the corresponding outputs are high. It is assumed, but not
enforced that cycletimes for all channels will be the same.

channelt P2.0
channel2 P2.1
channel3 P2.2
channel4 P2.3
channel5 P2.4
channel6 P2.5

The LPC17xx series processors also have an additional 6 channels designed to drive motors. See details in
the Motor PWM Control chapter of the NXP LPC17xx User Manual. Also these pins can be re-assigned as
selected by the PINSEL registers.

Example

#include <HWPWM.BAS>

Page 372

'generate 1KHz with 750 and 100 uSec high signals on pins 1,2

HWPWM (2,1000,750)
HWPWM (3,1000,100)

'250 Hz with 1000, 500, 100 uSec high and LOW signals on pins 0,1,2,3
HWPWM (1,4000,1000)
HWPWM (2,4000,500)

HWPWM (3,4000,100)
HWPWM (4,4000,0)

Page 373

HWPWM

<

Syntax

#include <HWPWM.bas> " source in /Program Files/Coridium/BASIClib

SUB HWPWM (channel, cycletime, hightime)

Description --- available on ARMmite and ARMexpress LITE but not on the original ARMexpress
ARMmite and Wireless ARMmite version

The ARMmite supports up to 8 channels of hardware driven PWM. The IO direction of the pin will be set to
output. Once programmed these will continue to generate the specified PWM until re-programmed or reset.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds and
represent the amount of time during the cycle that the corresponding outputs are high. If the value is -1, then
that IO is left as a digital 10.

hightime1 10(0)
hightime2 10(1)
hightime3 10(2)
hightime4 10(3)
hightime5 10(4)
hightime6 10(9)
hightime7 10(10)
hightime8 10(11)

ARMexpress LITE version

The ARMexpress LITE supports up to 6 channels of hardware driven PWM. The 10 direction of the pin will be
set to output. Once programmed these will continue to generate the specified PWM until re-programmed or
reset. The format of the command uses 8 channel assignments, but 2 of the channels are not available on
the pins.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds and
represent the amount of time during the cycle that the corresponding outputs are high. If the value is -1, then
that 10 is left as a digital 10.

hightime1 10(5)
hightime2 10(6)
hightime3 10(3)
hightime4 not available
hightime5 10(14)
hightime6 not available
hightime7 10(13)
hightime8 10(15)

PROplus SuperPRO LITE version

The PROplus/SuperPRO supports up to 6 channels of hardware driven PWM. The 10 direction of the pin will
be set to output. Once programmed these will continue to generate the specified PWM until re-programmed

Page 374

or reset. Use the <HWPWM17.bas> include file.

Cycletime is in microseconds, is the time for a single PWM cycle. Hightimes are also in microseconds and
represent the amount of time during the cycle that the corresponding outputs are high. If the value is -1, then

that IO is left as a digital 10.

hightime1 P2(0)

hightime2 P2(1)

hightime3 P2(2)

hightime4 P2(3)

hightime5 P2(4)

hightime6 P2(5)
Example

#include <HWPWM.BAS>

'generate 1KHz with 750 and 100 uSec high signals on pins 1,2

HWPWM (2,1000,750)
HWPWM (3,1000,100)

'250 Hz with 1000, 500, 100 uSec high and LOW signals on pins 0,1,2,3

HWPWM (1,4000,1000)
HWPWM (2,4000,500)
HWPWM (3,4000,100)
HWPWM (4,4000,0)

Differences from other BASICs

= no equivalent in Visual BASIC
= no equivalent in PBASIC
See also

= * peripheral access
= FREQOUT
= PWM

Page 375

12C

Library
#include <I2C.bas>

#include <I12C17.bas> 'use this for PROplus and SuperPRO
1

= |2CIN
= |2COUT
Interface

SUB I12CIN (DATApin, CLKpin, addr, OUTcnt, BYREF OUTIist as string, INcnt, BYREF INIlist as string)

FUNCTION I2COUT (DATApin, CLKpin, addr, OUTcnt, BYREF OUTIlist as string)

#define 12Cspeed100 ' add this statement before the #include <I2C.bas> for 100 Kb shift rate
#define 12Cspeed50 ' for 50 Kb shift rate
#define 12CslaveCLKstretch ' trial code to support slave clock stretching (unwerified on a slave that

stretches clocks)
Description

These libraries are written for single master operation of the ARM talking to possible multiple slaves selected
by address.

I2CIN will send OUTcnt bytes from OUTlist and then receives INlist bytes as i2c serial data on CLKpin and
DATAPpin from the i2c device at addr. OUTcnt may be -1 and OUTIist empty. If OUTcnt is 0, then the string
will be sent until a 0, CR or LF character is found in OUTIist .

INcnt bytes will be received. If INcnt is 0, then the string will be filled with bytes until a 0, CR or LF character
is received. Note that no bounds checking is performed on the input, and if a 0, CR, or LF is newver received
then this routine will hang. As there is no bounds checking its possible to overwrite other variables, if less
than 256 bytes have been allocated for the InputList string.

I2COUT will send OUTcnt bytes from OUTIist bytes as i2c serial data on CLKpin and DATApin to the i2c
device at addr. If OUTcnt is 0, then the string will be sent until a 0, CR or LF character is found in OUTIist. If
the i2c deviced does not respond 0 is returned by 12COUT, otherwise 1.

The data rate is 300Kb.

Example

#include <I2C.bas>

DIM shortMessage(20) as STRING
DIM shortResponse(20) as STRING

' test the EEPROM 24LC02 on pins 0 == SDA and 1 == SCL

Page 376

shortMessage(0)= 0 ' address into EEPROM
shortMessage(1)= 11 ' data
shortMessage(2)= 22

shortMessage(3)= 33
shortMessage(5)= 44
shortMessage(6)= 55
shortMessage(7)= 66

present = [2COUT (0, 1, OxAO, 8, shortMessage)
if present = 0 then print "NO i2¢ device ***"

WAIT(10) ' allow time for data to be written
I2CIN(0O, 1, OxAQ, 1,shortMessage, 7, shortResponse)

"now do I2CIN as seperate operations

[2COUT (0, 1, OxAO, 1, shortMessage) 'send just the address and offset
I2CIN(O, 1, OxAO, -1,"", 7, shortResponse)

Page 377

12CIN

<

Syntax

#include <12C.bas> " source in /Program Files/Coridium/BASIClib

SUB I12CIN (DATApin, CLKpin, addr, OUTcnt, BYREF OUTIist as string, INcnt, BYREF INlist as string)
Description

I2CIN will send OUTcnt bytes from OUTlist and then receives INlist bytes as i2c serial data on CLKpin and
DATAPpin from the i2c device at addr. OUTcnt may be -1 and OUTIist empty. If OUTcnt is 0, then the string
will be sent until a 0, CR or LF character is found in OUTIist .

If INcnt is 0, then the string will be filled with bytes until a 0, CR or LF character is received. Note that no
bounds checking is performed on the input, and if a 0, CR, or LF is never received then this routine will
hang. As there is no bounds checking its possible to overwrite other variables, if less than 256 bytes have
been allocated for the InputList string.

Data is shifted in at 280 Kbits/sec. See the #defines to change this rate.
Example

#include <I2C.bas>

DIM shortMessage(20) as STRING

DIM shortResponse(20) as STRING

' test the EEPROM 24L.C02 on pins 0 == SDA and 1 == SCL
shortMessage(0)= 0 ' address into EEPROM

I2CIN(0O, 1, OxAQ, 1,shortMessage, 7, shortResponse)

Differences from other BASICs

= PBASIC output formatting not supported
= no equivalent in Visual BASIC
See also

= 12COUT
= 12C Support

Page 378

12COUT

Syntax

#include <12C.bas> " source in /Program Files/Coridium/BASIClib

FUNCTION I2COUT (DATApin, CLKpin, addr, OUTcnt, BYREF OUTIlist as string)

Description

I2COUT will send OUTcnt bytes from OUTIist bytes as i2c¢ serial data on CLKpin and DATApin to the i2c
device at addr. If OUTcnt is 0, then the string will be sent until a 0, CR or LF character is found in OUTIist. If
the i2c deviced does not respond 0 is returned by 1I2COUT, otherwise 1.

I2COUT returns a 1 if an 12C device responds, else 0.

The data rate is 280Kb. See the #defines to change this rate.
Example

#include <I2C.bas>
DIM shortMessage(20) as STRING

' test the EEPROM 24LCO02 on pins 0 == SDA and 1 == SCL
shortMessage(0)= 0 " address into EEPROM
shortMessage(1)= 11 ' data

shortMessage(2)= 22

shortMessage(3)= 33

shortMessage(5)= 44

shortMessage(6)= 55

shortMessage(7)= 66

o~ A~~~

present = [2COUT (0, 1, OxAO, 8, shortMessage)
if present = 0 then print "NO i2c device ***"

Differences from other BASICs

= PBASIC output formatting not supported
= PBASIC regADDR and secondADDR are done in the OutputList
= no equivalent in Visual BASIC

See also

= [2CIN
= |2C Support

Page 379

OneWire

Library

#include <ONEWIRE.bas>

o

= OWIN

= OWOUT
Interface

SUB OWIN (pin, OUTcnt, BYREF OUTIist as string, INcnt, BYREF INlist as string)
FUNCTION OWOUT (pin, OUTcnt, BYREF OUTIlist as string)
Description

OWIN begins with a RESET/Presence sequence on the designated pin.

Then OUTcnt bytes from OUTIist will be transfered to the device to select the command. OUTcnt may be -1
and OUTIist empty. If OUTcnt is 0, then OUTIist bytes will be sent until a value of 0 is found (the 0 will not be

sent). An empty OUTIist can be represented by "".
Following that the INcnt bytes will be read back from the device and saved in INlist .

If INcnt is 0, then the string will be filled with bytes until a 0, CR or LF character is received. Note that no
bounds checking is performed on the input, and if a 0, CR, or LF is never received then this routine will
hang. As there is no bounds checking its possible to overwrite other variables, if less than 256 bytes have
been allocated for the InputList string.

OWOUT begins with a RESET/Presence sequence on the designated Pin.
If a one-wire device responds OWOUT will return 1, else 0.
Following that the OUTcnt bytes from OUTIist will be sent to the device. OUTlist can be a constant string.

The bit order for the 1-Wire device is assumed to be LSB (bit 0) first. The REV function can be used to
change the bit order.

Example

#include <ONEWIRE.bas>

DIM message(20) as string

DIM response(20) as string

message = chr(&Hcc)+chr(&Hf)+chr(6)+chr(&Haa)+chr(&H55)
" write to the scratch pad of a DS2430

present = owout (7,5,message)

print present

message = chr(&Hcc)+chr(&Hf)+chr(6)

Page 380

print present
owin (7, 3, message, 2, response)
print hex(response(0)),hex(response(1))

Page 381

OWIN

Syntax

#include <ONEWIRE.bas> " source in /Program Files/Coridium/BASIClib

SUB OWIN (pin, OUTcnt, BYREF OUTIist as string, INcnt, BYREF INIlist as string)
Description

OWIN begins with a RESET/Presence sequence on the designated Pin.

Then OUTcnt bytes will be transfered to the device to select the command. OUTcnt may be 0, with an empty

string "".

Following that the INcnt bytes InputList will be read back from the device.If INcnt eqals 0, then the string will
be filled with bytes until a 0, CR or LF character is received. Note that no bounds checking is performed on
the input, and if a 0, CR, or LF is never received then this routine will hang. As there is no bounds checking
its possible to overwrite other variables, if less than 256 bytes have been allocated for the InputList string..

The bit order for the 1-Wire device is assumed to be LSB (bit 0) first. The REV function can be used to
change the bit order.

Example

#include <ONEWIRE.bas>

DIM outbytes(10) as string
DIM inbytes(10) as string

' write to the scratch pad of a DS2430
outbytes(0)=$cc
outbytes(1)=$f
outbytes(2)=$6
outbytes(3)=$be
outbytes(4)=$41

present = owout (7 ,5, outbytes)
print present

outbytes(0)=$cc
outbytes(1)=%aa
outbytes(2)=$6

owin (7, 3, outbytes, 2, inbytes)
print hex(inbytes(0)),hex(inbytes(1))

Differences from other BASICs

= no equivalent in Visual BASIC
= simplified from PBASIC
See also

= OWOUT

Page 382

OWOouT

Syntax

#include <ONEWIRE.bas> ' source in /Program Files/Coridium/BASICIlib

FUNCTION OWOUT (pin, OUTcnt, BYREF OUTlist as string)
Description

OWOUT begins with a RESET/Presence sequence on the designated Pin.
If a one-wire device responds the FUNCTION OWOUT will return 1, else 0.

Following that OUTcnt bytes from the OUTIist will be sent to the device. If OUTcnt is 0, then bytes will be
sent from OUTlist until a 0 is found. (the 0 is NOT sent).

The bit order for the 1-Wire device is assumed to be LSB (bit 0) first. The REV function can be used to
change the bit order.

Example

#include <ONEWIRE.bas>
DIM outbytes(10) as string

' write to the scratch pad of a DS2430
outbytes(0)=$cc
outbytes(1)=$f
outbytes(2)=$6
outbytes(3)=$be
outbytes(4)=$41

present = owout (7 ,5, outbytes)
print present

Differences from other BASICs

= no equivalent in Visual BASIC
= simplified than PBASIC
See also

= OWIN

Page 383

PULSE timing

Library

#include <PULSE.bas>

C
= COUNT
P
= PULSIN
= PULSOUT
= PWM
R
= RCTIME
Interface

" duration in microseconds
' timeperiod in milliseconds
" duty 0-255

FUNCTION COUNT (pin, timeperiod)
FUNCTION PULSIN (pin, level)

SUB PULSOUT (pin, duration)

SUB PWM (pin, duty, timeperiod)
FUNCTION RCTIME (pin, state)

Description

COUNT the number of pulses low-high-low or high-low-high on pin over a timeperiod of milliseconds, returning
the FUNCTION value.

PULSIN measures an input pulse on pin at level, returning the value in microseconds. The 10 direction of pin
will be set to input. If pin is already at level when PULSIN is called it will wait to a transition to the opposite
level. PULSIN will wait 1 second for pin to go to level. The minimum pulse that can be measured is 1
microseconds. If pin does not go to level or remains at level longer than 1 second 0 is returned..

PULSOUT will generate an output pulse on pin for duration microseconds. The 10 direction of pin will be set
to output. The level of the output will be switched, driven for duration microseconds, then switched back to its
initial level. The minimum pulse period is 1 microseconds.

PWM will generate a pulse corresponding to an analog signal on pin for timeperiod in milliseconds with a duty
cycle of 0 to 255. A duty cycle of 255 corresponds to an output value of 100%. The 10 direction of the pin will
be set to output, the PWM pulse train is output, and then the pin is set to tristate (input). If the pin is
connected to an RC filter, then the wltage will stay on the capacitor for a period of time determined by the
load.

RCTIME will measure the time which pin remains at level, returning the value in microseconds(us). The

minimum time measured is 1 microseconds. If pin is not at level when RCTIME is called -1 is returned. If pin
remains at level longer than 1 second 0 is returned.

Page 384

COUNT

Syntax

#include <PULSE.bas>

FUNCTION COUNT (pin, milliseconds)
Description

Count the number of pulses low-high-low or high-low-high on pin over a duration of milliseconds, returning the
value to variable.

Example

#include <PULSE.bas>
'Report the number of transition cycles on pin 7 during a 10 second interval

ct = COUNT (7, 10000)
PRINT "Pin 7 transitioned "; ct; " times"

Pin 7 transitioned 3 times

Differences from other BASICs

= no equivalent in Visual BASIC
= different syntax from PBASIC, and times in milliseconds rather than "ticks"
See also

= RCTIME
= Hardware Pulse Routines

Page 385

PULSIN

Syntax

#include <PULSE.bas> ' source in /Program Files/Coridium/BASIClib

FUNCTION PULSIN (pin, level)
Description

Measure an input pulse on pin at level, returning the value to variable.

The 10 direction of pin will be set to input.

If pin is already at level when the function is called it will wait to a transition to the opposite level.

The function will wait 1 second for pin to go to level. The length of time is measured in microseconds(us).

The minimum pulse that can be measured is 1 microseconds. If pin does not go to level or remains at level
longer than 1 second variable is set to 0.

Example

#include <PULSE.bas>

'Wait for pin 7 to go high then low.
'Print the number of microseconds pin 7 was high.

tim = PULSIN (7, 1)
PRINT "Pin 7 pulse high for "; tim; " us"

Differences from other BASICs

= no equivalent in Visual BASIC
= Times are measured in microseconds rather than CPU dependent ticks in PBASIC
See also

= RCTIME
= COUNT
= Hardware Pulse Routines

Page 386

PULSOUT

Syntax

#include <PULSE.bas> ' source in /Program Files/Coridium/BASIClib

SUB PULSOUT (pin, microseconds)
Description

Generate an output pulse on pin for microseconds.

The 10 direction of pin will be set to output. The level of the output will be switched, driven for microseconds,
then switched back to its initial level. The minimum pulse period is 1 microseconds.

Example

#include <PULSE.bas>

' Generate a 1 second high pulse on pin 4.
LOW 4

PULSOUT (4, 1000000)

Differences from other BASICs

= no equivalent in Visual BASIC
= measures time in microseconds rather than CPU dependent ticks in PBASIC
See also

= PULSIN
= Hardware Pulse Routines

Page 387

PWM

Syntax

#include <PULSE.bas> " source in /Program Files/Coridium/BASIClib

SUB PWM (pin, duty, milliseconds)
Description

Generate an analog signal on pin for milliseconds with a duty cycle of 0 to 255.
A duty cycle of 255 corresponds to an output value of 100%.

The IO direction of the pin will be set to output, the PWM pulse train is output, and then the pin is set to

tristate (input). If the pin is connected to an RC filter, then the woltage will stay on the capacitor for a period of
time determined by the load.

Example

#include <PULSE.bas>
' Generate a 1.65 wolt (half of 3.3V) on pin 4 for 6 seconds.
PWM (4, 127, 6000)

Differences from other BASICs

= no equivalent in Visual BASIC
= duration in PBASIC is CPU dependent and measured in ticks

See also
= HWPWM
= FREQOUT
= PULSOUT
= Hardware Pulse Routines

Page 388

RCTIME

Syntax

#include <PULSE.bas> " source in /Program Files/Coridium/BASIClib

FUNCTION RCTIME (pin, level)
Description

Measure the time which pin remains at level, returning the value to variable.

The length of time is measured in microseconds(us). The minimum time measured is 1 microseconds.

If pin is not at level when the function is called variable is set to 1.
If pin remains at level longer than 1 second variable is set to 0.

Example

#include <PULSE.bas>
INPUT 7
'... some procedure which has set input pin 7 to low or 0 wlts

tim = RCTIME (7, 0)
PRINT "Pin 7 low for "; tim; " us"

... function waits for input pin 7 to go to high state
Pin 7 low for 50 us

Differences from other BASICs

= no equivalent in Visual BASIC
= results in microseconds rather than CPU dependent ticks in PBASIC
See also

= PULSIN
= Hardware Pulse Routines

Page 389

Blt Banged Serial

<

Library

#include <SERIAL.bas>

This library has some initialization code that can either be copied into your program or the code can be run
inline as in the following-

code without a main:

#include <SERIAL.bas>
... user code

code with a main:
initSerial:

#include <SERIAL.bas>
return

main:
gosub initSerial

B
= BAUD
R
= RXD
S
= SERIN
= SERINtimeout
= SEROUT
T
= TXD
Interface

DIM BAUD(16)

SERINtimeout = 500000 ' timeout for bit-banged serial input in microseconds -- this is the 0.5 second
default value
FUNCTION RXD(pin)

SUB TXD(pin, ch)

FUNCTION SERIN (pin, baud, posTrue, INcnt, BYREF INlist as string)
SUB SEROUT(pin, baud, posTrue, OUTcnt, BYREF OUTlist AS STRING)

Description

SERIN receives INlist bytes as asynchronous serial data on pin at a baudrate. PosTrue if set to 0 then the
data is inverted.

Page 390

INcnt is the number of bytes that will be received. If INcnt is 0, then the string will be filled with bytes until a
0, CR or LF character is received. Note that no bounds checking is performed on the input, and if a 0, CR, or
LF is never received then this routine will hang. As there is no bounds checking its possible to overwrite
other variables, if less than 256 bytes have been allocated for the InputList string.

SERIN will timeout after 0.5 seconds and return -1 and place 255 in the next item in the INlist before the
timeout. These routines are "bit-banged" by the processor, so the processor is consumed during these
operations. Interupts are also disabled during each byte for these operations. The hardware UARTO can be
used see RXD0 or DEBUGIN . The timeout can be changed with SERINtimeout.

Baudrates can be upto 115.2 Kbaud for all pins on transmit. Receive rates to 57Kb
DIM choice(10) as STRING
SERIN(1,9600,0, choice) 'read a UserCode CR/LF terminated

SELECT VAL (choice)
CASE 123 ...

SEROUT sends a string of characters out on pin as an asynchronous data stream. baud and posTrue set

the parameters for the transmission. OUTcnt is the number of bytes that will be transmitted. If OUTcnt is O,
then OUTIist will be sent until a 0 is encountered (the 0 is not sent).

ch = RXD(pin) ' read a character from pin as an asynchronous stream (BAUD must have been set before
use)

RXD is a bit banged routine, so that the CPU will wait upto 0.5 seconds for a character to be received. The
timeout can be changed with SERINtimeout.

TXD(pin, "A") 'send an "A" to pin as an asynchronous serial stream

Page 391

BAUD

Syntax

#include <SERIAL.bas>

DIM BAUD(pin) ' declared inside SERIAL.bas
Description

BAUD (pin) will set the baudrate for the pin that will be later used by either RXD or TXD functions.
Baudrates can be upto 115.2 Kbaud for transmit, 57Kbaud for receive.

Example

BAUD(2) = 19200 'set the baud rate for serial I/O on pin 2

BAUD(1) = BAUD(2) ' set the baud rate for pin 1 the same as that for pin 2

Differences from other BASICs

= no equivalent in Visual BASIC
= no equivalent in PBASIC

See also
= TXD
= RXD

Page 392

RXD

Syntax

#include <SERIAL .bas>
RXD (pin)
Description

RXD (pin) will receive a single byte of data that is shifted as an asynchronous serial stream. This function is
similar to SERIN, but has less overhead and only receives a single byte. The baudrate for the pin should be
set before using RXD, that is done using the BAUD(pin) function.

RXD will return 0-255 if there was data present. RXD will timeout after 0.5 seconds and return -1
($FFFFFFFF) if there is no serial stream detected on pin .

These routines are "bit-banged" by the processor, so the processor is consumed during these operations.
Interupts are also disabled during each byte for these operations.

As of version 6.21 the 0.5 second timeout can be changed by SERINtimeout.

Baudrates can be upto 57 Kbaud for all pins.
Example
#include <SERIAL.bas>
BAUD(1) =9600 'set the baud rate for serial /0 on pin 1
' Wait for serial input on pin 1
DO
MyByte = RXD(1)
UNTIL MyByte >= 0

Differences from other BASICs

= no equivalent in Visual BASIC
= preferred alternate to SERIN of PBASIC

See also
= BAUD
= TXD
= SERIN

Page 393

SERIN

Syntax

#include <SERIAL.bas> " source in /Program Files/Coridium/BASIClib

FUNCTION SERIN (pin, baud, posTrue, INcnt, BYREF INIlist as string)
Description

SERIN receives INcnt bytes into the INlist string as asynchronous serial data on pin at a baudrate. Data is
positive TRUE PosTrue if set to 1, else the the data is inverted.

If INcnt is O, then the string will be filled with bytes until a 0, CR or LF character is received. Note that no
bounds checking is performed on the input, and if a 0, CR, or LF is never received then this routine will
hang. As there is no bounds checking its possible to overwrite other variables, if less than 256 bytes have
been allocated for the InputList string.

SERIN will timeout after 0.5 seconds and return -1 and place 255 in the next item in the INlist before the
timeout. These routines are "bit-banged" by the processor, so the processor is consumed during these
operations. Interupts are also disabled during each byte for these operations. The hardware UARTO can be
used see RXD0 or DEBUGIN . The timeout can be changed with SERINtimeout.

Baudrates can be upto 115.2 Kbaud for all pins on transmit. Receive rates to 57Kb

Example

"' Read serial stream for 1 byte from pin 1 saving to MyByte, negative true
SERIN (1, 19200, 0, 1,MyByte)
PRINT HEX(MyByte)
"In this case we are reading an open loop device
"that is continuously sending CR terminated strings on the serial line
"to ensure we read a complete line first sync up by looking for a CR character
io(15)=0 ' flag that we are sync'ing up
while 1
serin (3,19200, 1, 1, a$)
if a$(0) = 10 then exit
loop

io(15)=1 "and that sync is complete
while 1

serin (3,19200,1, 0, a$)

print a$
loop

Differences from other BASICs

= no equivalent in Visual BASIC
= simplified from PBASIC
See also

= SEROUT

Page 394

SEROUT

Syntax

#include <SERIAL.bas> " source in /Program Files/Coridium/BASICIlib

SUB SEROUT(pin, baud, posTrue, OUTcnt, BYREF OUTlist AS STRING)
Description

SEROUT sends a string of characters out on pin as an asynchronous data stream. baud and posTrue set
the parameters for the transmission. If OUTcnt is 0, then OUTIist will be sent until a 0 is encountered (the 0
is not sent).

Baudrates can be upto 115.2 Kbaud for all pins
Example

#include <SERIAL.bas>
DIM a$(20)

a$ ="123"
SEROUT (3, 1200, 0, 3, a$) 'sendsout 123 at 1.2Kbaud, negative true

Differences from other BASICs

= no equivalent in Visual BASIC
= simplified from PBASIC
See also

= SERIN

Page 395

TXD

Syntax

#include <SERIAL.bas> " source in /Program Files/Coridium/BASIClib

SUB TXD(pin, ch)
Description

TXD (pin, ch) will send a single byte of data that is shifted out as an asynchronous serial stream on pin. This
function is similar to SEROUT, but is a more efficient implementation. The baudrate for the pin should be set
before using TXD, that is done using the BAUD(pin) array.

TXD will transmit 0-255 as a single byte of data with an added START bit and trailing STOP bit. As this
function is done by the CPU (often referred to as bit-banging, the program will stay at this instruction until the
shifting is completed. So the processor is consumed during these operations. Interupts are also disabled
during each byte for these operations.

Example

DIM A$(10)
BAUD(2) = 19200 ' set the baud rate for serial I/O on pin 2

A$ = "Hello World"
GOSUB PRINTSTR

' Send a string of characters serially out pin 2
PRINTSTR:
=0
WHILE A$(1)
TXD(2,A%(1))
I=1+1
LOOP

RETURN
Differences from other BASICs

= no equivalent in Visual BASIC
= SEROUT in PBASIC

See also
= BAUD
= RXD
= SEROUT

Page 396

Hardware Serial

<

UARTO and UART1 support is built into the BASIC compiler. UART1 and BAUDx support added in 7.13
firmware.

B

= BAUDO.

= BAUD1
D

= DEBUGIN
P

= PRINT
R

= RXDO

= RXD1
T

= TXDO

= TXD1
Interface

DEBUGIN variable | string
PRINT [expressionlist] [(, | ;)] ...

FUNCTION RXDO
FUNCTION RXD1

SUB TXDO (expr)
SUB TXD1 (expr)

SUB BAUDO (expr)
SUB BAUD1 (expr)

Description
DEBUGIN gives the programmer a way to accept strings or numbers from the USB serial port. In many

BASICs this uses INPUT, but in ARMbasic INPUT is used to control the direction of one of the 10 pins. So a
simplified replacement of the normal BASIC INPUT has been added, called DEBUGIN.

DEBUGIN has a limited edit capacity: it allows to erase characters using the backspace key. If a better user
interface is needed, a custom input routine should be used.

PRINT will send strings or numbers to the debug serial port (UARTO), which may be displayed in BASICtools,

Page 397

or can be interpreted by a user program running on the PC. Simple formating is accomplished by seperating
expressions with a comma (for TAB) or semicolon for no space seperation. A semicolon at the end of a
PRINT suppresses carriage return.

RXDO0 uses the hardware UART, so the CPU is not tied up. Also when RXDO is read and no data is available
-1 is returned immediately, RXDO uses interupts and has a buffer of 256 characters that are filled by interrupt
running in the background.

TXDO uses the hardware serial port to send data out the USB debug port. Data is transfered into a 16 byte
FIFO, when that FIFO is full the CPU will wait until space is available.

On the ARMexpress/ARMexpress LITE these routines are all limited to 19.2Kb due to the level translators for
RS-232. If the connection to the ARMexpress/LITE is short (less than a couple inches), then higher baud
rates can be used.

Added in version 7.13 --
BAUDO will set the baud rate for TXD0, RXDO, the default is 19.2Kbaud.

BAUD1 will set the baud rate for TXD1, RXD1 and will enable that serial channel (in ARMmite these pins are
general purpose 10s 10(0)switches to RXD1 and 10(1) switches to TXD1.

RXD1 uses the hardware UART, so the CPU is not tied up. Also when RXD1 is read and no data is available
-1 is returned immediately, RXD1 uses interupts and has a buffer of 256 characters that are filled by interrupt
running in the background.

TXD1 uses the hardware serial port to send data out the 10(1) on the ARMmite. Data is transfered into a 16
byte FIFO, when that FIFO is full the CPU will wait until space is available.

Example

simple example of serial write and read
BAUDO (2400) ' change the default baud rate

T™XDO("X")
ch = RXD0
WHILE ch <0 " wait for a character to come in

ch = RXD0
LOOP

Differences from other BASICs

= Visual BASIC
= PBASIC has similar functions, DEBUGIN allows a string to be printed before input

Page 398

BAUDO BAUD1

Syntax

SUB BAUDO(rate)

SUB BAUD1(rate)

Description -- added in version 7.13

BAUDO (rate) will set the baudrate for the SIN/SOUT pins, that will be later used by PRINT, DEBUGIN, RXDO0
or TXDO functions.

BAUD1 (rate) will set the baudrate for the 10(0) I0(1) pins on the ARMmite, that will be later used by either

RXD1 or TXD1 functions. On reset these pins are configured as general purpose 10s, and a call to BAUD1 will

configure them as UART1. The ARMexpressLITE uses pins 105 and 106 for UART1.
Baudrates for the LPC21xx and LPC23xx based boards are 15000/(n*16) in Kbaud
Baudrates for the LPC17xx based boards are 25000/(n*16) in Kbaud. nis an integer

The ARMexpress/ARMexpressLITE is limited to 19.2 Kbaud by the lewel translators on SIN/SOUT when
connecting to cables. Onboard connections for the ARMexpress/ARMexpressLITE may run faster.

All boards except the ARMexpress support fractional baud rate generation. This is not part of the built in

firmware, but can be engaged by writing directly to those registers. Details in theYahoo Forum or the NXP
User Manuals .

Example

BAUD1(19200) ' set the baud rate and enable serial I/0O on 10(0) 10(1)

BAUDO0(9600) ' set the baud rate for SIN and SOUT

Differences from other BASICs

= no equivalent in Visual BASIC
= no equivalent in PBASIC

See also
= TXDO
= RXDO
= TXD1
= RXD1

Page 399

http://tech.groups.yahoo.com/group/ARMexpress/message/2495

BAUDO BAUD1

Syntax

SUB BAUDO(rate)

SUB BAUD1(rate)

Description -- added in version 7.13

BAUDO (rate) will set the baudrate for the SIN/SOUT pins, that will be later used by PRINT, DEBUGIN, RXDO0
or TXDO functions.

BAUD1 (rate) will set the baudrate for the 10(0) I0(1) pins on the ARMmite, that will be later used by either

RXD1 or TXD1 functions. On reset these pins are configured as general purpose 10s, and a call to BAUD1 will

configure them as UART1. The ARMexpressLITE uses pins 105 and 106 for UART1.
Baudrates for the LPC21xx and LPC23xx based boards are 15000/(n*16) in Kbaud
Baudrates for the LPC17xx based boards are 25000/(n*16) in Kbaud. nis an integer

The ARMexpress/ARMexpressLITE is limited to 19.2 Kbaud by the lewel translators on SIN/SOUT when
connecting to cables. Onboard connections for the ARMexpress/ARMexpressLITE may run faster.

All boards except the ARMexpress support fractional baud rate generation. This is not part of the built in

firmware, but can be engaged by writing directly to those registers. Details in theYahoo Forum or the NXP
User Manuals .

Example

BAUD1(19200) ' set the baud rate and enable serial I/0O on 10(0) 10(1)

BAUDO0(9600) ' set the baud rate for SIN and SOUT

Differences from other BASICs

= no equivalent in Visual BASIC
= no equivalent in PBASIC

See also
= TXDO
= RXDO
= TXD1
= RXD1

Page 400

http://tech.groups.yahoo.com/group/ARMexpress/message/2495

RXDO

<

Syntax

FUNCTION RXDO as INTEGER
Description

RXDO will receive a single byte of data that is shifted as an asynchronous serial stream. This function is
similar to SERIN, but is a more efficient implementation.

RXDO will return 0-255 if there was data present. or -1 ($FFFFFFFF) if there is no serial stream available on
SIN. The hardware UART is used, so the CPU is not tied up, and bytes are buffered up to 256 bytes being
received by an interrupt routine

ARMexpress and ARMexpressLITE-

Data is received on the SIN pin. SIN and SOUT are always negative true. UARTO of the LPC2103/06
SIN and SOUT are limited by the level translators.

ARMmite--

Pin labeled RXDO0 on the schematic, UARTO of the LPC2103. Data is always positive true.

Baudrates can be upto 115.2 Kbaud.
Example

' Wait for serial input on pin UARTO
DO

MyByte = RXDO0
UNTIL MyByte >=0

Differences from other BASICs

= no equivalent in Visual BASIC
= preferred alternate to SERIN of PBASIC

See also
= TXDO
= BAUDO

Page 401

RXD1

Syntax

FUNCTION RXD1 as INTEGER
Description -- added in Version 7.13

RXD1 will receive a single byte of data that is shifted as an asynchronous serial stream.

RXD1 will return 0-255 if there was data present. or -1 ($FFFFFFFF) if there is no serial stream available. The
hardware UART is used, so the CPU is not tied up, and bytes are buffered up to 256 bytes being received by

an interrupt routine.

ARMmite--

Pin labeled 100 on the schematic, UART1 of the LPC2103.
ARMexpress LITE

Pins labeled 105

Data is positive true. Baudrates can be upto 115.2 Kbaud.

Example

BAUD1 = 19200 ' set baud rate and enable channel

' Wait for serial input on pin UART1
DO

MyByte = RXD1
UNTIL MyByte >= 0

Differences from other BASICs

= no equivalent in Visual BASIC
= preferred alternate to SERIN of PBASIC

See also
= TXD1
= BAUD1

Page 402

TXDO

<

Syntax

SUB TXDO (char)
Description

The data is transmitted on the SOUT pin on the ARMexpress, ARMexpressLITE. It is the serial line
connected to the USB port on the ARMmite, or the wireless serial port for the ARMmite Wireless. On the
ARMweb it is serial debug port. (labeled TXDO on the schematic, UARTO of the LPC21xx)

The hardware serial port is used, so the CPU is not tied up. So when a byte is sent it is placed into the
UARTO FIFO, but if the 16 byte FIFO is full then the CPU will wait until space is available.

The compiler is also backward compatable with the syntax -- TXDO = char

Example

DIM A$(10)

A$ = "Hello World"
GOSUB PRINTSTR

' Send a string of characters serially out UARTO
PRINTSTR:
=0
WHILE A$(1)
TXDO (A$(1))
I=1+1
LOOP

RETURN

Differences from other BASICs

= no equivalent in Visual BASIC
= preferred alternate to SEROUT of PBASIC

See also
= BAUDO
= RXDO

= Hardware Serial Support

Page 403

TXD1

Syntax

SUB TXD1 (char)
Description -- added in version 7.13

The data is transmitted on the 10(1) pin on the ARMmite.
On the ARMexpress LITE data is transmited on pin labeled 106
Data is positive true.

The hardware UART1 port is used, so the CPU is not tied up. So when a byte is sent it is placed into the
FIFO, but if the 16 byte FIFO is full then the CPU will wait until space is available.

Example

DIM A$(10)

BAUD1 =19200 'set baud rate and enable channel

A$ = "Hello World"
GOSUB PRINTSTR1

' Send a string of characters serially out UARTO
PRINTSTR1:
=0
WHILE A$(I)
TXD1 (A%(1))
I=1+1
LOOP

RETURN

Differences from other BASICs

= no equivalent in Visual BASIC
= preferred alternate to SEROUT of PBASIC

See also
= BAUD1
= RXDO

= Hardware Serial Support

Page 404

SHIFTIN, SHIFTOUT

Library

#include <SHIFT.bas>

S

= SHIFTIN

= SHIFTOUT
Inteface

DIM shiftValues(MAXshiftARRAY) ' values to be shifted in or out
DIM shiftCounts(MAXshiftARRAY) ' bit counts for each value (0 assumed to be 8 bits), 1-32 allowed

' cnt is the number of elements
SUB SHIFTOUT (OUTpin, CLKpin, LSBfirst, cnt)
SUB SHIFTIN (INpin, CLKpin, LSBfirst, cnt)

Description
LSBfirst selects the bit order for the SHIFT routines.

A #define is used to set clock mode #define SHIFTCIKNEGATIVE will invert the normally low clock. To use
a normally high clock this #define must be placed before the #include <SHIFT.bas>

Another #define can be used to sample data before the clock, #define SHIFTpreSample. The default case is
to sample data after each clock.

SHIFTIN can be used for devices that are not covered by SPI, 12C or 1-Wire. Data is shifted in on INpin, and
a positive clock is sent on CLKpin for each bit.

While most other hardware functions use bytes, SHIFTIN is oriented for bit control. The shiftCounts of each
shiftValues defines the number of bits that will be shifted out (1 - 32). If a shiftCounts is 0, it is assumed to
be 8.

Data is shifted in at 300 Kbits/sec.

SHIFTOUT can be used for devices that are not covered by SPI, 12C or 1-Wire. Data is shifted out on OUTpin
, and a positive clock is sent on CLKpin for each bit.

While most other hardware functions use bytes, SHIFTOUT is oriented for bit control. The shiftCounts of
each shiftValues defines the number of bits that will be shifted out (1 - 32). If shiftCounts is 0, it is assumed
to be 8.

= Mode =0 data is shifted out MSB first
= Mode =1 data is shifted out LSB first

NOTE*** these shift modes are compatable with SHIFTIN, BUT not the same as PBASIC

Data is shifted out of the device at 300 Kbits/sec.

Example

#include <SHIFT.bas>

Page 405

"use SHIFTIN/OUT to control an SPI EN28J60 connected on pins 3,4 -- 6 as CS

shiftValues(0) = 2
shiftCounts(0) = 3

shiftValues(1) = &H1b
shiftCounts(1) =5

shiftValues(2) =y
shiftCounts(2) = 8

i0(6)=0 'used asCS
shiftout (3,4,1,3) 'setreg &H1B to y
i0(6)=1

shiftValues(0) = reg
shiftCounts(0) = 8

io(6)=0

shiftout (3,4,1,1) 'select the register
shiftin (5,4,0,1) ‘and read it back
x = shiftValues(0)

io(6)=1

Here is an example for a device (93LC46) which is byte oriented except for the commands. So the
commands are sent with SHIFTOUT, and data transfered with SPIIN or SPIOUT. CS is manually controlled in
this example (it is also positive true).

#include <SHIFT.bas>
#include <SPl.bas>

DIM inlist(20) as string

DIM outlist(20) as string

" mixed SPI, SHIFT example for a 93LC46 connected to pins 11-14
high 14 'CS to 93LC46

shiftValues(0) = $260
shiftCounts(0) = 10

SHIFTOUT(12,13,0,1) ' write enable

low 14

shiftValues(0) = $280 ' count still 10
outlist(0) = $41

high 14

SHIFTOUT(12,13,0,1) ' set write to address 0
SPIOUT (-1, 13, 12, 0, 1, outlist) ' send a byte of data
low 14

wait(20) ' allow for write time
high 14

shiftValues(0) = $300

SHIFTOUT(12,13,0,1) ' read addr 0

SPIIN (-1, 11,13, 12, 0, -1, ", 10, inlist) ' read 10 bytes of data
low 14

Page 406

SHIFTIN

Syntax

#include <SHIFT.bas> " source in /Program Files/Coridium/BASIClib
SUB SHIFTIN (INpin, CLKpin, LSBfirst, cnt)
Description

SHIFTIN can be used for devices that are not covered by SPI, 12C or 1-Wire. Data is shifted in on INpin, and
a positive clock is sent on CLKpin for each bit.

Data and shift counts are stored in 2 arrays defined in the #include file

DIM shiftValues(MAXshiftfARRAY) ' values to be shifted in or out
DIM shiftCounts(MAXshiftARRAY)

While most other hardware functions use bytes, SHIFTIN is oriented for bit control. The shiftCounts of each
shiftValues defines the number of bits that will be shifted out (1 - 32). If a shiftCounts is 0, it is assumed to
be 8.

Data is shifted in at 300 Kbits/sec.

Example

#include <SHIFT.bas>

"use SHIFTIN/OUT to control an SPI EN28J60 connected on pins 3,4 -- 6 as CS

shiftValues(0) = 2
shiftCounts(0) = 3

shiftValues(1) = $1b
shiftCounts(1) = 5

shiftValues(2) = y

shiftCounts(2) = 8

i0(6)=0 'used asCS
shiftout (3,4,1,3) 'setreg $1Btoy
io(6)=1

shiftValues(0) = reg
shiftCounts(0) = 8

i0(6)=0

shiftout (3,4,1,1) 'select the register
shiftin (5,4,0,1) 'and read it back
x = shiftValues(0)

io(6)=1

Differences from other BASICs

= no equivalent in Visual BASIC
= similar to PBASIC

Page 407

See also

= SHIFTOUT
= Hardware SHIFT
= SPIIN

Page 408

SHIFTOUT

Syntax

#include <SHIFT.bas> ' source in /Program Files/Coridium/BASIClib

SUB SHIFTOUT (OUTpin, CLKpin, LSBfirst, cnt)
Description

SHIFTOUT can be used for devices that are not covered by SPI, 12C or 1-Wire. Data is shifted out on OUTpin
, and a positive clock is sent on CLKpin for each bit.

While most other hardware functions use bytes, SHIFTOUT is oriented for bit control. The shiftCounts of
each shiftValues defines the number of bits that will be shifted out (1 - 32). If shiftCounts is 0, it is assumed
to be 8.

= Mode =0 data is shifted out MSB first
= Mode =1 data is shifted out LSB first

NOTE*** these shift modes are compatable with SHIFTIN, BUT not the same as PBASIC

Data is shifted out of the device at 300 Kbits/sec.

Example

#include <SHIFT.bas>
#include <SPIl.bas>

DIM inlist(20) as string

DIM outlist(20) as string

" mixed SPI, SHIFT example for a 93LC46 connected to pins 11-14
high 14 'CS to 93LC46

shiftValues(0) = $260
shiftCounts(0) = 10

SHIFTOUT(12,13,0,1) ' write enable

low 14

shiftValues(0) = $280 ' count still 10
outlist(0) = $41

high 14

SHIFTOUT(12,13,0,1) ' set write to address 0
SPIOUT (-1, 13, 12, 0, 1, outlist) ' send a byte of data
low 14

wait(20) " allow for write time
high 14

shiftValues(0) = $300

SHIFTOUT(12,13,0,1) ' read addr 0

SPIIN (-1, 11, 13,12, 0, -1, "™, 10, inlist) ' read 10 bytes of data
low 14

Differences from other BASICs

Page 409

= none from Visual BASIC
= simplified from PBASIC

See also
= SHIFTIN
= Hardware SHIFT
= SPIIN

Page 410

SPI

Library

#include <SPIl.bas>

S

= SPIBI

= SPIIN

= SPIOUT
Interface

optional #defines-
SPIclkNEGATIVE
SPIpreSample
TERMINATE_ON_0O_ONLY --ignore CR,LF as special characters

SUB SPIIN (CSpin, INpin, CLKpin, OUTpin, LSBfirst, OUTcnt, BYREF OUTlist as STRING, INcnt, BYREF
INlist as STRING)

SUB SPIOUT (CSpin, CLKpin, OUTpin, LSBfirst, OUTcnt, BYREF OUTlist AS STRING)

SUB SPIBI (CSpin, INpin, CLKpin, OUTpin, LSBfirst, Blcnt, BYREF OUTlist as STRING, BYREF INlist as
STRING)

Description

These libraries are written for the ARM being the master, with possible multiple slaves selected by different
CS lines.

LSBfirst selects the bit order for the SPI routines.

A #define is used to set clock mode #define SPICIKNEGATIVE will invert the normally low clock. To use a
normally high clock this #define must be placed before the #include <SPI.bas>

Another #define can be used to sample data before the clock, #define SPIpreSample. The default case is to
sample data after each clock.

SPIIN supports the loosely defined serial protocol used by a variety of manufacturers. The desired device is
selected by asserting CSpin LOW. If there is no CSpin , the value should be set to -1.

In the simplest case, INpin is used to input data clocked by CLKpin, to fill the INlist. (OUTcnt will be 0 and
OUTlist empty)

In bi-directional cases, OUTcnt bytes of OUTIist will be output on OUTpin before reading the INlist. OUTcnt
may be -1 and OUTlist empty. If OUTcnt is 0, then OUTIist bytes will be sent until a value of 0 is found (the O

will not be sent). An empty OUTIist can be represented by ™.

It is also allowable to have INpin equal to OUTpin, in which case that pin will be driven for the OUTlist and
then converted to an input for /Nlist.

INlist will be filled with INcnt bytes. If INcnt is 0 then the INlist will be filled with bytes until a 0, CR or LF
character is received. Note that no bounds checking is performed on the input, and if a 0, CR, or LF is never
received then this routine will hang.

Page 411

Data is shifted in MSB first and each element of the InputList is filled with a byte of data. The LSBfirst can be
used to change the bit order.

Data is shifted in at 330 Kbits/sec

SPIOUT supports the loosely defined serial protocol used by a variety of manufacturers. The desired device
is selected by asserting CS_pin LOW. If there is no CS_pin, the value should be set to -1.

In the simplest case, out pin is used to output data clocked by clk_pin, from the OutputList.

OutputList can contain a list of constants, variables, "constant-string" or stringame$ without a count. The
latter will send out bytes starting from stringname$(0) until a 0 byte is read. The 0 is not shifted out, if that is
required either a count should be specified so as to include the 0.

Data is shifted out MSB first and each element of the OutputList is treated as a byte. The LSBfirst can be
used to change the bit order.

Data is shifted out at 300 Kbits/sec

SPIBI supports the loosely defined serial protocol used by a variety of manufacturers. The desired device is
selected by asserting CS_pin LOW. If there is no CS_pin , the value should be set to -1.

SPIBI will shift out1, out2, out3 bytes out on out_pin while reading 3 or more bytes into the InputList from
in_pin. For each bit the c/k_pin will be pulsed. Data is shifted in/out MSB first. The LSBfirst can be used to
change the bit order.

Data is shifted in/out at 220 Kbits/sec
Example

#include <SPIl.bas>

DIM shortResponse(20) as string
" microMega FPU uses MSB first -- positive clock

shortResponse=
chr(&HFF)+chr(&HFF)+chr(&HFF)+chr(&HFF)+chr(&HFF)+chr(&HFF)+chr(&HFF)+chr(&HFF)+chr(&HFF)+chr
(&HFF)

SPIOUT (-1,14,15, 0, 11, shortResponse) 'reset FPU

WAIT (10)

shortResponse= chr(&HF0)

SPIOUT (-1,14,15, 0, 1, shortResponse) 'sync FPU

save_time = TIMER

while ((TIMER - save_time) < 15) 'wait 15 uSec

loop

SPIIN (-1,14,15, 0, 0,"", 1, shortResponse) ' get 1 byte status back

if (shortResponse(0) <> &H5C) then
print " No FPU found", status
end

endif

print "FPU found"

shortResponse= chr(&HF3)

SPIOUT (-1,14,15, 0, 1, shortResponse) ' get version

INPUT (14) " allow FPU to drive this bidirectional line
while (IN(14)) " wait for FPU to drive that line low

loop

Page 412

shortResponse= chr(&HF2)

SPIOUT (-1,14,15, 0, 1, shortResponse) ' get string

save_time = TIMER

while ((TIMER - save_time) < 15) 'wait 15 uSec

loop

SPIIN (-1,14,15, 0, 0,", 0, shortResponse) ' get a 0 terminated string back

print "version = "; shortResponse;
For an example of an SPI device that uses non-byte oriented command see SHIFTIN, SHIFTOUT example.

Page 413

SPIBI

<

Syntax

#include <SPIl.bas> " source in /Program Files/Coridium/BASIClib

SUB SPIBI (CSpin, INpin, CLKpin, OUTpin, LSBfirst, Blcnt, BYREF OUTlist as STRING, BYREF INIlist as
STRING)

Description

SPIBI supports the loosely defined serial protocol used by a variety of manufacturers. The desired device is
selected by asserting CS_pin LOW. If there is no CS_pin , the value should be set to -1.

SPIBI will shift out1, out2, out3 bytes out on out_pin while reading 3 or more bytes into the InputList from
in_pin. For each bit the clk_pin will be pulsed. Data is shifted in/out MSB first. The LSBfirst can be used to
change the bit order.

Data is shifted in/out at 220 Kbits/sec
Example

Differences from other BASICs

= no equivalent in Visual BASIC
= no equivalent in PBASIC
See also

= SPIOUT
= SPI Support

Page 414

SPIIN

<

Syntax

#include <SPIl.bas> " source in /Program Files/Coridium/BASIClib

SUB SPIIN (CSpin, INpin, CLKpin, OUTpin, LSBfirst, OUTcnt, BYREF OUTlist as STRING, INcnt, BYREF
INlist as STRING)

Description

SPIIN supports the loosely defined serial protocol used by a variety of manufacturers. The desired device is
selected by asserting CSpin LOW. If there is no CSpin , the value should be set to -1.

In the simplest case, INpin is used to input data clocked by CLKpin, to fill the INlist. (OUTcnt will be 0 and
OUTlist empty)

In bi-directional cases, OUTcnt bytes of OUTIist will be output on OUTpin before reading the INlist. OUTcnt
may be -1 and OUTIist empty. If OUTcnt is 0, then OUTIist bytes will be sent until a value of 0 is found (the 0

will not be sent). An empty OUTIist can be represented by ™.

It is also allowable to have INpin equal to OUTpin, in which case that pin will be driven for the OUTlist and
then converted to an input for /Nlist.

INlist will be filled with INcnt bytes. If INcnt is 0 then the INlist will be filled with bytes until a 0, CR or LF
character is received. Note that no bounds checking is performed on the input, and if a 0, CR, or LF is never
received then this routine will hang.

Data is shifted in MSB first and each element of the InputList is filled with a byte of data. The LSBfirst can be
used to change the bit order.

Data is shifted in at 330 Kbits/sec
Example

#include <SPIl.bas>

FUNCTION Fpu_ReadWord

Fpu_ReadDelay

str$(0) =0

SPIIN(FpuCS, Fpuln, FpuClk, FpuOut, 0, 0, str$, 2, str$)
return (str$(0)<<8) + str$(1)

END FUNCTION

Differences from other BASICs

= no equivalent in Visual BASIC
= no equivalent in PBASIC
See also

= SPIOUT
= SPI Support

Page 415

SPIOUT

Syntax

#include <SPl.bas> " source in /Program Files/Coridium/BASIClib

SUB SPIOUT (CSpin, CLKpin, OUTpin, LSBfirst, OUTcnt, BYREF OUTIist AS STRING)
Description

SPIOUT supports the loosely defined serial protocol used by a variety of manufacturers. The desired device
is selected by asserting CS_pin LOW. If there is no CS_pin, the value should be set to -1.

In the simplest case, out pin is used to output data clocked by clk_pin, from the OutputList.

OutputList can contain a list of constants, variables, "constant-string" or stringame$ without a count. The
latter will send out bytes starting from stringname$(0) until a 0 byte is read. The 0 is not shifted out, if that is
required either a count should be specified so as to include the 0.

Data is shifted out MSB first and each element of the OutputList is treated as a byte. The LSBfirst can be
used to change the bit order.

Data is shifted out at 300 Kbits/sec
Example

#include <SPIl.bas>

SUB Fpu_Write(bval1)

str$(0) = bval1

SPIOUT(FpuCS, FpuClIk, FpuOut, 0, 1, str$)
END SUB

Differences from other BASICs

= noequivalentin Visual BASIC
= no equivalent in PBASIC
See also

= SPIIN
= SPI Support

Page 416

Interrupts (version 7.30 and later)

0] CORIDIUM 5
— o) 3 ﬁR';.Hml'tg:: PRD_:. -

Pin Control Functions
ADDRESSOF
INTERRUPT
INTERRUPT SUB
ON

Page 417

http://www.coridiumcorp.com

ADDRESSOF

Syntax

ADDRESSOF variable_name
or

ADDRESSOF subroutine_name
Description

ADDRESSOF will return the address of a variable or subroutine.

Example

sub print1111
print 1111
endsub

main:
fpointer = ADDRESSOF print1111

call (fpointer)
Differences from other BASICs

= similar to VB
= no equivalent in PBASIC
See also

= CALL

Page 418

INTERRUPT

<

Syntax

INTERRUPT expression
Description

INTERRUPT will disable interrupts if expression is 0. And it will enable interrupts if expression is non-zero.
The default case is to have interrupts enabled.

Use this routine with caution, such as generating fixed time signals, or doing synchronous input. Do NOT
disable interrupts around large sections of the program. Serial input will stop functioning and characters may
be lost if interrupts are off for too long.

Example

' read a synchronous byte from a device with ready on pin 0, clock pin 1 and data on pin 2

FUNCTION ReadBit
WHILE IN(1)=0 ' wait for clock to go high
RETURN IN(2) AND 1

END FUNCTION

WHILE IN(0) ' wait for ready signal
LOOP

INTERRUPT 0

BITO = ReadBit
BIT1 = ReadBit
BIT2 = ReadBit
BIT3 = ReadBit
BIT4 = ReadBit
BIT5 = ReadBit
BIT6 = ReadBit
BIT7 = ReadBit
INTERRUPT 1

VALUE = BITO + (BIT1<<1) + (BIT2<<2)+ (BIT3<<3)+ (BIT4<<4)+(BIT5<<5)+ (BIT6<<6)+ (BIT7<<7)
Differences from other BASICs

= no equivalent in Visual BASIC
= no equivalent in PBASIC
See also

= ON

Page 419

INTERRUPT SUB

Syntax

INTERRUPT SUB name
Description

INTERRUPT SUB indicates to the compiler this SUB will be used as an interrupt routine.
The address of the interrupt sub can be loaded into the interrupt hardware using the ADDRESSOF operator.
This requires firmware 7.30 or later and compiler version 7.44 or later.

This will be the way interrupts will be supported on Cortex MO,M3 parts, the ON construct will be maintained
for backward compatibility, but will not be expanded.

Example

i ARM?7 -- LPC21xx of ARMmite, PRO, ARMweb
' Test EINTO on PWMO02

' For ARMmite connect PWMO02 to P17

' The program will poll for a "0" or "1" on RXD0O

' Receiving a "0" will clear output P17, a "1" will set the output

' triggering an EINTO interrupt

#define LPC2103
#include "LPC21xx.bas"

dim €0 as integer
dim s0 as integer
dim rx as integer

INTERRUPT SUB EINTOIRQ
*SCB_EXTINT = 1" Clear interrupt
*VICVectAddr = 0 ' Acknowledge Interrupt
e0=e0+1

ENDSUB

SUB ON_EINTO(rise_edge, dothis)
' Setup MUST be done before enabling the interrupt
*PCB_PINSEL1 = *PCB_PINSEL1 or psfEINTO ' select pin function
*SCB_EXTINT = 1" clear interrupt
*SCB_EXTMODE = *SCB_EXTMODE or 1 ' enable edge mode

if rise_edge

*SCB_EXTPOLAR = *SCB_EXTPOLAR or 1 trigger on rise edge
else

*SCB_EXTPOLAR = *SCB_EXTPOLAR & &HFFFFFFFE ' trigger on fall edge (default)
endif

*VICVectAddr4 = dothis ' set function of VIC 4
*VICVectCntl4 = &H2e ' use it for EINTO Interrupt:
*VICIntEnable = &H4000 ' enable EINTO Interrupt:

*VICVectAddr = 0 ' Acknowledge all Interrupts
ENDSUB

Page 420

main:

print "EINTO Interrupt Test"
print "Enter 0 to clear EINTO input, 1 to set input"

ON_EINTO(1, ADDRESSOF EINTOIRQ) 'set up for rising edge

e0=0
s0=0
rx =0
OUTPUT 12
OuUT(12)=0

WHILE (1)
rx = RXDO
if rx > 0 then
TXDO = rx
if rx = "0" then OUT(12) =0
if rx ="1" then OUT(12) = 1

endif
if sO <> e0 then

sO=e0

print "Received EINTO "
endif

LOOP
[Cortex M3 example -- PROplus SuperPRO

'Test EINTO on C10 (P2.10)

' For ARMmite connect C10 to P18

' The program will poll for a "0" or "1" on RXD0O

' Receiving a "0" will clear output P18, a "1" will set the output
' triggering an EINTO interrupt

#include "LPC17xx.bas"
dim e0 as integer

dim s0 as integer
dim rx as integer

INTERRUPT SUB EINTOIRQ
SCB_EXTINT = 1" Clear interrupt
e0=e0+1

ENDSUB

SUB ON_EINTO(rise_edge, dothis)
PCB_PINSEL4 = &H00100000 "EINTO on P2.10
SCB_EXTMODE = SCB_EXTMODE or 1 ' Enable edge mode

SCB_EXTINT =1 ' Clear interrupt
if rise_edge

SCB_EXTPOLAR = SCB_EXTPOLAR or 1 ' trigger on rise edge
else

SCB_EXTPOLAR = SCB_EXTPOLAR & &HFFFFFFFE ' trigger on fall edge (default)
endif
EINTO_ISR = dothis or 1 'set function of VIC
VICIntEnable = VICIntEnable or (1<<18) '&H00040000 'Enable interrupt
ENDSUB

Page 421

main:
print "EINTO Interrupt Test"
print "Enter 0 to clear EINTO input, 1 to set input”

ON_EINTO(0, ADDRESSOF EINTOIRQ) 'set up for rising edge

e0=0
s0=0
rx =0
OUTPUT 18
OouT(18)=0

WHILE (1)
rx = RXDO
if rx > 0 then
TXDO = rx
if rx = "0" then OUT(18)
if rx ="1" then OUT(18)
endif

0
1

if sO <> e0 then

sO=¢e0

print "Received EINTO "
endif

LOOP

Differences from other BASICs

= no equivalent in Visual BASIC
= no equivalent in PBASIC
See also

= ON

Page 422

ON (version 7.30 and later on ARM7 parts)

For PROplus and SuperPRO see INTERRUPT SUB

Syntax

ON TIMER msec label
or

ON EINTO|EINT1|EINT2 RISE|FALL|HIGH|LOW [abel
Description

These statements will initialize interrupt senvice routines so that when the interrupt occurs the code at label
will be executed. Label must have been pre-defined and can either be a SUB (without parameters) or code
beginning with a label: and ending in a RETURN. The interrupt response time is approximately 3 usec. Other
interrupts may make this time longer.

TIMER interrupts will occur every msec milliseconds. msec may be a variable or constant, expressions are
not allowed. The value for msec must be greater than 1. If TIMER interrupts are used, then only 4 hardware
PWM channels are available.

EINTO and EINT2 are 2 pins that will interrupt when the defined event occurs. RISE and FALL are the
preferred method and will generate interrupts on rising or falling edges on those 2 pins. HIGH and LOW are
supported, but if the pin remains in that state interrupts will be continuously generated.

EINT1 is connected to the RTS line of the PC, and is normally high, so it can be used by a program on the
PC to interrupt the ARMmite, rather than having to reset the board. This pin is available on the wireless
ARMmite, but if you intend to use it, make sure it is pulled high normally, otherwise when the board is reset it
will go into the download C mode and will not run your BASIC program. EINT1 is also available on the
ARMexpress modules (pin 21), and should also be kept normally high if used.

Each time the ON statement is executed the interrupt will be initialized, so it is possible to change routines
within the program. Multiple interrupts can be used, but they are serviced in the order received, and each
interrupt senvice routine will complete before the next one is handled (interrupts that occur while one is being
senviced will be handled after the current interrupt is processed).

Interrupt routines should normally be short and simple. The state of the other user BASIC code will be
restored after the interrupt, with the exception of string functions, which should NOT be done inside an
interrupt. PRINT statements use strings, so other than a temporary debug to see if the interrupt occurs, they
should not be inside an interrupt routine.

To disable the interrupt use the following #define

#defineVICIntEnClear *$FFFFF014

#define TIMERoff VICIntEnClear = $20
#define EINTOoff VICIntEnClear = $4000
#define EINT10off VICIntEnClear = $8000
#define EINT20off VICIntEnClear = $10000

ON added in version 7.09
The LPC2106 based ARMexpress supports ONLY ON LOW, due to hardware limitations.

ON is a statement that is executed, so if multiple ON statements are in a program the last statement

Page 423

executed will be active command.

Cortex M3 and MO do not support ON, but use INTERRUPT SUB
Example

I015up =0 ' serves to declare 1015up

SUB 1015count
1015up = [015up + 1
ENDSUB

main:
ON EINT2 RISE 1015count

I015up =0
while 1
if I015up <> lastlO15count then
print I015up
lastlO15count = 1015up
endif

loop
every20msec:
checklO0 = checklOO0 + (I0(0) and 1)
I00samples = I00samples +1
RETURN

main:

ON TIMER 20 every20msec

PRINT "Percentage of time 100 is HIGH =", 100*checkIO0 / I00samples

bifferences from other BASICs

= VB???
= no equivalent in PBASIC
See also

= GOTO
= RETURN

Page 424

Logic Scope

r

* Logic Scope

e »indicates this ine
15 baing driven

a0 =
a0 =

i
R
R

B R R
B s R
a o =
B s R
o =
J O =
B s R
O =
O o =
a O =
° P

|ARMrite

=

sean time; 4000 us

<spacer RUN| W single tmebase [us/div] |4IZII:I = [persistence CLEAR

Logic Scope
Timed Samples

User Defined Sampling
Stand Alone Analyzer

Page 425

http://www.coridiumcorp.com

Timed sampling with Logic Scope

Timing setup

The ARMexpress/mite can sample the upto 32 data lines at nearly 1 MHz rates in BASIC. The software
library LogicScope.bas is used to coordinate this sampling. Other sample rates that are multiples of 40uSec
are also supported.

While sampling data the CPU is consumed gathering the 400 samples and then sending them to the PC,
at which point processing of the user program can continue.

Example

Example
#include <LogicScope.bas> ' call in support for LogicScope functions

#include <HWPWM.bas>
' user code to generate the stimulus -- the ScopeDemo engages the HWPWM

HWPWM (1,200,10)
HWPWM (2,200,20)
HWPWM (3,200,40)
HWPWM (4,200,80)
HWPWM (5,200,16)
HWPWM (6,200,32)
HWPWM (7,200,40)
HWPWM (8,200,45)

while 1

call doLogicScope (50,0,0) '50 uSec, and trigger on any state (mask =0, trigger =0)

stop ' stop needed only to handshake with the PC for continuous tracing
loop

keyw ords: Logic Scope

Page 426

User sampling with Logic Scope

Random sampling setup

LogicScope is setup to display 400 samples of 16 IOlines. The user can generate these samples by
sprinkling the sample call into their program.

The sample data call is completed in less than 3 uSec, except on the 400th sample where the data is sent
to the PC. If you don't have 400 samples, but want to see the data in the sample buffer call the
FlushScopeSamples routine.

Example

Example

#include <LogicScope.bas> " call in support for LogicScope functions

#define DoSample CALL doScopeSample 'use this version to watch code

'#define DoSample "use this version to remove
LogficScope watch
CALL setupLogicScope "nitialize the sampling routine

"user code for a custom serial interface

fori=0to 8
x=(x<<1)or(IN(3)and 1)
DoSample

next i

CALL FlushScopeSamples 'view any data in the buffer

keyw ords: Logic Scope

Page 427

Stand Alone Logic Scope

The ARMmite is a flexible solution to capture the logic state of your project. The ability to program the
control of sampling in BASIC can be a powerful tool. Using a second ARMmite means that the timing of your
code will not be affected when using LogicScope.

Board under test setup

Analyzer board setup

Page 428

ARMmite sampling data from ARMexpress/ ARMexpress LITE evaluation board

keyw ords: Logic Scope

Page 429

Pin Control Functions

PR R

-
.._.-.f_-i_-..'.-.

® P
LR B R

smd e
FadEBRERNR

- nw

aaE BB B RESE
sessaRseErARES

Pin Control Functions

BYTEBUS -- ARMweb only

DIR
Port P0..P4

AD

HIGH

IN
INPUT
10

Low
ouT
OUTPUT

Page 430

http://www.coridiumcorp.com

AD

Syntax

FUNCTION AD (expression)

Description --- not available on the original ARMexpress

ARMmite and ARMmite PRO version

AD will return 0..65472 that corresponds to the wltage on the pin corresponding to expression . The value
returned will have the top 10 bits of significance followed by bits 5..0 will be 0. 0 would be read for 0V and
65472 for 3.3V.

An analog conwersion on pin expression is performed when this builtin FUNCTION is called. This process
takes less than 6 usec.

Dual Use AD pins

On reset or power up the AD pins are configured as AD inputs. To change those to digital IOs, the user must
individually specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that
they will remain digital IOs until the next reset or power up.

ARMexpress LITE version
The ARMexpress LITE supports up to 6 channels of AD conwerters.

On the ARMexpress LITE and ARMweb these pins are configured as digital I0s at reset, but will be switched
to AD operation when AD(x) is read.

AD(0) 10(7)
AD(1) 10(10)
AD(2) 10(8)
AD(3) not available
AD(4) not available
AD(5) 10(9)
AD(6) 10(11)
AD(7) 10(12)

Stand-Alone Compilers

Because the hardware is not compatible between LPC types, this must be implemented as a FUNCTION in
BASIC and is not part of the firmware.

Example

wltage = AD (0) ' this will read the woltage on pin 0

Differences from other BASICs

= no equivalent in Visual BASIC
= no equivalent in PBASIC

See also
= |0
= DIR
= OUTPUT

Page 431

BYTEBUS (ARMweb only)

<

Syntax

BYTEBUS (control)
Description

BYTEBUS reads or writes the 8 bit + 2 control lines on Port1 of the LPC2138. The control field sets the state
of the 2 control lines, with the intention of line 0 being used as a R/W line and line 1 being used as a CS line-

0 -- set control line 0 low, and pulse line 1 low
1 -- set control line 0 high, and pulse line 1 low
2 -- set control line 0 low, and pulse line 1 high
3 -- set control line 0 high, and pulse line 1 high

4 -- use the 10 lines as a block of inputs or outputs (added in version 7 firmware)
For 0-3:

The pulsewidth on line 1 is 250 nsec for write, and 550 nsec for read.

Back to back operations occur 2.4 usec apart for writes, 2 usec for read.

None of these lines are driven on reset, and should be biased with resistors if devices connected to this bus
require it.

Example

'write to byte bus - negative true CS and W
BYTEBUS(0) = $A5

'read from byte bus - negative true CS, R-notW line
x = BYTEBUS(1)

block control added in version 7 firmware-
'write to 10 pins as a block
BYTEBUS(4) = $2A5

'read from 10 pins as a block
x = BYTEBUS(4)

Differences from other BASICs
= no equivalent in Visual BASIC
= no equivalent in PBASIC

See also

« HIGH

Page 432

DAC

Syntax

DACsetup()

DACout(expression)

Description

Control of the DAC is done by writing directly to the registers. Details can be found in the User manual of the

appropriate part, links in the Hardware Section .

Rather than having built in functions in BASIC, this will be done by subroutines. Samples of those

subroutines are below

Example

On the SuperPRO:

#define PCB_PINSEL1 *(&H4002C004)
#define PCB_PINMODE1 *(&H4002C044)

#define DACR *(&H4008C000) 'or use #include <LPC17xx.bas>

sub DACsetup
PCB_PINSEL1 = PCB_PINSEL1 and (not (3<<20)) or (2<<20) 'enable DAC output
PCB_PINMODE1 = PCB_PINMODE1 or (2<<20) ' disable pullups
endsub

sub DACout(value)
DACR = value << 6
endsub

main:
DACsetup

for i= 0 to 1023
DACout(i)
wait(10)
next i

On the ARMweb or DINkit:
#define PCB_PINSEL1 *(&HE002C004)

#define DACR *(&HEO006C000) ' or use #include <LPC21xx.bas>

sub DACsetup
PCB_PINSEL1 = PCB_PINSEL1 and (not (3<<18)) or (2<<18) 'enable DAC output
endsub

sub DACout(value)
DACR = value << 6
endsub

main:
DACsetup

Page 433

fori= 0 to 1023
DACout(i)
wait(10)
next i

Differences from other BASICs

= no equivalent in Visual BASIC
= no equivalent in PBASIC
See also

= OUT
= [N
= @ 'dump memory

Page 434

DIR

<

Syntax

DIR (expression)
Description

DIR (expression) can be used to set or read the direction of the 16 configurable pins. If DIR (expression) is 1
then the corresponding pin is an output. If the value is 0 then that pin is an input.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital 10s, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they will remain
digital IOs until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance DIR 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIOODIR.
Example

' Set pin 4 as an input
DIR4)=0

' Set pin 12 as an output
DIR(12) =1

Differences from other BASICs

= no equivalent in Visual BASIC
= equivalent to DIR0..15 in PBASIC

See also
= INPUT
= OUTPUT

Page 435

HIGH

Syntax

HIGH expression
Description

HIGH will set the pin corresponding to expression to a positive value (3.3V) and then set it to an output.

HIGH and LOW have been added for PBASIC compatablity.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in theHardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance HIGH 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands.

Example

SUB DIRS (x) ' similar to PBASIC keyword
DIMi AS INTEGER
FORi=0to 15
DIR(i) = x and (1 <<i)
NEXT i
END SUB
main:

DIRS (&HOOFF) ' set pins 0 to 7 to output

FORI=0TO 7

WAIT (1000)

HIGH | ' set each pin HIGH one after the other every second
NEXT |

Differences from other BASICs

= no equivalent in Visual BASIC
= none from PBASIC
See also

= LOW

Page 436

IN
(4
Syntax

IN (expression)
Description

When reading from IN (expression), -1 or 0 will be returned corresponding to the woltage level on the pin
numbered expression. Why -1 and 0? The main reason is that operations of operators like NOT are assumed
to be bitwise until there is a Boolean operation in the expression, and NOT 0 is equal to -1.

This directive does not change the input/output configuration of the pin.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital 10s, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they will remain
digital IOs until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in theHardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond to the port assigned by NXP, for instance IN(3) corresponds to P0.3

For port pins after port 0, use the P1 .. P4 commands .

Example

' Set pin 9 as an input
INPUT (9)

' Assume an external device has driven pin 9 high
PRINT "The current value of Input pin 9 is "; IN(9) AND 1
The current value of Input pins is 1

Differences from other BASICs

= no equivalent in Visual BASIC
= equivalent to INO..15 PBASIC

See also
= OUT
= |0

Page 437

INPUT

Syntax

INPUT expression

Description

INPUT will set the pin corresponding to expression to an input.

INPUT and OUTPUT were added for PBASIC compatability, same function as DIR(x)= 0.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital 10s, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or I0(x) commands. After that they will remain
digital 10s until the next reset or power up.

Making a pin an INPUT will also tri-state that pin.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance INPUT 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIOODIR.
Example

INPUT (0) ' this will make pin 0 an input

Differences from other BASICs

= INPUT gets a value from the user in some BASICs, in ARMbasic get a value from the debug serial port

with DEBUGIN
= none from PBASIC
See also
= DIR
= OUTPUT
= DEBUGIN

Page 438

10

Syntax

1O (expression)
Description

10 is a more complex way to access or control the pins. When 10 (expression) is read, the pin
corresponding to expression is converted to an input and the value on that pin is returned.

When assiging a value to 10(expression), then pin expression is converted to an output and the logic value is
written to the pin, O writes a low level any other value sets the pin high. When read 10 returns a 0 or -1. Why
-1 and 0?7 The main reason is that operations of operators like NOT are assumed to be bitwise until there is a
Boolean operation in the expression, and NOT 0 is equal to -1. When setting a pin state with 10(x) = 0 then
the pin becomes low, any other value and the pin becomes high, so 10(x) =1 and 10(x) = -1 both set the pin
high.

Using 10 simplifies pins that are being used as both inputs and outputs. As it also sets direction it will be
slower than IN, OUT, HIGH or LOW.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital I0s, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they will remain
digital IOs until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance 10(3) corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIOODIR.
Example

' Set pin 9 as an output and drive it high
10(9) =1

10(9) = NOT IN(9) '"invert pin DO NOT USE 10(9) as that would be ambiguous for controlling the direction of
the pin

' Set pin 8 as an input and reads its value
x =10(8)

Differences from other BASICs

= no equivalent in Visual BASIC
= no equivalent in PBASIC

See also
= OUT
= [N

Page 439

LOW

Syntax

LOW expression
Description

LOW will set the pin corresponding to expression to a low value (0V) and then set it to an output.

HIGH and LOW have been added for PBASIC compatablity.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance LOW 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIOODIR.

Example

SUB OUTS (x) ' similar to PBASIC keyword
DIMi AS INTEGER

FORi=0to 15
OUT(i) = x and (1 << i)
NEXT i
END SUB

SUB DIRS (x) ' similar to PBASIC keyword
DIMi AS INTEGER

FORi=0to 15
DIR(i) = x and (1 <<)

NEXT i
END SUB

main:

DIRS (&HOOFF) ' set pins 0 to 7 to output

OUTS (255) ' and then set them hign or to 3.3 V
FORI=0TO 7

WAIT (1000)

LOW (1) ' set each pin LOW one after the other every second
NEXT |

Differences from other BASICs

= no equivalent in Visual BASIC
= none from PBASIC

See also
= HIGH
= |0

Page 440

ouT

<

Syntax

OUT (expression)
Description

When writing to OUT (expression), the pin corresponding to expression will be set a wltage level
corresponding to TRUE or FALSE, non-zero or 0. When setting a pin state with OUT(x) = 0 then the pin
becomes low, any other value and the pin becomes high, so OUT(x) =1 and OUT(x) = -1 both set the pin
high.

The OUT directive does not change the input/output configuration of the pin. Following reset all pins are
inputs, before an OUT () will have an effect on a pin, that pin must be made an output using an OUTPUT
command. The reason for this is to make OUT faster, if the pin direction were changed each OUT, then the
speed of one OUT to the next would be slower.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital 10s, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or I0(x) commands. After that they will remain
digital 10s until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance OUT(3) corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIOODIR.
Example

' Set pin 9 as an output
OUTPUT (9)

' Drive pin 9 high
ouT@9) =1

PRINT "The current value of Output pin 9is "; OUT(9)
The current value of Output pins is 1

Differences from other BASICs

= no equivalent in Visual BASIC
= equivalent to OUTO0..15 in PBASIC

See also
= |IN
= |0

Page 441

OUTPUT

Syntax

OUTPUT expression

Description

OUTPUT will set the pin corresponding to expression to an output.

INPUT and OUTPUT were added for PBASIC compatability, same function as DIR(x)= 0.

The ARMmite allows control of 24 pins (0..23), with pins 16..23 shared with the AD pins. On reset or power
up the AD pins are configured as AD inputs. To change those to digital 10s, the user must individually
specify a control direction using INPUT x, OUTPUT x, DIR(x), or I0(x) commands. After that they will remain
digital 10s until the next reset or power up.

For the ARMmite, ARMmite PRO, ARMexpress and ARMexpress LITE these pin numbers correspond to the
pin numbers shown in the Hardware Section . For the ARMweb, DINkit, SuperPRO these pin numbers
correspond only to the Port 0 assigned by NXP, for instance OUTPUT 3 corresponds to P0.3

For port pins after Port 0, use the P1 .. P4 commands, or a #define FIOODIR.
Example

' Set pin 9 as an output
OUTPUT (9)

Differences from other BASICs

= no equivalent in Visual BASIC
= none from PBASIC

See also
= DIR
= INPUT

Page 442

PORT P0..P4

<

Syntax

Pn (expression)
Description

where n is 0 through 4

Px allows you to read or write individual pins using the NXP assigned port and pin number. When Pn (
expression) is read, the logic state of the pin corresponding to expression is returned.

When assigning a value to Pn(expression), then pin expression is set to that value if that pin has been
assigned to be an output by writing to FIOXDIR.

When read Pn(x) returns a 0 or -1. Why -1 and 0? The main reason is that operations of operators like NOT
are assumed to be bitwise until there is a Boolean operation in the expression, and NOT 0 is equal to -1.
When setting a pin state with Pn(x) = 0 then the pin becomes low, any other value and the pin becomes high,
so Pn(x) =1 and Pn(x) = -1 both set the pin high.

These pin numbers correspond to the port pin assignments from NXP.

This feature is part of the compiler and requires version 8.04c or later. It has not been added to the on-chip
compiler of the ARMweb.

Example

On the SuperPRO and PROplus:
#define FIO1DIR *&H2009C020 ' or use #include <LPC17xx.bas>
' Set pin 9 as an output and drive it high

FIO1DIR = FIO1DIR or (1<<9)
P1(9) = 1

P1(9) = NOT (P1(9) and (1 <<9)) 'invert pin P1.9 -- works as you can always read the state of a pin

' read value of P1.8
x =P1(8)

' change bit 9 back to an input
FIO1DIR = FIO1DIR and NOT(1<<9)

On the ARMweb or DINkit:

#define FIO1DIR *&H3FFFC020 'or use #include <LPC21xx.bas>
#define SCB_SCS *&HEO1FC1A0Q

SCB_SCS =3 ' required to enable port1 for firmware before 7.47

' Set pin 9 as an output and drive it high
FIO1DIR = FIO1DIR or (1<<9)
P1(9) =1

P1(9) = NOT (P1(9) and (1 <<9)) 'invert pin P1.9 -- works as you can always read the state of a pin

' read value of P1.8
x =P1(8)

Page 443

' change bit 9 back to an input
FIO1DIR = FIO1DIR and NOT(1<<9)

Differences from other BASICs

= no equivalent in Visual BASIC
= no equivalent in PBASIC
See also

= OUT
= IN
= @ 'dump memory

Page 444

Miscellaneous

Miscellaneous
PreProcessor
Debugging

Page 445

http://www.coridiumcorp.com

Data Abort
Prefetch Abort

Undefined Routine

<

Description

Data Aborts are generated when a user's BASIC program accesses non-existant memory. One way is
accessing an array with an index that is larger than available RAM space. Another is using a pointer for
hardware access, but with a value that does not correspond to a valid location.

Prefetch aborts indicate an attempt to access an instruction from non-existant memory. Prefetch aborts can
occur when RETURNing when a sub/function had not been called.

Undefined Routine, which indicates a call or return to non-existant code. This error will occur if you RETURN
when there has not been a GOSUB, the equivalent of a return stack underflow. This also may occur when
interrupts are used with firmware prior to version 7.30

The number reported (in hex) is the program address where the illegal access was detected.

Page 446

Hardware Specs

Hardware Specs Power On behavior
ARMmite Pin Diagram USB use
ARMmite PRO Pin Diagram USB with MatLab or legacy Serial Programs
PROplus SuperPRO Pin Diagram TTL and other interfacing
ARMweb Pin Diagram Power
DIN rail Pin Diagram Timing
ARMexpress LITE Pin Diagram SPI,Microwire
ARMexpress Pin Diagram Using the 12C Bus

ARM Peripheral Use

Schematics
Suggested RS232 connection

Page 447

http://www.coridiumcorp.com

ARMmite Pin Description

24 pins available to the user, 8 of which can be analog inputs

100 P0.9 RXD1 PWM1 Input/Outputs -- user controlled
101 P0.8 TXD1 PWM2

102 P0.30 PWM3 0-3.3V level
103 P0.21 PWM4
104 P0.20 PWM5 4mA drive when configured as Outputs
105 P0.29
106 P0.4 5V tolerant - use limiting resistor when connecting to a 5V supply
107 P0.5
108 P0.6
109 P0.7 PWM6
1010 P0.13 PWM7
1011 P0.19 PWM8
1014 P0.16 1015 connected to LED
1015 |/po.15 | EINTO
EINT2
1012 P0.18 Input/Outputs -- user controlled
lore P0.17

Open drain 4mA pulldown when configured as Outputs

5V tolerant
ADO P0.22 1016 10 bit A/D inputs
AD1 PO 23 1017
AD2 P0.24 1018 may also be used as digital Input/Outputs 10(16-23) -- user controlled
AD3 P0.10 1019
AD4 P0.11 1020
AD5 ’ 1021 when used as analog lines, voltage levels should not exceed 3.3V
P0.12
ADG6 P0.25 1022
AD7 PO 26 1023

Dual Use AD pins

On reset or power up the AD pins are configured as AD inputs. To change those to digital IOs, the user must
individually specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they
will remain digital I0s until the next reset or power up.

PWM pins

All pins can be used for the software PWM function, and 8 pins can be used for the hardware driven HWPWM
function.

Battery Real Time Clock

The ARMmite board is designed to accept a Panasonic ML2020/H1C rechargeable Lithium battery at position
BT1. This battery powers the real time clock of the LPC2103. The contents of RAM is not kept alive while
running on battery, and the CPU restarts the user program in Flash when power is restored. This battery is
designed to maintain power for a few days without power, and will recharge fully in about 1 day.

Power connection

Power when not being supplied by a USB connection uses a 2.1mm barrel connector (Cui PJ-002A). Diodes
allow both USB and seperate power to be connected simultaneously. If you are using an unregulated wall

Page 448

transformer, you must check the open circuit wltage and it MUST be less than 12V.

Pin spacing
The spacing in the prototype area is 0.1" and the terminal strip row on the right side is designed for 3.5mm
terminal strips.

REV 3

10(23)

10(16) 10(13)

0 e 9
¢le v
e

FTTE
P R

L [l

¢ & %

g

T T

AasesessssBe®
_‘,‘...‘"‘t.l'-'r

[
=
& e
¥ ®
& B
8 @
@ 8
é o
e
¢ ¢
89
@ -2
$ ¢
cO

Page 449

P

80 OB -
'.l'l- L I

¢ % ¥

T O O R
L 4

Om-i«ﬁi-iinmml.i.t.i.
"l't'itlliti.!.

asesesssesaen

&
@
8
@
)
@
@
¢
&
a
@
o

& O
& ¥
.',.‘-.t'
L3

® %

:,-ﬁ,iﬁi'iiﬁtli’-'*"
bsebbssssene
.‘,‘.““Qti"ﬁ
.“‘.‘."‘.lf-ﬁ‘-
...‘,‘,‘-."l“
sessssensn

i

O
3

USB 5V

When USB power is not used, a 5-12V supply is required

. If 5V is required for some portion of your circuit, it
is suggested that a regulated 5V supply be used for input power. These are available from SparkFun

Page 450

http://www.sparkfun.com/commerce/product_info.php?products_id=8269

PROTOTYPE Connections

+
i

L o 4-|1.. 5
oo AL

[4

o A W

TR TR IR R Ak Ak (b Ak Al A
o U WL TRE TR N A ,_
o mn A TR L L]

ip iE TE WM 1% 4 4b Lk LF

"f'l."ﬂ'ﬂ"!':'lll"pf L]

LI

TR TR VR TR ih A W W
b T
£h Ak W

3 -
¢
¢
€
¢
€
-
£
¢

C

C}T"'l

& T
L R

lbﬁ'ﬁl\llﬂ-!—l‘m

-=§-i¢#1-itnmml,1.t- T

l\l"'l-!-l"l-'l#!!tllu
sssessSReER

switch pullup resistor

A push button switch and pullup resistor can also be mounted (connected to 10(2)). The optional battery for

the real time clock (Panasonic ML2020) can be mounted on the back of the PCB. The VL2020/HFN will also
work, though it is more expensive and has less power.

Page 451

REV 2

R
cpbfensionarn

o

www.CQ%QDﬁP.com

Page 452

L

R .
T LR L
&0 8% a8 &

.‘I'Iﬁ-'l-i'f
".I'I'I-'I'l

lii-n-
.Ilhl_l..l'.

BT YT TRV
cplfanshnrare

'III.!E‘-

7]

-illlllm i

-
LelfRy -
g2 1
l'1 (&)

WWV. CURTE“UHCORP com &

Page 453

DB 9 style

EE LTS LAY 2y s o

e

I:5r':
ﬂ1 (3 a,.

3.9mm termin

al
suggested terminal strip On Shore Tech ED550/12DS or equivalent 3.5mm pitch connector (available at
Digikey)

Prototype Connections

L e W "k

PRt

aABBEOOD
I T R

o & u I‘_.._

aanAaGADERD
b
B L T |

B
anaAEORE

i

L

I'ii
1
s
L

E]

BRI ITIEA TS 21 S
apbfanebsrsnn

ol
ek
E‘L 1
o) |

tgl

EESE'

gmaannnn

gouuueuwew
mAnERD
TR LY
EAaTnnAD

L L ELRLRL

Page 454

ARMmite PRO Pin Description

<

The ARMmite PRO is footprint and pin compatible with the Arduino PRO. In addition it has an onboard 5V
regulator so it is compatible with 5V shield boards.

BASIC or C programs can be downloaded using the installed test connector using the USB dongle contained
in Coridium's evaluation kit or using the SparkFun USB Basic Breakout board or FTDI cable from
MakerShed . More details on these connections here.

Pins available to the user, 7 of which can be analog inputs

100 P0.9 RXD1 PWM1 Input/Outputs -- user controlled
101 P0.8 TXD1 PWM2
102 P0.27 0-3.3V level
103 P0.19 PWM8
104 P0.28 4mA drive when configured as Outputs
105 P0.21 PWM4
106 P0.5 5V tolerant - use limiting resistor when connecting to a 5V supply
107 P0.29
108 P0.30 PWM3
109 P0.16 ||EINTO
1010 P0.7 PWM6
1011 P0.13 PWM7
1012 P0.4
1013 P0.6
1014 P0.20 PWM5
1015 .
P0.15 EINT2 1015 connected to LED -- no other connection
Al P0.22 1972 10 bit A/D inputs
AD1 1017
AD2 P0.23 1018 .
AD3 P0.24 1019 may also be used as digital Input/Outputs 10(16-23) -- user controlled
AD4 PO.10 1020
PO0.11 when used as analog lines, voltage levels should not exceed 3.3V
AD5 1021
AD6 PO.12 1022 . .
AD7* P0.25 1023 ADG6 connected to Arduino AREF pin
P0.26 AD7 connected to a via

Dual Use AD pins

On reset or power up the AD pins are configured as AD inputs. To change those to digital IOs, the user must
individually specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they
will remain digital I0s until the next reset or power up.

The LPC2103 does not support an external reference for the A/D conwerters, so the Arduino AREF pin is
connected to a seventh converter, AD(6).

PWM pins

All pins can be used for the software PWM function, and 8 pins can be used for the hardware driven HWPWM
function.

Digital IO connections
REV4

Page 455

http://www.sparkfun.com/commerce/product_info.php?products_id=8772
http://www.makershed.com/ProductDetails.asp?ProductCode=TTL232R

10{22) 1013} 108 10(7) 1Q{0)

UsB 10{14)

dongle

connection
LED=
10(15)
10(23)

10(16) 10(21)

The major change for rev 4 is to add a parallel connection for the 8 I0s I0(8)-10(13), GND and 10(22) that is
on 0.1" centers in relation to the other connections.
In addition the loadC jumper was rotated 90 degrees to make room for this extra connection. And it is also

easier to add a battery to the board, by making 1 cut, and adding a diode, resistor and battery (details
below).

REV 3

Page 456

10(22) 10(13) 10(8) 10{7) 10{0)

CDRIDIU

3 ARMnitesP
10(14)
LED =
10(15)
10(23)

10{16) 10{21)

Picture is for the Rev 3 production board. On the Rev 1, 10(23) is available on the via next to AD(5)/10(21).

Analog connections

AD(6)

Analog GND AD{0) AD(5)

Picture is for the Rev 3 production board. On the Rev 1, AD(7) is available on a via next to AD(5).

Page 457

Dual Serial Ports

Where the Arduino has only a single serial port, the ARMmite PRO has 2 UARTs. The second UART is
connected to 10 pins 0 and 1. This allows it to be used simultaneously with the first UART acting as a debug
port. In the Arduino, the debug port is connected to these 2 10s. To allow for this connection as well, the
ARMmite PRO has 2 shorting bridges that can be shorted to make this connection.

TXD1 RXD1

pads

3
L 2
e
8|
5

ﬁ I

814

Power connections

The board is shipped with a 2mm power jack compatible with a JST PHR/S2B or SparkFun PRT8671 or
various battery packs from SparkFun.

Pads for a Cui PJ-002A or SparkFun PRT-119 power connector are available in the lower left hand corner.
For both battery and 6V input, 2 pin 0.1" spaced holes are available for wires or headers. When using the
battery connector, total current draw for the board must be limited to 200mA. If you want to use more
currrent, you should install a jumper around the D2 diode (holes are available above D2).

Diode steering allows power to be supplied from a barrel connector from a 6V unregulated source, 5V USB
test connector, or the battery connector. Because of the Schottky diodes, all 3 power sources can be
connected simultaneously. If you are using an unregulated wall transformer, you must check the open circuit
wltage and it MUST be less than 12V.

When the 6V source is used, 5V Arduino shields can be powered from the ARMmite PRO.

The schematic describes this circuit

Page 458

http://search.digikey.com/scripts/dksearch/dksus.dll?pname&site=us;lang =en&wt.mc_id=Dxn_US_T091_Catlink;name=455-1165-ND
http://www.sparkfun.com/commerce/product_info.php?products_id=8671
http://www.sparkfun.com/commerce/product_info.php?products_id=119

b2

(]

7

R PR

(&1}

The full schematic can be seen here

Power connections details

Power
Connectior
(battery)

optional
power
connector

s SV
¢ 6-12V

« GND
pads

1
1
i
i
i
=
s]

Analog GND
The 3.3V regulator can supply 50 mA, with most being used by the LPC2103. The 3.3V connection next to

2 1 -
T H =
= uJ o
- = -
ERTS4 e T
=
-
1.
=
R TESTITIE
= 0
E o B
TETE EM (=] ol -
L= o i
F -1 [=

;l_.

RESnN on the lower power connector is only connected if the shorting pads are shorted (NOT the factory
default).

The analog GND should be used to connect to the GND of analog inputs. Digital and Analog GNDs are
connected together with a small trace, but to minimize noise you should use the analog GND only for analog
signals.

Vdrive connection (added in rev 2)

A connection for the Vdrive has been added so it is easy to use an ARMmite PRO to do data logging to a
USB Flash. So all that is required is a Vdrive and a 2mm header .

Vdrive cable

Jumpers and test connector for Program Download

The USB Dongle from Coridium will supply 5V from the USB to power the ARMmite PRO. It also controls the
RESET and BOOT signals to automatically load C or BASIC programs using MakeltC or BASICtools.

When using the SparkFun FTDI Basic Breakout Board, a limited amount of power can be supplied from the
BBB, but this is limited to 50 mA and after diode drops, its about 2.8V to the LPC2103. In practice this will
run, but it is outside the part specifications, so it should be limited in use.

Also with the SparkFun FTDI Basic Breakout Board to load a C program, the LOAD C jumper needs to be

installed, then remowed to run the program. BASIC programs can be loaded and controlled using the
SparkFun board, with no additional steps/jumpers.

Page 460

http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=768-1003-ND
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=S5800-08-ND

optional
jumper

to load - CORIDIU
C program A@Hnlte PR

An alternative is to use a 2 pin header with a shorting block (pictured below)

Real Time Clock Oscillator

The ARMmite PRO uses ceramic resonator, which has a 1% accuracy. But there is a provision to load a 32
KHz cyrstal and 2 cap to use that for the Real Time Clock.

Page 461

cap 32 KHz cap
The crystal should be a 32.768 KHz can type, and depending on the rating the capacitors are 0603 size
18-27pF.
If you install this, include the following at the start of your program.

#define RTC_CCR * &HE0024008
RTC_CCR = &H11 ' clock the RTC with the 32 KHz crystal

Rev 4 version of the board makes it easier to add a battery. First cut the trace indicated below, then install a
Schottky Diode, 180 ohm resistor and Panasonic ML2020H as shown below. The VL2020/HFN will also
work, though it is more expensive and has less power.

i |.4. 3 n.'r.,-' ' ':.-' i ‘.ﬂ."%l‘ﬂ' g

oCOge

Page 462

Page 463

Wireless ARMmite Pin Description

24 pins available to the user, 8 of which can be analog inputs

Refer to the Getting started section for details on selecting your wireless components.

100 RXD1 PWM1 Input/Outputs -- user controlled
101 TXD1 PWM2
102 PWM3 0-3.3V level
103 PWM4
104 PWM5 4mA drive when configured as Outputs
105
106 5V tolerant - use limiting resistor when connecting to a 5V supply
107
108
109 PWM6
1010 PWM7
1011 PWM8
1014 1015 connected to LED
1015 EINTO
EINT2
1012 Input/Outputs -- user controlled
1013
Open drain 4mA pulldown when configured as Outputs
5V tolerant
ADO 1016 10 bit A/D inputs
AD1 1017
AD2 1018 may also be used as digital Input/Outputs 10(16-23) -- user controlled
AD3 1019
AD4 1020
AD5 1021 when used as analog lines, voltage levels should not exceed 3.3V
ADG6 1022
AD7 1023

Dual Use AD pins

On reset or power up the AD pins are configured as AD inputs. To change those to digital 10s, the user must
individually specify a control direction using INPUT x, OUTPUT x, DIR(x), or IO(x) commands. After that they

will remain digital 10s until the next reset or power up.

PWM pins

All pins can be used for the software PWM function, and 8 pins can be used for the hardware driven HWPWM

function.

Page 464

AD(0) AD(7) 10(15)

s S 5

"Q-uuu.c:umnruriicﬂap; L

Jumpers

The wireless ARMmite default baud setting is 19.2Kb, and the default setting for the BlueSmiRF and Xbee
modules are 9600 baud. While the defaults can be changed for these wireless modules, there is a potential
"chicken and egg" problem getting there. So if the 9600 baud jumper is connected on RESET, the ARMmite
will come up at that baud rate.

The wireless connections do not have sufficient control lines such that RESET can be controlled from the PC,

as well as the RTS line which is used to load C programs. So the BASICtools and MakeltC will prompt you
to add a jumper or push the reset button where appropriate.

Page 465

jumper for C program download

jumper for 9600 baud operation

Power

The wireless ARMmite primary power supply is 3.3V. This wltage is available for user circuitry at 3 pins in
the prototype area. There is also a pad that is connected to the input power.

Input power for the wireless ARMmite require 5V or greater. It may be a regulated 5V supply or an

un-regulated 6V supply. But it all cases it should not exceed 12V DC. IF YOU ARE USING A BlueSMiRF,

this input power is applied directly to the BlueSmiRF and it must not exceed 6V . If you are using an
unregulated wall transformer, check the open circuit wltage and make sure it is within these limits.

Page 466

——p?
IS DE /6

USB 5V

If the all the connections are made to the USB breakout board then 5V can be supplied from the USB. That
is also available at the USB 5V pad. When using power from the USB, it should be the only connection for
power (do not connect the 5-6V power).

terminal strip

> Www.CORIDIUMCORP,

DB 9 style connector

Page 467

suggested terminal strip On Shore Tech ED550/12DS or equivalent 3.5mm pitch connector (available at
Digikey)

.
-
=
=
P
5
.

WWW, CDRIDIUHCURP com

Eﬂ'

prototype connections

Page 468

ARMexpress LITE Pin Diagram

SOUT (]
SIN [
ATN []
GND []

100 (]
101 [
102 (]
103 []
104 []
105 E 10
106 [' 11
107 [12

O~ N Wl s) R e

o

24] Voo
23 {J GND
22 L RES
21 P AVop
20]IO‘IS
19 11014
18 j|013
17]Iﬂ'lz
16 1011
15 %Imﬂ
14 [J109

13] 108

The ARMexpress LITE is pin compatible with the Parallax BASIC Stamp. BASIC Stamp is a registered
trademark of Parallax Inc.

sout |1 || | Serial Output, RS-232 compatable (active low) |
|/SIN ||2 || ||Seria| Input, RS-232 compatable (active low) |
|ATN 3 || | connect to DTR with RS-232, when HIGH reset the Node (active high) |
RES |22 || | TTL level RESET (open collector with 2.7K pullup) (active low) |
100 5

101 6 Input/Outputs -- user controlled

102 7

103 8 PWM3 0-3.3V level

104 9

105 10 PWM1, RXD1 4mA drive when configured as Outputs

106 11 ||PWM2, TXD1

107 12 ADO 5V tolerant - use limiting resistor when connecting to a 5V supply

108 13 ||AD2

109 14 ||ADS5

1010 15 ||AD1

1011 16 ||AD6

1012 17 ||AD7

1013 18 |[PWM7 EINT2

1014 19 | PWM5 EINTO

1015 20 ||PwWMm8

IGND [4,23 || || Ground (0V) |
vbD |24 || | Power 5-12V input power |

Page 469

AP el Alternate 5V input power (for Parallax compatability)

DO NOT exceed 5V on this pin
connection to pin 24 is preferred
this pin is pulled low during download of a C program

Dual Use AD pins

On reset or power up the AD pins are configured as digital IOs on the ARMexpress LITE. When the BASIC
accesses these pins they are changed to analog inputs. After that they will remain analog inputs until the
next reset or power up.

PWM pins

All pins can be used for the software PWM function, and 6 pins can be used for the hardware driven HWPWM
function (HWPWM channels 4 and 6 are not connected).

Page 470

ARMexpress Pin Diagram

SOUT (]

SIN [
ATN []
GND []
100 (]
101 [
102 (]
103 []
104 []
105 E 10
106 [' 11
107 [12

O~ N Wl s) R e

o

24] Voo
23 {J GND
22 L RES
21 P AVop
20]IO‘IS
19 11014
18 j|013
17]Iﬂ'lz
16 1011
15 %Imﬂ
14 [J109

13] 108

The ARMexpress is pin compatible with the Parallax BASIC Stamp. BASIC Stamp is a registered trademark
of Parallax Inc.

/SOUT		1				Seria	Output, RS-232 compatable (active low)
/SIN		2				Seria	Input, RS-232 compatable (active low)
ATN IEN		connect to DTR with RS-232, when HIGH reset the Node (active high)					
/RES 22 || | TTL level RESET (open collector with 2.7K pullup) (active low) |
100 5

101 6

102 7

103 8

104 9 Input/Outputs -- user controlled

105" 10 note 1

106" 11 note 1 0-3.3V level

107 12 . ,

108 13 4mA drive when configured as Outputs

109 14 — . .

1010 15 5V tolerant - use limiting resistor when connecting to a 5V supply

1011 16

1012 17

1013 18

1014 19 ||EINT2

1015 20 =

|GND 423 || | Ground (0V) |
|VDD || 24 || ” Power 5-12V input power |

Page 471

Alt-VDD 21

Alternate 5V input power (for Parallax compatability)
DO NOT exceed 5V on this pin

connection to pin 24 is preferred

this pin is pulled low during download of a C program

'"These pins (105 an 106) are open-drain, when configured as outputs can only pull down.

Page 472

ARMweb Pin Description

<

Rev 4 and 5

32 pins available to the user, 5 of which can be analog inputs, and one dedicated analog input

With Rev 4 the pin numbering for the ARMweb will reflect the assignment native to the LPC2138. The revision
of the board is etched on the backside of the board.

107 107 is connected to LED and PUSHBTTON

108 TXD1 as an input the push button is 0 when pressed

109 RXD1

1010

1011** **I011 is open drain when an output (i.e. can not pull up)
1012

1013

1015 1015 also controls LED (when low, the LED will be lit)

1017

1018 Input/Outputs -- user controlled

1019 0-3.3V level, 4mA drive when configured as Outputs

1020

1021 5V tolerant - use limiting resistor when connecting to a 5V supply
1022

1023

1025 AD4, DAout

-- ADS ADS5 is always an analog input, 1026 does not exist

1027 ADO

1028 AD1 10 bit A/D inputs

1029 AD2 when used as analog lines, voltage levels should not exceed 3.3V
1030 AD3

1031++ ++1031 is always an output

BO

B1 BYTEBUS

g§ Input/Outputs -- user controlled

gg 0-3.3V level, 5 volt tolerant, 4ma drive when outputs

:? this functions as a byte-wide bus with control of RW and CS
RW

CS

bual Use AD pins

On reset or power up the AD pins are configured as IO inputs. To change those to analog 10s, the user must
individually read them as AD(x) commands. After that they will remain analog inputs until the next reset or
power up.

PWM pins -- not yet implimented

All pins can be used for the software PWM function, and <TBD> pins can be used for the hardware driven
HWPWM function.

Battery Real Time Clock

The ARMweb board is designed to accept a Panasonic ML2020/H1C rechargeable Lithium battery at position
BT1. This battery powers the real time clock of the LPC2138. The contents of RAM is not kept alive while
running on battery, and the CPU restarts the user program in Flash when power is restored. This battery is
designed to maintain power for a few days without power, and will recharge fully in about 1 day.

LED

Page 473

On the beta units, this is connected to I0(16) not 15. On later units while the LED is connected to 10(7), the
silkscreen shows it as connected to 10(15), and the example programs for the ARMmite and ARMexpress
use I0(15). So firmware on the board allows 10(15) to also control the LED.

LED =
10§7)
1015

RXD0 TXDO
U6 has duplicate connections for I0(17)-10(20). U6 is designed to accept a ULN2803.

The bottom proto area connects neighboring pairs of pins. In the top proto area near C23, neighboring triplets
of pins are connected horizontally.

In addition the ARMweb can be ordered in larger quantities with a switching power supply, which replaces U4,
C1 and C9 with U1, D2, L4, C1 and C9

Pin spacing

The spacing in the prototype area is 0.1" and the terminal strip row on the right side is designed for 3.5mm
terminal strips.

Rev 2,3
31 pins available to the user, 6 of which can be analog inputs

The revision of the board is etched on the backside of the board.

100 ADO Input/Outputs -- user
101 AD1 controlled
102 AD2
103 AD3 0-3.3V level
104 AD4
- AD5 4mA drive when configured
106 as Outputs
107
108 5V tolerant - use limiting
109 resistor when connecting
1010 to a 5V supply
1011
:81; 10 bit A/D inputs
1014++
when used as analog
lines, voltage levels should

Page 474

not exceed 3.3V
++1014 is always an output

AD5 is always an analog
input, 105 does not exist

1015 Input/Outputs -- user
controlled
controls LED (when low,
the LED will be lit)
as an input also connects
to the push button (0 when
pressed)

1016 Input/Outputs -- user

1017 controlled

1018**

1019 0-3.3V level, 5 volt tolerant,

1020 4mA drive when output
**|018 is open drain when
an output (i.e. can not pull
up)

BUSO

BUS1

Sugz Input/Outputs -- user

Us3 controlled

BUS4

2322 0-3.3V level, 5 volt tolerant,

BUS7 4ma drive when outputs

gﬂg_z\g this functions as a

byte-wide bus with control
of RW and CS

Page 475

=LV
=12V +center

10{18)
10{20) 10(14)

ARMconnect

10{13)

10{12)
10{11)

10{10)

BUS-CS BUST

Page 476

DIN rail Pin Description

USB connection shown. Details on the enclosure at OKW enclosures .
The ethernet version is software compatible with the ARMweb, refer to those pages for more information.

The USB wersion uses the standalone ARMbasic compiler on the PC.
Rev 1

25 pins available to the user, 6 of which can be analog inputs, 8 high current drivers, 3 digital IOs, and 8
flexible 10s

The LPC2138 is used with 512K Flash and 32K of SRAM.

Optional connections to USB, 10Mb Ethernet, or RS-485 (with optional isolation)

Page 477

http://www2.okw.com/okw-static/drawings-pdf/00010390.pdf

Connection for USB,
Ethernet or RS-485

GMND

Board
PWR

]
flexible 310s
I0s
High
Current
PWR
G B High
AD R T N Current
inputs @ outputs
#
@
[
)
GND . GND

picture shown without screw terminals for clarity

Power Inputs

Board 7-40V DC. This wltage is reduced with a switching regulator for the 3.3V internal board supply.

High Current Driver (ULN2803) 5-50V. This can be a seperate supply from the Board input power, or can be
the same supply. Itis a required connection for relay drivers to provide a path for current when the relay coil
is turned off, it does not hawve to be the power supply for the board in this case, but it can be.

For wolume customers the power supply can be stuffed to accept a regulated 3.3V supply directly, this is
done by omitting the switching power supply and adding an appropriate ferrite bead at L5.

Schematic

The schematic is too large to include on this page, but is downloaded into the /Program
files/Coridium/Schematic directory. Is also available here..

Enclosure

OKW B6704100 The kits include custom cutouts for either Ethernet or USB connections. Mechanical
drawing for the enclosure is here ,

All the following options can be configured by the user, by optionally stuffing the through-hole components in
the DIN rail kit. Coridium will configure boards when 10 or more are ordered.

Page 478

http://focus.ti.com/lit/ds/symlink/uln2803a.pdf
http://www.coridiumcorp.com/files/Schematics/DINbase.pdf
http://www.okwenclosures.com/products/okw/railtec-c/zoom/zB6704100.jpg
http://www2.okw.com/okw-static/drawings-pdf/00006710.pdf

6 AD pins

These may configured for 4-20 mA sensors, with resistor dividers, or as digital inputs. These inputs have
diode clamps to 3.3V and GND.

4-20mA sensor --

R15 DIP pack i%
(& [> ADS
[&]—+ [=AD4
(&} [=AD3
[&] T [=AD2
[®F—+ [>AD1
@ 1 [=ADO
T 1 pack
R17 150 ohm SIP with
o Pin 1 marked by arrow ke

load 150 ohm SIP into R17

suggested components
Bourns 4600X Bussed SIP resistor
Bourns 4100R Isolated DIP resistor

A/D resistor divider --

R15 OIP pack %55 E -

[®] t [ADS
[®] t [=AD4
[®] t [AD3
[®] t [=AD2
[®] t [=aD1
[®] ! C—>apo
S pack

R4 SIP placed with
. Pin 1 by GhD lakel

load R15 DIP resistor and R14 SIP with appropriate values
AD = Vin * R14/(R14+R15)

Source impedance to AD should be less than 10K.

digital 10 --

Page 479

@ A [=~ P0D26

[®] L — ¢oas

(5] J > PD.30

[®] J > PD.29

@ J "+ PO.28 I - ——
[&] L — po27 "

load R15 with 100 or 1K

digital 10 (pulldown)--

Wl

=

Z

1

R15 OIP pack

a0

F14 SIP pack

F14 SIP placed with
Fir 1 by GND label

load R15 with 100, R14 with 10K

digital 10 (pullup) --

F14 SIP pack =

™

) — 10

F15 OIP pack

R4 placed with Pin 1 next to
W33 label

Page 480

load R15 with 100, R14 with 10K

High Current Drivers

These may use a high sink current driver, or configured as digital 10s with optional pullups or pulldowns

High Current drive --

- uz
ULNZ3035

E E
P1.23 Hiw 8 1 !
P1.22 1 172 Pig s
P121 1 173 P 2
P1.20 2 1ea 174 g ;
P1.19] 24 771 g 3
P1 18 S 140 Y7 Py s
P117 i 2¥3 P 2
P1.16 v Tva 3

L

This driver can sink a surge current of 500mA upto 50V, this driver is a ULN2803 .

suggested components
Tl ULN2803AN
Toshiba ULN2803APG
STmicro ULN2803A

digital 10 --

I3 DIP pack

-
=
=
[}

] Ir ot e 1 POY .51 B)

DI 6 Resistor pack

placed in DIP18 U3 position
Pins 9,10 open on L3

digital 1O (pulldown) -

Page 481

http://focus.ti.com/lit/ds/symlink/uln2803a.pdf

U3 DIP pack

R1G SIF pack

Pin 1 of SIP resistor loaded
near R1E lakbel (arrow)

digital 10 (pullup) --

R16 5IP pack

Tl

U3 DIP pack

Fin 1 of SIP pullup loaded
near + sign (arrow

Flexible IOs

These may be configured as 8 digital I0s (with and without pullup/pulldown), opto-isolated inputs or outputs,
or differential inputs or outputs. They are arranged in 2 groups of 4 so that there can be 2 opto-isolated input

and 2 opto-isolated outputs.

opto-isolated input --

Page 482

Wi w3

R3 SIP . R1 SIP
izolated OPTO 150LATOR- A
1 &
T MR = P0D.10
TR L= PO.13
W
1502
R3SIP OPTO ISOLATOR-A
; 1\,“;? [=pP0.18
3 fi
4_WOREE {__>P020
R2 5IP Mote Pin 1 orientation of opto-isolators
Fin1 of B2 near GAD, Pin 1 of R1 near V33
suggested components
Liteon LTV-827
Fairchild MCT9001
Toshiba TLP621-2
opto-isolated output --
Wi uEE
B
R1 5IP pack
1501
OFTO ISOLATOR-
% A% <] P0O.10
AKX <] po.13
R3 VIR WD
isolated SIP
F1 51P pack
1501
R3 OPTO 1S0LATOR-
A% <]-P0.18
AR <] -PD.20

Mate Pin 1 orientation of opto-
izolators

Fin 1 of B2 near %33 marking

same components as abowe, rotated 180 degrees

bidirectional RS-422 driver --

Page 483

% _‘Sﬁ-—ﬁ:} PO.10
- <] PO.12
‘_C[f ST-1480

—=__> P0.13
g - —<__1 P0.17
= = PD.18
g - <1 P0.19

DF4

—___= P0.20
—=___] P0.22

il

suggested components
National DS75176BN
TI SN75176AP

bidirectional RS-422 driver with termination --

DF1 -4

B L=

Mate Pin 1 orientations

suggested components
Bourns 4600 Isolated SIP resistor

digital 10 --
@ F4 DIP pack —- po.10
@ [PO.12
[®] > p0.13
[®&] > P0.17
[&] > P0.1B
@ [PD.19
[&] = p020
@ [PD22

Mate Fin 1 orientations

Page 484

digital 10 (pulldown) --

F4 DOIP pack

R1 51P pack

o
-
L]
—_
]
-z
=
=

m

m ¥
0N
=N
» _:
Z 5%

Pin1 of R1 SIP located
at GND marking

digital 10 (pullup) --

Rl

F1 5IP pack

] =

F4 DIP pack

0013-1-868
NYW)238

F1 Pin 1 located nesxt
o %33 marking

3 digital I10s

These may be configured as staight thru, or with pullups or pulldowns

digital 10 --

R% lgaded onright

shown with 100 ohm series

Page 485

digital 10 (pulldown) --

RE
PO.21
RS
RS
PO.2
RE
R10
F0.5
R7
shown with 10K pulldown and 100 series
digital 10 (pullup) --
e
RS
RE
PD.21
w33
RE
=ls]
PD.5
W
R7
R10
PO.O

shown with 10K pullup and 100 series

RTC options

Rev3

This revision adds the diode and resistor needed for charging an ML2020 battery. That battery can be
mounted on the backside of the board as illustrated below

Page 486

Rev 2

3.3 via Yhat via 2 pins

To connect a battery, remove R23, and use the Vbat via to connect, a resistor-Schottky diode-battery
connection (suggested schematic below)

GND and 3.3V are available on either side of C7

Page 487

&

1a0

BATSS

A 32 KHz crystal (such as the Citizen CMR200TB32.768KDZFTR) can be connected at Y2, with the

two 22pF startup caps on the bottom/circuit side of the board.

[1

— B
r BATTERY

v

o

BAT

“OOA

Page 488

SuperPRO Pin Description
PROplus Pin Description

<

The SuperPRO is footprint and pin compatible with the Arduino PRO. In addition it has an onboard 5V
regulator so it is compatible with 5V shield boards.

BASIC or C programs can be downloaded using the installed test connector using the USB dongle contained
in Coridium's evaluation kit or using the SparkFun USB Basic Breakout board or FTDI cable from
MakerShed . More details on these connections here.

Digital IO connections -- rev5

The rev5 adds a parallel connection for pins that are on 0.1" centers. This artwork is also shared with the
PROplus version of the board.

The SuperPRO uses an LPC1756 and has 5V and 3.3V supplies.

The simpler PROplus uses an LPC1751 and has only the 3.3V supply.

Port pins can be controlled with the P0..P4 keywords. Port O pins can be accessed with the originallN,
OUT... keywords . More details on the GPIOs can be found in the NXP User Manual.

[=4]
= (=] o

el
73

A

17
I RN
1

P
PO
1
07

i
i
*]

1
P1
P1
F1

-
= La) = 2

il Il1i RERAS R
ah

F2.10—loadC

11388
LTI R e

ITAG connection

use
dongle
connection
F1.10
_ZI.E
—F1.1
—F1.0

-RXD1
2.0TXD1
PO.2

D3

P2.1

Digital IO connections -- rev4

Page 489

http://www.sparkfun.com/commerce/product_info.php?products_id=8772
http://www.makershed.com/ProductDetails.asp?ProductCode=TTL232R

(4]

[T L T =
1 w | ~ i G T s h
P - I - T R B L
o = g ¥ B e & o Boa o 0o
o
r=| oy | Wy B = w || o @
o M L) o i =l = E: ':uf ol o4 | e ol — H

1
1.

A0 —loadC

P2

Special purpose pins

The LPC1756 supports a number of dedicated functions. Those include 4 UARTs, USB, 2 SSPs, 1 SPI, 2
CAN, 2 12C, 12S, 2 multi-channel PWMs, Quadrature Encoder, dedicated motor control PWM, interrupts,
timer counter capture and match.

In addition most can be configured with pullups and default to pullups following reset.

Details can be found in NXP's User manual.

Analog connections

4 A/D conwerters are readily available. 2 more are available, but share the pins with UARTO -- what was NXP
thinking, | have no idea.

1 10 bit DAC is available shared with AD(3) available on the SuperPRO (not on PROplus)

On reset or power up the AD pins are configured by software as AD inputs. To change those to digital IOs,
the user must write to the appropriate PINSEL register.

The LPC1756 does support an external reference for the A/D conwerters, but to use the Arduino AREF pin a
jumper is required (details on the schematic)

update

The LPC17xx series chips AD converter are sensitive to high frequency noise on the analog GND (Vssa) or
on the AD inputs themselves. A symptom that will show up is bits in any bit position turned on/off when the
conwersion is done. This makes it hard to average out, but conwversion can be woted on, choosing 2/3
conversions that agree within a few bits. The occurance of these errors is in less than 1% of the conwversions,
unless your setup is very noisy.

Another option is to change the analog GND connection on the board. Do this by cutting the trace on the
back side between GND under the crystal and the GND connected to Vssa (shown on the picture below)

Page 490

Then connect digital GND to analog GND using a ferrite bead, a convenient place to do this is on the front

side as shown below.

Pin limitations

T
pr#m ERE{I:E 1 DI?M

l; [ﬂ 4.. —wllhi

add ferrite bead {2200 ohm 50 méA 0603
or eguivalant |

P0.29 and P0.30 direction control must be done in parallel, they can be both outputs or both inputs, but not

mixed.

Power connections -- SuperPRO

The board is shipped with a 2mm power jack compatible with a JST PHR/S2B or SparkFun PRT8671 or
various battery packs from SparkFun.

Pads for a Cui PJ-002A or SparkFun PRT-119 power connector are available in the lower left hand corner.

Page 491

http://search.digikey.com/scripts/dksearch/dksus.dll?pname&site=us;lang =en&wt.mc_id=Dxn_US_T091_Catlink;name=455-1165-ND
http://www.sparkfun.com/commerce/product_info.php?products_id=8671
http://www.sparkfun.com/commerce/product_info.php?products_id=119

For both battery and 6V input, 2 pin 0.1" spaced holes are available for wires or headers. When using the
battery connector, total current draw for the board must be limited to 200mA. If you want to use more
currrent, you should install a jumper around the D2 diode (holes are available above D2).

Diode steering allows power to be supplied from a barrel connector from a 6V unregulated source, 5V USB
test connector, or the battery connector. Because of the Schottky diodes, all 3 power sources can be
connected simultaneously. If you are using an unregulated wall transformer, you must check the open circuit
wltage and it MUST be less than 12V.

When the 6V source is used, 5V Arduino shields can be powered from the SuperPRO.

The schematic below describes this circuit on the SuperPRO

JDEBLUG
1

=l

[LR T N

EN

[
=]
.
ﬂ [¥]
@i
bl
m
1
Fy
a3
b~
-
b
Pl
@ om
sl
|:
* Ga it
2
GO
i
T [+
a
4|
7
[
o

] 1 ﬁz 1l -

= 4 : o =

. MBRO520 =

CONzZ TENL
C2 T~ i
390F e o 0 1uF
13 r ‘
e :
-

FWRJACK v

Power connections -- PROplus

The board is shipped with a 2mm power jack compatible with a JST PHR/S2B or SparkFun PRT8671 or
various battery packs from SparkFun.

Pads for a Cui PJ-002A or SparkFun PRT-119 power connector are available in the lower left hand corner.
For both battery and 6V input, 2 pin 0.1" spaced holes are available for wires or headers. When using the
battery connector, total current draw for the board must be limited to 200mA. If you want to use more
currrent, you should install a jumper around the D2 diode (holes are available above D2).

Diode steering allows power to be supplied from a barrel connector from a 6V unregulated source, 5V USB
test connector, 5V from a shield or the battery connector. Because of the Schottky diodes, all 3 power
sources can be connected simultaneously. If you are using an unregulated wall transformer, you must check
the open circuit wltage and it MUST be less than 12V.

The PROplus only has the 3.3V regulator, so it cannot supply power to a 5V shields.

The schematic below describes this circuit on the PROplus

Page 492

http://search.digikey.com/scripts/dksearch/dksus.dll?pname&site=us;lang =en&wt.mc_id=Dxn_US_T091_Catlink;name=455-1165-ND
http://www.sparkfun.com/commerce/product_info.php?products_id=8671
http://www.sparkfun.com/commerce/product_info.php?products_id=119

JDEBLUG

UJELL!

BN e e o =

CONG

:I“
8
Hsi|Fa
T
(=]
sl
;
=
-
(=]
[&

% =
- | 2 31EN S BYme [—2
D8

JSTEIB “_Ej_ dscm .
U]

[

Jd4
4
CON2
= o 3 s i
'—/]\L?i oo e
JFOWER
FWRJACK o ConE

The full schematic can be seen here

Power connections details

Page 493

Piwier
Connection
{batlery)

—— RTC battery +

« GND
padS Analog GHD

The 3.3V regulator can supply 50 mA, with most being used by the LPC2103. The 3.3V connection next to
RESnN on the lower power connector is only connected if the shorting pads are shorted (NOT the factory
default).

The analog GND should be used to connect to the GND of analog inputs. Digital and Analog GNDs are
connected together with a small trace, but to minimize noise you should use the analog GND only for analog
signals.

Jumpers and test connector for Program Download

The USB Dongle from Coridium will supply 5V from the USB to power the ARMmite PRO. It also controls the
RESET and BOOT signals to automatically load C or BASIC programs using MakeltC or BASICtools.
Remember, if you load a C program, it will erase the BASIC firmware and you will not be able to load BASIC
programs after that.

When using the SparkFun FTDI Basic Breakout Board, a limited amount of power can be supplied from the
BBB, but this is limited to 50 mA and after diode drops, its about 2.8V to the LPC2103. In practice this will
run, but it is outside the part specifications, so it should be limited in use.

Also with the SparkFun FTDI Basic Breakout Board to load a C program, the LOAD C jumper needs to be

installed, then remowved to run the program. BASIC programs can be loaded and controlled using the
SparkFun board, with no additional steps/jumpers.

Page 494

load C
JUMPER

An alternative is to use a 2 pin header with a shorting block (pictured below)

Real Time Clock Oscillator

The RTC oscillator of the LPC17xx parts is not currently reliable see their errata sheet . Until that has been
resolved, probably with a new revision of the chip, that feature is not available in either the SuperPRO or
PROplus.

A 32 KHz crystal and diode for battery backup with an optional ML2020 rechargeable Li battery.
A Panasonic ML2020H rechargeable battery may be added to keep the real time clock running when power is

removed. The battery is mounted on the back of the board as shown below. The VL2020/HFN will also work,
though it is more expensive and has less power.

Page 495

http://ics.nxp.com/support/documents/microcontrollers/pdf/errata.lpc1756.pdf
http://ics.nxp.com/support/documents/microcontrollers/pdf/errata.lpc1756.pdf

BN N BN N

O N Y T e

Page 496

Schematics

<

PDF copies of the schematics are copied into the Program Files/Coridium/Schematics directory when you
install either the BASIC or C tools.

Or you can follow these links to PDF schematics on the Coridium website.

= ARMmite schematic
= ARMmite rev 2 schematic
= ARMmite PRO schematic
= PROplus schematic
= Super PRO schematic
= USB dongle schematic
= ARMexpress LITE schematic
= ARMexpress schematic
= ARMexpress Eval PCB
= ARMweb schematic
= ARMweb rev 3 schematic
= DINkit schematic
= DINkit USB board
= DINkit Ethernet board

DXF files are mechanical drawings of the boards, they are also available from these links or in the
Schematics directory.

ARMmite mechanical

ARMmite PRO mechanical
ARMweb mechanical

SuperPRO PROplus mechanicals

Page 497

http://www.coridiumcorp.com/files/Schematics/ARMmiteSCH.pdf
http://www.coridiumcorp.com/files/Schematics/ARMmite2SCH.pdf
http://www.coridiumcorp.com/files/Schematics/ARMproSCH.pdf
http://www.coridiumcorp.com/files/Schematics/superSCH.pdf
http://www.coridiumcorp.com/files/Schematics/superSCH.pdf
http://www.coridiumcorp.com/files/Schematics/Dongle2.pdf
http://www.coridiumcorp.com/files/Schematics/ARMexpLITE.pdf
http://www.coridiumcorp.com/files/Schematics/ARMexp.pdf
http://www.coridiumcorp.com/files/ARMexpEVAL.pdf
http://www.coridiumcorp.com/files/Schematics/ARMweb.pdf
http://www.coridiumcorp.com/files/Schematics/ARMweb3.pdf
http://www.coridiumcorp.com/files/Schematics/DINbase.pdf
http://www.coridiumcorp.com/files/Schematics/DINusb.pdf
http://www.coridiumcorp.com/files/Schematics/DINeth.pdf
http://www.coridiumcorp.com/files/Schematics/ARMmite3.DXF
http://www.coridiumcorp.com/files/Schematics/ARMpro.DXF
http://www.coridiumcorp.com/files/Schematics/ARMweb4.DXF
http://www.coridiumcorp.com/files/Schematics/superpro5.DXF

Memory Maps

ARMmite ARMexpress LITE, ARMmite PRO, PROplus

2000
TTSEE. strings
v
F
Ifro DATA staternents
57000 DATA statements e
up to TEEE smmgs
TTEEE BASTC code
£3000
BAZSTC firmware
0000
ARMexpress

Page 498

F1E000

TTSEE strings

v
A

DATA statements

F1Coon

T.

USEE. BASIC code

£4000

BASIC firmware

Eoo00

SuperPRO

Ifro DATA staternents
TSEE code can extend

up to TSEER srings

Page 499

S38000
USER strings
¥
4
DATA statements
530000
USER BASIC code
510000
53000
BASIC firmware
S0000

ARMweb and DINKkit/Ethernet

The= 4K blocks may be
vzad bw WEIIE

command

Page 500

$7D000

Thee 4K blocks may be
vsad bv WEIIE
command
379000 user strings
¥
4
data statements
572000
USER BASIC code
$68000
file scratch sector
550000
file space
528000 :
currently unused,
reserved for future firmware
520000
BASIC compiler
web, ftp server
500000

DINkit (USB) and Stand-alone compiler
User code starts loading at &H3000.

Strings and DATA statements are stored in the last Flash Block, which depends on the Memory Map of the
device (details in the NXP User Manuals). In the DINKit the last Flash block is from &H7C000 to &H7CFFF

LPC2103 products - ARMmite, ARMmite PRO and ARMexpress LITE
20.48K is available for code, DATA statements and string constants.
5.12K is available for data (1280 words)

LPC2106 ARMexpress

106.49K is available for code, DATA statements and string constants.
62.5K is available for data (15K words)

LPC2138 ARMweb, DINkit (Ethernet)

131K is available for code, DATA statements and string constants.

Page 501

5.12K is available for data (1280 words)

DATA Memory Allocation

S&HA0002000
IAP space

stack

v

String accutn

Arrays, Strings

Py
Integers

TAET bufters

Firmware Var

LAP space &T40000000

Local variables for FUNCTIONs and SUBs are allocated from global memory. This allows for a smaller stack
size and faster calls to FUNCTIONs and SUBs. The ARMmite has only 8K total and has no stack overflow
checking.

Page 502

Power On Behavior

<

On power up all pins are tri-stated on the ARMexpress, ARMweb, PRO or ARMmite. On the SuperPRO and
PROplus, pins are also tri-stated, but all have a weak pullup resistor.

Initial Power on conditions

Following reset, the board waits 0.5 seconds for an ESC character, which if received stops the user program
from running. If no ESC is received the user program starts.

Restarting the program

If the user has entered a BASIC program into the ARMexpress/ ARMmite, that program will be started when
the power is applied, or restarted when RESET is asserted either with the pushbutton, or from the
BASICtools program via asserting the DTR line (low on ARMmite, high on ARMexpress).

If the user program ends by getting to the last statement of the program or executing an END instruction, the
ARMexpress/ARMmite will await either input on the debug serial port, or a RESET.

Reset and Boot for PRO boards

For the PRO, PROplus and SuperPRO boards when connecting a PC to a board that is running, the reset
and boot control signals will be toggled by the PC. This is a function of Windows and the Drivers. This will
reset the board or possibly put it into a load program state. To awid this you can disconnect the Reset or
Boot signals from the USB dongle, either by cutting pins or making an adapter using a 6 pin female header
with long pins(available from SparkFun).

The above shows both RESET and BOOT signals disconnected.
Break operation or STOP

If the user code is running, it can be stopped by a RESET condition. This will normally restart the user code,
but there is a short window (500 msec) where the ARMexpress/ARMmite will wait to see if there is input on
the serial debug port. If the character received on the serial port is ESCAPE (27) or CTL-C (3) then the user
program is prevented from running and the ARMexpress/ARMmite is ready to be reprogrammed.

BASIC Boot Loader serial commands
When the user program is not running or not at a STOP, the BASIC bootloader is functioning.

There are 2 versions of this bootloader, the one on the ARMweb, and then all the others. The ARMweb has a
full compiler ready to compile BASIC programs line by line. This can be used with the TclTerm terminal
emulator or the web interface of the ARMweb. when running BASICtools programs are compiled on the PC
and downloaded to the ARMmite, ARMexpress or ARMweb. The ARMweb also supports the commands
used by all the others, and these are used to load and control BASIC programs-

Page 503

http://www.sparkfun.com/commerce/product_info.php?products_id=9280

= :20.... Coridium hex format line, copy this data into the code buffer

= :00000001FF write the code buffer into the appropriate Flash space

. ARM responds by sending XOFF, writing the Flash, then sends XON followed by +

. ? get vectors for ARMbasic compiler running on the PC

A launch any user program contained in the Flash space

= @HHHH dump memory starting at HHHH which is a hex value without a preceding $
@ dump memory starting from last address + 32

= "message echo message back

(I reserved

= ctl-Cor ESC on reset run the BASIC bootloader rather than the User program

At a STOP the ARMexpress/mite will respond to # run or @ dump-memory commands which are used in the
BASICtools variables page.

Page 504

CPU details

<

These are links to detailed documentation for the CPUs used in the ARMexpress and ARMmite products.
These files are at the NXP website. The links may mowe so if they are broken here, search their site
WWW.NXp.com

LPC2103 used in the ARMmite, ARMexpress LITE and ARMmite PRO
LPC2103 data sheet
LPC2103 User manual
LPC2106 used in the ARMexpress
LPC2106 data sheet
LPC2106 User manual
LPC2138 used in the ARMweb
LPC2138 data sheet
LPC2138 user manual
LPC1756 used in the Super PRO and LPC1751 used in the PROplus
LPC1756 data sheet

LPC1756 user manual

Page 505

http://www.nxp.com/acrobat/datasheets/LPC2101_02_03_3.pdf
http://www.nxp.com/acrobat/usermanuals/UM10161_3.pdf
http://www.nxp.com/acrobat/datasheets/LPC2104_2105_2106_7.pdf
http://www.nxp.com/acrobat/usermanuals/UM10275_1.pdf
http://www.nxp.com/acrobat_download/datasheets/LPC2131_32_34_36_38_4.pdf
http://www.nxp.com/acrobat_download/usermanuals/UM10120_1.pdf
http://www.nxp.com/documents/data_sheet/LPC1759_58_56_54_52_51.pdf
http://www.nxp.com/documents/user_manual/UM10360.pdf

Serial Configuration

<

Though we recommend using BASICtools to talk to the ARMexpress, here are settings for other terminal
programs.

Baudrate

19.2 kbaud, 8 bit, No Parity, 1 stop bit
End of Line

expects a LF (line feed),

CRis currently ignored.
Voltage Levels

/SOUT, /SIN and ATN (pins 1,2,3) will accept either TTL or RS-232 levels. ATN when high resets the
ARMexpress, and ATN should not be allowed to float. It should either be connected directly to DTR, or some
TTL signal that is LOW or Ground. The /SOUT driver relies on either /SIN or ATN being low to generate the
low going woltage. This allows for full-duplex serial operation.

Handshaking

XON/XOFF (software handshaking) is used only during programming of the Flash. When downloading a
large program, a pause is required when the current amount of code in the buffer exceeds 8k (about 5-600
lines). That buffer will be written to Flash which takes between 0.5 and 1 second (2103 writes 4K blocks and
the 2106 writes 8K blocks).

This XON/XOFF is still sent, but a + character is also sent back at the completion of the write Flash
Block. And BASICtools now pauses waiting for the +, before sending more data, not relying on the
XON/XOFF control in the lower level driver. It was found that especially on the 2106 when not using USB,
that the serial driver would drop characters and end up corrupting downloaded code. This is also why you
see ...*+*+ during the programming process. The ... indicates the start, the * when BASICtools determines

a Flash block will be written, and the + when the ARMexpress/mite responds with the block being completed.

Break operation or STOP

If the user code is running, it can be stopped by a RESET condition. This will normally restart the user
code, but there is a short window (200 msec, 500 msec on Wireless) where the ARMexpress/mite will wait to
see if there is input on the serial debug port. If the character received on the serial port is ESCAPE (27) or
CTL-C (3) then the user program is prevented from running and the ARMexpress/mite is ready to be
reprogrammed. Or the user can restart the program by typing RUN or using the RUN button in BASICtools.

Program Running Signaling

When the user code starts running, an SOH (\1) character is sent, and when the user code stops an EOTX
(\4) is sent. This was added for the ARMmite, as BASICtools needs to know when the user code is running.
ARMexpress versions starting with 6.11 also support this.

When BASICtools appears to be deaf

There are cases where the USB driver and BASICtools get out of sync. This includes when the board is
disconnected from the USB port, and sometimes when the serial configuration is changed. In these cases it
may be necessary to exit BASICtools and then restart it, and in some cases reboot the system.

Configuration settings

The configuration of BASICtools is saved in a file BASICtools.ini. It is written when either it does not exist
(when first installed) or when the configuration is changed by the user. This file is a Tcl source which may be

Page 506

edited by the user. If it becomes corrupt, delete the file and the default configuration will be restored.

TclTerm.tcl when used as a stand-alone terminal emulator will also maintain its own initialization file
TclTerm.ini.

Page 507

USB use

<

During programming BASICtools is used to load the users ARMbasic program. But once the user's
ARMbasic program is running the USB port may be used to communicate data back to the PC.

General Info

The USB port is configured as a USB slave device and emulates a serial port for the PC. Drivers are also
available from FTDI for the Mac or Linux (FTDI 232RL running in serial emulation mode, normally VCP type
driver).

PC side programs

Any program on the PC that can communicate with a serial port can send or receive data to the
ARMexpress eval PCB or the ARMmite. This would include MSCOMM and Visual BASIC. Also various C's
including GCC. Other options include Perl or Tcl scripts.

Howewer these programs must be able to control the DTR and RTS lines under user control. If they cannot
refer to the next section. Programs that cannot include Teraterm, Hyperterm and MatLab .

The TclTerm.tcl is the source for a Tcl program that operates as a terminal emulator for the ARMexpress
family. You can use it if you have access to any of the GPL Tcl interpreters, or a compiled version is
available on the Coridium Support page. The sources are also at the ARMexpress Yahoo Groups Files
Section where you will also find a sample C program (writen for MinGW) that will also communicate with the
ARMexpress family.

Baudrate
Baudrate will remain at 19.2Kb, unless changed by the user program which can be done with

#include <SERIAL.bas>
BAUDO (newrate)

Output of Data to PC

The ARMbasic program can use PRINT, and for version 7 TXDO or for version 6 SEROUT 16,... , or
TXD(16)=

Input of Data from PC

An ARMbasic program should use RXD0. These routines will return -1 if no data is available. This allow
the users program to continue doing other tasks, or the user program can loop waiting for input on RXDO.

DEBUGIN in a user program will wait for data, even if that is for ever. It is not a good practive to use this
function for sending data back to the PC. Its operation is recommended for user interaction with programs
during the development stage, while using BASICtools.

Page 508

USB use with Linux, Hyperterm, TeraTerm

<

The ARMmite and ARMexpress use the DTR and RTS serial control lines to control programming and reset
for the device. The state chosen allows the ARMmite/express to run and be reset by the push button while
idle (ie. no serial program running).

General Info

PC side programs

Programs on the PC such as Tcl, MSCOMM and GCC allow the control lines to be controlled by the user.
But some pre-compiled programs do not allow this control, such as HyperTerminal, TeraTerm, and some
Linux apps. This page describes the steps to allow these programs to operate.

Useful debugging tool

Before starting its useful to load a program into the ARMmite/express that will pulse the LED and also
continuously send some data out the serial port. Here is one that works well...

¢ BASICtools control for 2103 =13
File Edit Options Toolks Help

C/gubasichestbinkybas Run| Stop| Clear| Reset|

Welcome back to AFMbasic Kernel[&6.Z24] Copyright 2007, Coridium Corp.

for i=1 to 100

print i,"ecan you hear me now"
io{l5)=1i and 1

wait (1000

Programwing Flash Z103.._*+%+
0.1l5E code 0.0lK data programmed
Executing. ..

can you hear ne now
can you hear me now
can you hear me now
can you hear me now
can you hear me now

o W

Enter |

Download the latest BASICtools and Tclterm

In order to be able to communicate with the ARMmite/express after the control lines have been changed,
make sure you are running the latest TclTerm. Versions 1.6 and later have this support.

http://www.coridiumcorp.com/files/setupBASIC.exe

Next, the driver must be changed for the USB serial device. The FTDI D2XXdriver must be used. Download
it from the FTDI website.
http://lwww.ftdichip.com/Drivers/D2XX.htm

Choose the proper version for your operating system, and download and install the driver. The installation

Page 509

http://www.coridiumcorp.com/files/setupBASIC.exe
http://www.ftdichip.com/Drivers/D2XX.htm
http://www.coridiumcorp.com/files/setupBASIC.exe
http://www.ftdichip.com/Drivers/D2XX.htm

executable may be used, and there are instructions in the Installation Guides on that page.
Configuration Utility

Next the settings of the serial control lines need to be changed, this requires the MProg utility from FTDI.
Download and install this program.

http://www.ftdichip.com/Resources/UtilitiessMProg3.0_Setup.exe

Next download the data files for configuration of the ARMmite or ARMexpress eval PCBs. Unzip these files
and store in a convenient directory (such as C:/Program Files/MProg 3.0a/Templates)

http://www.coridiumcorp.com/files'USBconfig.zip

Setup ARMmite/ARMexpress for MatLab, HyperTerminal, or TeraTerm

Run the MProg utility. Load the serial or legacy File version. And then reprogram the FTDI chip. ONLY
have 1 ARMmite or ARMexpress plugged in at time when you perform this operation.

MProg - Multi Device EEPROM Programmer ¥ 3.0a
ZICH Device Tools Help

- pl| 7] 2]e] o
i
!
s
I
j

B Cpen Chri+0
USE Power Options FT2232C Options 1 FT232R |

_— i F

r

BM i C Device Specific Oplions
= USH Remaote ke Lip
I

Plug & Play { FT232 Series Only)
&

Product and Manufacturer Descriptor Strings

Programming Options
[

Exit this program and close any serial programs such as BASICtools. For this change to take effect, the
ARMmite/express must be disconnected from the PC and reconnected.

Now the ARMmite/express will be idle until the serial port is open, when Hyperterminal, or TeraTerm is run.
Then after those programs are run, to start your BASIC or C program press the RESET pushbutton on the
ARMmite/express.

Page 510

http://www.ftdichip.com/Resources/Utilities/MProg3.0_Setup.exe
http://www.coridiumcorp.com/files/USBconfig.zip
http://www.ftdichip.com/Resources/Utilities/MProg3.0_Setup.exe
http://www.coridiumcorp.com/files/USBconfig.zip

Change the BASICtools settings for the reconfigured ARMmite/ARMexpress

In order to be able to change the BASIC program, you will still need to use BASICtools, but it will have to
be configured to use the new control line configuration (DTR and RTS inverted).

=

¢ BASICtools control for 2103

Film Edit Eealiil Tools Help

| Pt » | Clgwbsschestbinkybss Fun| Stop| Cles| Resel

| & Mormal R"‘x o _) i
63 Wirelass this is the normal setting and allows the ARMmite to execute
64 programs without any special program running on the PC
2: Baud - use this setting when the ARMmite will be controlled by a senal
n MNewline ¥ :: 223 N\ program like HyperTem

| Char Mode
68 Fork sizs b ne o

| o BE BT “ use this setting when the ARMmite will be controlled by a serial

R 70 can you hear me now ike MatLab
71 can you hear ne now program like MatLa

&7z can you hear me now :
Erter: l

Page 511

USB use with MatLab

General Info

<

The ARMmite and ARMexpress use the DTR and RTS serial control lines to control programming and reset
for the device. The state chosen allows the ARMmite/express to run and be reset by the push button while
idle (ie. no serial program running).

MatLab holds DTR high, but RTS low when it opens a serial port.

Useful debugging tool

Before starting its useful to load a program into the ARMmite/express that will pulse the LED and also
continuously send some data out the serial port. Here is one that works well...

“ BASICtools control for 2103
Fil= Edit Options Tool Help

C/grubssichtestibinkybas Run| Stop| Clesr| Reset]

CEX

Welcome back to ARMMbasic

for i=1 to 100

print i,"can you hear me

io0(l5)=i and 1
walt (1000)

Programwing Flash 2103 ..

Eernel [6.24] Copyright Z007, Coridium Corp.

T

*+i+

0.1l5E code 0.0lK data programmed

1 can you hear
2 can wyou hear
3 can you hear
4 can you hear
5 can you hear

uir
me
ot
e
me

now
now
now
o
now

Download the latest BASICtools and Tclterm

In order to be able to communicate with the ARMmite/express after the control lines have been changed,

make sure you are running the latest BASICtools. Versions 4.1 and later have support for MatLab.

http://www.coridiumcorp.com/files/setupBASIC.exe

Next, the driver must be changed for the USB serial device. The FTDI D2XXdriver must be used. Download

it from the FTDI website.

http://www.ftdichip.com/Drivers/D2XX.htm

Choose the proper version for your operating system, and download and install the driver. The installation

executable may be used, and there are instructions in the FTDI Installation Guides on that page.

Configuration Utility

Page 512

http://www.coridiumcorp.com/files/setupBASIC.exe
http://www.ftdichip.com/Drivers/D2XX.htm
http://www.coridiumcorp.com/files/setupBASIC.exe
http://www.ftdichip.com/Drivers/D2XX.htm

Next the settings of the serial control lines need to be changed, this requires the MProg utility from FTDI.
Download and install this program.

http://www.ftdichip.com/Resources/UtilitiessMProg3.0_Setup.exe

Next download the data files for configuration of the ARMmite or ARMexpress eval PCBs. Unzip these files
and store in a convenient directory (such as C:/Program Files/MProg 3.0a/Templates)

http://lwww.coridiumcorp.com/files/lUSBconfig.zip
Setup ARMmite/ARMexpress for MatLab

Run the MProg utility. Load the matlab File version in. And then reprogram the FTDI chip. ONLY have 1
ARMmite or ARMexpress plugged in at time when you perform this operation.

MProg - Multi Device EEPROM Programmer ¥ 3.0a
3CW Device Tools Help

- clzlz] 2ol =

USB Power Options FT2232C Options] FT232R |

LiSB Serial Mumber Condrol =
Foo F

r

BM / C Device Specific Options

oz o] |t

5B Remote Wake Up
=

-
F

Plug & Play (FT232 Series Only)
&

Product and Manufacturer Dascriptor Strings

Programming Options

|

Exit this program and close any serial programs such as BASICtools. For this change to take effect, the
ARMmite/express must be disconnected from the PC and reconnected.

Now the ARMmite/express will be idle until the MatLab serial port is open. Then after those programs are
run, to start your BASIC or C program press the RESET pushbutton on the ARMmite/express.

Change the BASICtools settings for the reconfigured ARMmite/ARMexpress

In order to be able to change the BASIC program, you will still need to use BASICtools, but it will have to
be configured to use the new control line configuration (DTR and RTS inverted).

Page 513

http://www.ftdichip.com/Resources/Utilities/MProg3.0_Setup.exe
http://www.coridiumcorp.com/files/USBconfig.zip
http://www.ftdichip.com/Resources/Utilities/MProg3.0_Setup.exe
http://www.coridiumcorp.com/files/USBconfig.zip

¢ BASICtools control for 2103

File Edit

il Tools Help

Pot v | Cigubssclestbinkybss Pun| Stop| Clear| Reset]

Mewlins #
Zhar Mode
fork slze #

.lr_'an you hear me
can you hear ne
can you hear me

armmal

MatLah

now
now
now
now

\&M K
this is the narmal setting and allows the ARMmite to execute :
programs without any special program mnning on the PC

use this setting when the ARMmite will be controlled by a senal
program like HyperTerm

use this setting when the ARMrute will be contralled by & serial
program like MatLab

Az Eck ‘iew ‘web Winedols Help
O & J0 M = e B | Currend Divecionyt | OHATAEHR SR ek vl[
B et e [E)
=" lall g Er‘”"l | Using Toolbcx Fath Cache. Trpe "belp coolbox path oache” Soo moze icto.
r |
|G e |~ Tytes| Cloce I : Tn get atarted, ==leck "HATLAF BE= 0" Fros che Help moerra
.E.-ur. LakE A4| zhar accay |
| A ' ngudeane! |, 192000 5
.._. 11 544 aerinl obiject .:\:\- gmaeEial ' CCEQ Y, ‘soudeate ! 192000
| | Eopendal
|>> DUC = facapf(s)
|
| -
|k
|=l cee you DERE BE RCE
|
|
|xx pus = Zacactis)
|
|mak =
|
| you keer e oo
|
|
|
|
workspata | Cument Diecies I Lstwizh Facd | :
=i |
| "'|:'-7| |

Page 514

ARMexpress Suggested RS232 / USB connection

<

For a finer image see ARMexpRS.pdf in your install directory (C:\Program Files\Coridium\Schematics).

T T I
vE12
pLNE-T connaatlon optlomel
EI0ULE eomnection
Lig
S0UT
=H ! bl
| BTN - g 1 RE=ETR
-] = o] pin 21 must not
§ o T exceed 5
i I': a i =
i i _,’? i
i B .u e
CONNECTIOR DEA e H il T T R I
cequired 1 HO oG :.il ; 1 |
FE=132 oy = . (s |
B e connaceed, and 12 s
2 e aarlier CEIREC
K Y wairanan moama
-- mas notse o
H AL
S PUSHBUTTON
optionsl
REZET 2
"""""""""""" required For me T pmmmm———m———
with MakeItC
] .
> 00
-> eo R i D. U
o
w, M
Copytrie
Tl
— ARMexpress RS232
s | Documer Humisss

Pin 21

On most Parallax boards this line is connected to a regulated 5V supply.
Do not connect a power source greater than 5V directly to pin 21.

When not connected this pin is pulled up to 3.3V by RP1 on the module.

When using MakeltC, this line is pulled low to download a C program, which can be done automatically by
connecting to an NPN transistor with the RTS line on the serial port.

Pin 3

On later revision ARMexpress and ARMexpress LITE a 1K pulldown has been added on the module between
pins 3 and 4 (as pictured below. [f your unit does not hawe this, then a 1K pulldown resistor is required, when
there is no signal on pin 3.

Page 515

USB connection

A serial connection can be made with a USB breakout board. The suggested wiring should be done as
follows. The inversion of RXD, TXD and DTR can be done by the FTDI chip using their MProg utility. Mprog
programs ALL FTDI parts connected to the PC, so make sure only the one you want to change is
connected. Also changes do not occur until the FTDI chip is powered up (so you must disconnect it and
reconnect it).

Page 516

http://www.ftdichip.com

“
U3B breakout kosed
| HIILL cornsckicn
=V
F¥D vl
3 —— 1 in 21 ' r
RIS
Lhsae inverbsrs can
Ghle be does Ly
progeemring Lhe FTOT
ool pREL waing HProg CokzaC
e
—_
O 0
S PUEHBUT T K
v optional
RIZDT S
required for usse
with MakeILZ
eo R D U M "
Klrog 1= & ubil:iky sawvsilsble st e, fedichin, com
CapyTTAqre 2006, Ser 4l Sam
ARMexpreas JSE breakout connections
e | Bocumend hamhear e
A At (K 1 2
Join Horday, Jaruary o, 2000] 1 o
Hints for debugging

Make sure you have both Power and GND connected.
When running BASICtools, the idle condition is

PIN1 low

PIN2 low

PIN3 low

PIN 22 high

PIN 21 high

When RESET, either by pulling 3 high or 22 low, there will be some activity on pin 1 as the ARMexpress
sends the Welcome message.

Reset and Boot for PRO boards

For the PRO, PROplus and SuperPRO boards when connecting a PC to a board that is running, the reset
and boot control signals will be toggled by the PC. This is a function of Windows and the Drivers. This will
reset the board or possibly put it into a load program state. To awid this you can disconnect the Reset and
Boot signals from the USB dongle, either by cutting pins or making an adapter using a 6 pin female header
with long pins(available from SparkFun).

Page 517

http://www.sparkfun.com/commerce/product_info.php?products_id=9280

Page 518

General Interfacing

<

Both the ARMexpress and the ARMmite can be directly connected to 5V TTL devices. The output wltage
for these ARM devices ranges from 0.4V to 2.9V when driving upto 4mA of current. Most TTL devices will
recognize these as valid logic lewvels (normally defined to be 0.8 and 2.0V)

Inputs

The ARMexpress and ARMmite may also be directly connected to 5V TTL outputs. If they are TTL
compatable the woltage lewels of the TTL output would normally be (0.4 and 3.4V), though they may go
higher. The inputs for these ARM devices are 5V compatable.

Tieing to Supply lines

The ARMexpress and ARMmite inputs may be connected directly to a GND pin, but if connecting to a fixed
wltage supply, then a 1K or greater resistor in series is recommended. This is the same recommendation for
any TTL compatable device. The reason being is that the 5V supply may exceed the 5V at times, or if that
wltage is available before the power supply to the CPU, large currents may flow through the protection diodes
in the CPU.

Interfacing to higher voltages

A resistor divider may be used to connect the ARMexpress and ARMmite to wltages that go higher than 5V.
The picture below shows a connection appropriate for a 24V signal. A 100K resistor is connected from the
input to 10(11) and then an 11K resistor connects 10(11) to GND. This will divide that 24V input to vary
between 0 and 2.4V.

This resistor divider divides the 24V by 10 and also limits the current if that 24V goes higher. The circuit
below shows schematically the connection that was made.

Page 519

24 input E

R1
100K

:}ﬁﬂhﬂ'nrte 1a

RZ o1
A N _
optional 3.6%"

The resistors can be varied to handle different wltages. If the woltage to be sensed is susceptible to large
spikes a 3V Zener diode can be connected in parallel with R2 to further protect the ARMmite 1O.

Opto-Isolator

Another way to sense large wltages and to isolate the ARMmite from those wltages is to use an
opto-isolator. These devices consist of an LED and a photo-transistor in a single package. They can provide
isolation of 1000s of Volts. Below is a sample circuit. The D2 optional diode should be used if the isolated
wltage to be sensed is an AC wltage. The value of R1 should be chosen depending on the Opto-isolator
spec, with the current through the opto-isolator diode typically being 10 mA.

&
Isolated W
i L i
10K
100K
.ﬂﬁﬂmﬂe 1u]
0z
N w1501
aptional DIODE > ‘““:-IK OPTD 150LATOR-A
Izolated hWt
e 1 e

Driving Transistors

The ARMexpress outputs are rated for 4mA, when more is required a common 2N3904 transistor can be
used for 100-200 mA. The base of the transistor is driven from an IO with a series resistor. When the 10 is
high the transistor is turned on.

Driving Relays
When higher currents or woltage are inwlved a relay can be used. For mechanical relays a driving transistor

with a catch diode are required. The circuit starts as the abowe transistor circuit, which when on can either
close or open the relay contacts. When it turns off, current continues to flow in the coil of the relay as the

Page 520

magnetic field collapses, this current needs to go somewhere, thats what the catch diode provides is a path
for that current to flow back into the supply of the relay.

Page 521

Power

Common to all boards

Initial Power on conditions
On power up all pins are tri-stated on the ARMexpress/ARMmite.

Restarting the program

If the user has programmed the ARMexpress/ARMmite, that program will be started when the power is
applied, or restarted when RESET is asserted either low on the open-collector pin 22, or positive true on the
ATN pin.

If the user program ends by getting to the last statement of the program or executing an END instruction, the
ARMexpress will power down and await either input on the debug serial port, or a RESET.

Break operation or STOP

If the user code is running, it can be stopped by a RESET condition. This will normally restart the user code,
but there is a short window (500 msec) where the ARMexpress will wait to see if there is input on the serial
debug port. If the character received on the serial port is ESCAPE (27) or CTL-C (3) then the user program
is prevented from running and the ARMexpress is ready to be reprogrammed. Or the user can restart the
program by typing RUN or using the RUN button in BASICtools.

USB Power
The USB specification allows for up to 500 mA at 5V to be supplied to external devices. In many cases this
is limited to 100 mA by the manufacturer of the PC or hub.

ARMexpress and its eval PCB uses approximately 50 mA when running and 10 mA when idle. So it can be
powered from the USB port for programming, without the need for the alternate power supply. The same is
true for the ARMmite.

Once the programming is completed, the ARMexpress may be run without a connection to a PC. In this
case an alternate power supply connection has been provided. This input goes to a regulator to supply 5V
which is connected to pin 24 on the ARMexpress. Onboard the ARMexpress this will be regulated to 3.3V
and 1.8V for use by the ARM CPU. The ARMmite takes this same unregulated input to generate either 5V or
3.3V on the rev2/rev3 versions respectively.

Smart Power

The USB evaluation board can be powered from either the USB, an external supply or BOTH. Power from the
USB is controlled such that it is turned on by the USB controller. Power to the ARMexpress can also come
from the external power supply and these are controlled to allow both USB and the power supply to be
connected to the device at the same time.

The power connector is a 2.1mm, which is compatable with the Cui PP-002B part.
Battery backup

The ARMmite has a provision for adding a battery to keep its real time clock alive when power is removed.
The circuit is designed to use a Panasonic ML2020 rechargeable Li battery.

Parallax STAMP compatability

The Parallax STAMP products operate from a 5V supply. This can come from an unregulated input on pin
24, or from a regulated 5V supply on pin 21. The ARMexpress is backward compatable with both these
connections, but for new designs it is recommended that power be supplied on pin 24. The wltage required
is 4.5V or greater on pin 24, or 5V on pin 21. Also for C programming, pin 21 should not be connected to
power. The maximum woltage that may be applied to either pin 24 is 16V, but this is not a recommended
continuous wiltage, as it will cause extra heat to be generated by the ARMexpress onboard woltage
regulators. For this reason the recommended maximum is 9V. When using an unregulated supply not
supplied by Coridium, care should be excercised, as the current draw of the ARMexpress is low and the

Page 522

wltage will often be much higher than the rated wltage. The user should ensure that this wltage does not
exceed the limit of 16V.

Page 523

Timing
(4
The oscillator

The ARMexpress uses a ceramic resonator for the timing element. It is accurate for 1%. It is used for timing
of operations of SERIN, SEROUT, OWIN, OWOUT, PULSEIN, PULSEOUT, and COUNT.

Other operations such as 12CIN, I2COUT, SPIIN, SPIOUT, SHIFTIN, SHIFTOUT, PWM and FREQOUT are
"bit-banged" loops that are calibrated to the speed of the CPU.

The real time clock
The ARMexpress, ARMexpress LITE, or ARMmite wireless use the CPU clock based on the ceramic
resonator for the timing element. It is accurate for 1%.

The ARMmite and ARMweb use a 32KHz crystal which is much more accurate for timing of SECONDS,
MINUTES, HOURS, DAYS, MONTH and YEAR. It is accurate to 100ppm. And on the ARMmite or
ARMweb it can be kept running with a battery.

Interrupts

The serial port connection through the USB uses interrupts for all products. The senvice routines for these
actions have been minimized so that the user program is only interupted for TBD microseconds. The
ARMconnect also uses a 10 msec timer interupt. With version 7.09 firmware and later interrupts on 2 pins or
timer are available to the user BASIC program.

Operations that require accurate timing will disable the interupts during that critical period. These operations
include OWIN, OWOUT, SERIN and SEROUT. Other operations that would be negatively impacted by an
interupt also disable the interup for a period of time. Those include PULSIN, PULSOUT, PWM, RCTIME and
FREQOUT.

Interupts and User code

When the ARMexpress receives serial input it will interrupt to copy data into its buffer. This will cause a
small delay in the users program. In most cases this is not noticedable, but may be where user is timing
with TIMER.

User code can cause the serial port to be deaf when running long operations such as FREQOUT or PWM. In
normal operation this should not be a problem.

AD timing (ARMmite, ARMmite Wireless, ARMexpress LITE, and ARMweb)

The analog inputs can do a conwersion in 11 uSec.

Page 524

SPI,Microwire

<

The Serial Peripheral Interface Bus or SPI bus is a very loose standard for controlling almost any digital
electronics that accepts a clocked serial stream of bits. A nearly identical standard called "Microwire" is a
restricted subset of SPI.

SPl is cheap, in that it does not take up much space on an integrated circuit, and effectively multiplies the
pins, the expensive part of the IC. It can also be implemented in software with a few standard 10 pins of a
microcontroller.

Many real digital systems have peripherals that need to exist, but need not be fast. The advantage of a serial
bus is that it minimizes the number of conductors, pins, and the size of the package of an integrated circuit.
This reduces the cost of making, assembling and testing the electronics.

A serial peripheral bus is the most flexible choice when many different types of serial peripherals must be
present, and there is a single controller. It operates in full duplex (sending and receiving at the same time),
making it an excellent choice for some data transmission systems.

In operation, there is a clock, a "data in", a "data out", and a "chip select" for each integrated circuit that is
to be controlled. AlImost any serial digital device can be controlled with this combination of signals.

SPI signals are named as follows:

= SCLK - serial clock

= MISO - master input, slave output

= MOSI - master output, slave input

= CS - chip select (optional, usually inverted polarity)

Most often, data goes into an SPI peripheral when the clock goes low, and comes out when the clock goes
high. Usually, a peripheral is selected when chip select is low. Most devices have outputs that become high
impedance (switched-off) when the device is not selected. This arrangement permits several devices to talk
to a single input. Clock speeds range from several thousand clocks per second (usually for software-based
implementations), to several million per second.

Most SPI implementations clock data out of the device as data is clocked in. Some devices use that trait to
implement an efficient, high-speed full-duplex data stream for applications such as digital audio, digital signal
processing, or full-duplex telecommunications channels.

On many devices, the "clocked-out" data is the data last used to program the device. Read-back is a helpful
built-in-self-test, often used for high-reliability systems such as avionics or medical systems.

In practice, many devices have exceptions. Some read data as the clock goes up (leading edge), others
read as it goes down (falling edge). Writing is almost always on clock movement that goes the opposite
direction of reading. Some devices have two clocks, one to "capture" or "display" data, and another to clock it
into the device. In practice, many of these "capture clocks" can be run from the chip select. Chip selects can
be either selected high, or selected low. Many devices are designed to be daisy-chained into long chains of
identical devices.

SPI looks at first like a non-standard. Howewver, many programmers that develop embedded systems hawe a
software module somewhere in their past that drives such a bus from a few general-purpose I/O pins, often
with the ability to run different clock polarities, select polarities and clock edges for different devices.

The interface is also easy to implement for bench test equipment. For example, the classic way to implement
an SPI interface from a personal computer to custom electronics is via a custom cable to the PC's parallel
printer port. The parallel port generates and reads standard TTL logic wltages; +5V is high, ground is low. A
number of helpful people have dewveloped drivers to give access to this port in the most restrictive operating
systems, such as Windows NT (see below), from the least likely environments, such as Visual Basic.

Page 525

http://en.wikipedia.org/wiki/Microwire
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Serial_bus
http://en.wikipedia.org/wiki/Serial_bus
http://en.wikipedia.org/wiki/Clock_signal
http://en.wikipedia.org/wiki/Impedance
http://en.wikipedia.org/wiki/Rising_edge
http://en.wikipedia.org/w/index.php?title=Falling_edge&action=edit
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Transistor-transistor_logic

Using the 12C Bus

B@f
The physical 12C bus
This is just two wires, called SCL and SDA. SCL is the clock line. It is used to synchronize all data transfers
over the 12C bus. SDA is the data line. The SCL & SDA lines are connected to all devices on the 12C bus.
There needs to be a third wire which is just the ground or 0 wlts. There may also be a 5wlt wire is power is
being distributed to the devices. Both SCL and SDA lines are "open drain" drivers. What this means is that
the chip can drive its output low, but it cannot drive it high. For the line to be able to go high you must provide
pull-up resistors to the 5v supply. There should be a resistor from the SCL line to the 5vline and another from
the SDA line to the 5vline. You only need one set of pull-up resistors for the whole 12C bus, not for each
device, as illustrated below:

+5n
Fp [|]RFJ . . .
Device 1 Device 2 Device 3
- | | |
SDA

The value of the resistors should be from 1.8K (1800 ohms) to 4.7k (4700 ohms). It depends on the length of
the 12C bus, the longer the bus, the smaller value should be used. If the value is too large, the rise time of the
signals will be too slow and the bus may not work properly. If the resistors are missing, the SCL and SDA
lines will always be low - nearly 0 wolts - and the 12C bus will not work.

Masters and Slaves

The devices on the 12C bus are either masters or slaves. The ARMexpress as a master is always the device
that drives the SCL clock line. The slaves are the devices that respond to the master. A slave cannot initiate
a transfer over the 12C bus, only a master can do that. There can be, and usually are, multiple slaves on the
12C bus, however there is normally only one master. ARMexpress does not support multiple masters. Slaves
will never initiate a transfer. Both master and slave can transfer data over the 12C bus, but that transfer is
always controlled by the master.

The 12C Physical Protocol

When the ARMexpress wishes to talk to a slave it begins by issuing a start sequence on the 12C bus. A start
sequence is one of two special sequences defined for the 12C bus, the other being the stop sequence. The
start sequence and stop sequence are special in that these are the only places where the SDA (data line) is
allowed to change while the SCL (clock line) is high. When data is being transferred, SDA must remain
stable and not change whilst SCL is high. The start and stop sequences mark the beginning and end of a
transaction with the slave device.

Stop sequence

SDA—— | —— sDa

SCL — — SCL

Data is transferred in sequences of 8 bits. The bits are placed on the SDA line starting with the MSB (Most
Significant Bit). The SCL line is then pulsed high, then low. Remember that the chip cannot really drive the
line high, it simply "lets go" of it and the resistor actually pulls it high. For every 8 bits transferred, the device
receiving the data sends back an acknowledge bit, so there are actually 9 SCL clock pulses to transfer each
8 bit byte of data. If the receiving device sends back a low ACK bit, then it has received the data and is ready
to accept another byte. If it sends back a high then it is indicating it cannot accept any further data and the

Page 526

master should terminate the transfer by sending a stop sequence.

spa (D7l DB Ds| D4l D3| D2 D1 Do [ACK]

SCL 1 2 a4 e ey e 9

How fast?
ARMexpress runs in Fast mode at approximately 380 KHz.

12C Device Addressing

All 12C addresses are either 7 bits or 10 bits. The use of 10 bit addresses is rare and is not covered here. All
of our modules and the common chips you will use will have 7 bit addresses. This means that you can hawe
up to 128 devices on the 12C bus, since a 7bit number can be from 0 to 127. When sending out the 7 bit
address, we still always send 8 bits. The extra bit is used to inform the slave if the master is writing to it or
reading from it. If the bit is zero are master is writing to the slawe. If the bit is 1 the master is reading from the
slave. The 7 bit address is placed in the upper 7 bits of the byte and the Read/Write (R/W) bit is in the LSB
(Least Significant Bit).

spa (ARl as]ad] as]az] al]an [Rewlack

=CL 1 SR I A - I = A O = I =

The placement of the 7 bit address in the upper 7 bits of the byte is a source of confusion for the newcomer.
It means that to write to address 21, you must actually send out 42 which is 21 mowved ower by 1 bit. It is
probably easier to think of the 12C bus addresses as 8 bit addresses, with even addresses as write only, and
the odd addresses as the read address for the same device.

The 12C Software Protocol

The first thing that will happen is that the master will send out a start sequence. This will alert all the slave
devices on the bus that a transaction is starting and they should listen in incase it is for them. Next the
master will send out the device address. The slave that matches this address will continue with the
transaction, any others will ignore the rest of this transaction and wait for the next. Having addressed the
slave device the master must now send out the internal location or register number inside the slave that it
wishes to write to or read from. This number is obviously dependant on what the slave actually is and how
many internal registers it has. Some very simple devices do not have any, but most do. Having sent the 12C
address and the internal register address the master can now send the data byte (or bytes, it doesn't have to
be just one). The master can continue to send data bytes to the slave and these will normally be placed in
the following registers because the slave will automatically increment the internal register address after each
byte. When the master has finished writing all data to the slawe, it sends a stop sequence which completes
the transaction. So to write to a slave device:

1. Send a start sequence

2. Send the 12C address of the slave with the R/W bit low (even address)

3. Send the internal register number you want to write to

4. Send the data byte

5. [Optionally, send any further data bytes]

6. Send the stop sequence.

Reading from the Slave

This is a little more complicated - but not too much more. Before reading data from the slawe device, you
must tell it which of its internal addresses you want to read. So a read of the slave actually starts off by
writing to it. This is the same as when you want to write to it: You send the start sequence, the 12C address
of the slave with the R/W bit low (even address) and the internal register number you want to write to. Now
you send another start sequence (sometimes called a restart) and the 12C address again - this time with the
read bit set. You then read as many data bytes as you wish and terminate the transaction with a stop
sequence. So to read the compass bearing as a byte from the CMPS03 module:

1. Send a start sequence

2. Send the 12C address of the slave with the R/W bit low (even address)

3. Send the internal register number you want to read from.

4. Send a start sequence again (repeated start)

Page 527

2. Send the 12C address of the slave with the R/W bit high (odd address)
6. Read data byte from the slave device. (may be repeated depending on the slave capabilities)
7. Send the stop sequence.

The bit sequence will look like this:

Start Compass uses address 0:C0 Wiite The register num ber that Repeated
t:urt 1 1 o 0 0 0 O 0 you want to read from Start bit
L [AT[AE[AS[A4 A3 [AZ[AT R &ck [D7 [DE[DS[D4[D3 [DZ[D100 PBCK | [

W rite address with bitD set - 0:C1)
1 1 o o 0 0 0 1 Read one or more registers Stop bit

Tl a7 Tae]as [aa]az Az s Ralack [p7loelosloaloz]oz 0400 lek [+

Wait a moment
The ARMexpress does not support slaves that use clock stretching. The result is that erroneous data is read
from the slave. Beware! Luckily this function is relatively rare these days.

Example Master Code
#include <I2C.bas>

' test the EEPROM 24LCO02 on pins 0 == SDA and 1 == SCL
shortMessage(0)= 0 ' address into EEPROM

present = [2COUT (0, 1, OxAO, 8, shortMessage)
if present = 0 then print "NO i2c device ***"

WAIT(10) ' allow time for data to be written
I2CIN(0O, 1, OxAQ, 1,shortMessage, 7, shortResponse)

"now do I2CIN as seperate operations

[2COUT (0, 1, 0xAO, 1, shortMessage) 'send just the address and offset
[2CIN(0O, 1, OxAQ, -1,"", 7, shortResponse)

Easy isn't it?

The definitive specs on the 12C bus can be found on the Philips website. Its currently here but if its moved
you'll find it easily be googleing on "i2c bus specification".

Page 528

http://www.semiconductors.philips.com/acrobat/literature/9398/39340011.pdf

ARM Peripheral Use

The ARM peripheral bus

Timer0 free running micro-second counter (TIMER command)

Timer1 used on ARMweb or with ON TIMER

Timer1 setup as 1msec timer, may be reprogrammed

Timer1 , Timer2 and Timer3 used for HWPWM on ARMmite or ARMexpress LITE
Uart0O UART for debug/download

Uart1 Not Used unless requested by user with BAUD1

PWM used when HWPWM is engaged on PROplus, SuperPRO

12C Not Used

SPI reserved

RTC used for time-keeping

Interrupt use -- 21xx

FIQ not used

ISRO UARTO

ISR2 PWM -- only used by ARMweb

ISR3 UART1 if RXD1l, TXD1l used

ISR4 EINTO if ON EINTO used

ISRS EINT1 if

ON EINT1

used ISR6 EINT2 if ON EINT2 used

ISR7 TIMER1 if ON TIMER used

ARMweb has EINTO connected to ENC28J60,
but it 4is not used and

available to the user. ARMweb firmware
also uses EINT2 for remote debugging.

Interrupt use -- 175x

ISR21 UARTO
ISR22 UART1

If a function is not included in the BASIC code the interrupt is available,

for instance ON TIMER uses TIMERO interrupt and RXD1l uses the UART1 interrupt.

In Idle just the CPU clock stops and any interrupt will wake it.

Background Tasks

Except for the ARMweb, the only background tasks are interrupt handlers for UARTO and UART1. UART1 is
not active until the BAUD1 function is called.

Page 529

ARMweb Ethernet Services

ARMweb Ethernet Services
armweb.htm PAGE
Controls Page ARMweb C support
CGI Services
CGI Example
FTP Services
Mail Service
Web Services
Web BASIC
UDP Services
Reset Behavior
Firmware Update

Page 530

http://www.coridiumcorp.com
http://www.freertos.org/index.html?http://interactive.freertos.org/entries/243907-lpc2138-enc28j60-port/edit

ARMweb Getting Started

Getting Started
Install Software

Connect Ethernet

USB connection for ARMweb

Writing simple programs via the web
Writing programs with BASICtools

Page 531

http://www.coridiumcorp.com

Optional: USB connection for BASICtools

While the ARMweb can be programmed through the webpage, during the development cycle BASICtools can
be used via a USB connection. BASICtools has a much faster response than a browser.

The attachment of the USB and power supply is shown below. While an Ethernet connection is not required,
if it exists and there is a DHCP server, the ARMweb will boot faster (otherwise each reset the 10 second
timeout waiting for DHCP senvice will occur).

ARMweb

DINKkit (ethernet)

Why use BASICtools?

Browsers are very slow when refreshing a webpage, so the interaction with the programmer is better with
BASICtools.

#include can not be used from a webpage, as the ARMweb does not have direct access to the #include'd file

Page 532

The BASIC compiler on the PC has more memory for the symbol table and can handle larger programs than
when compiling on the builtin ARMweb compiler.

The variable dump tool is available in BASICtools. Debug messages are sent to the USB port, as well as
<?BASIC ... ?> source and output when processing web requests. When your program is debugged and
AutoRun is turned on the USB port is turned off. You can improve the performance of the web server BASIC
compiler by increasing the speed of UARTO, by changing baud settings in BASICtools and executing
BAUDO(937500) in your main program.

For an introduction to BASICtools refer to the ARMmite sections .

BASIC and Webpage interaction

BASIC can be embedded in the webpage served by the ARMweb. That BASIC code can access global
variables of the user program running on the ARMweb. At present, BASIC embedded in the webpage can not
call a FUNCTION or SUB (this will be a future enhancement).

The user (client) can also interact with an ARMweb BASIC program via the CGI mechanism.

USB drivers

Most PC's will sound a tone that indicates a new USB device has been connected. Most Windows Vista
and 7 systems will either include the FTDI device driver or are able to download it automatically from the
network.

If your system is unable to do that. Run the FTDI driver installation setup in the \Program
Files\Coridium\Windows_drivers directory. This will install the proper drivers for the FTDI chips we use for

interfacing to the USB.

Up to date details are at the www.ftdichip.com VCP drivers page.

Continue with the some programming examples.
or

More details on ARMweb and BASIC...

Page 533

http://www.ftdichip.com

armweb.htm PAGE

<

This page is the main control page for the ARMweb. It is always available even if the main page served is a
user generated page. It can be accessed at the armweb.htm page.

Description

%) Coridium ARMweb - Mozilla Firefox
File - Edit Viesw History Bockmarks Tools

Help

< - o ?- | httpe/f192.162.0.8/ * | [Cl-|timisystemtime |44 | 3 -

CoRiDiUM" ARMweb

Code | Run | Clear | Stop | Controls | Help |

Enter BASIC Commands: |
Download Program File: | Open

Searching for DHCP
Flash Values Updated

MyWame ALRNweb

MyIP 192.168.0.8

MyHMask 255.255.255.0

MyDNS £16.171.192Z .83
wh_dhep MAC 00 OD 88 &0 05 1E
wh dhep IP 192.168.0.1

Welcoms to ARMbasic[6.23h] Copyright 2007, Coridium Corp.
for the AFRMexpress with PBASIC extensions

Code :
The default is to come to this page. A user BASIC program can be typed in line by line, or downloaded using
the OPEN button.

Values: (potentially obsolete)
Variables in the user BASIC program can be accessed from this page. Those variables have to be declared
as either WEB or WEB READONLY.

With the new user webpage features, this function may go away in a future release.
Run/Stop :
This button will either run or stop the previously loaded user BASIC program. This function is disabled when

when security is set on the Controls Page .

Clear :

Page 534

This will erase any user program. This function is disabled when when security is set on the Controls Page

Controls :
This accesses the Controls Page. It will be disabled when security is set.

Help:
Currently has no function, and may be eliminated in a future release, or linked to the Coridium Web Site help
files.

See also

= UDP Services
= FTP Services

Page 535

Controls PAGE

<

This page controls the ARMweb. It is always available even if the main page served is a user page. It can be
accessed at the armweb.htm page.

Description

| %3 Coridium ARMweb - Mozilla Firefox
M File Edit View History Bookmarks - Tools

Help
| e {E | = i I 1]
& - - “o | [htto:ffarmwebarmweb. him * B C S

& Statisticsfo... | || Coridiu.. [| | | RabbitSeml... | | Propellarch... | | KSFO AMSE0 | "W My Yahoo! .

@ORiDiUM’” ARMweb

Code | Run | Clear | Stop | Controls | Help |

Node Name is: ARMweb ARMweb

Main Page is: armweb.htm armweb.htm

Date: 9/6/2010 1:32 PM | SetDate |
Currently Using DHCP assigned IP address | UseFxedIP address |

IP: 192.168.0.15
Netmask: 255.255.255.0

Security-AutoRun is OFF | SetSecurity-AutoRunON |
Currently In Networked Mode Standalone Mode Is Disabled
Currently Do Not Use Password T
User: user user

Pass: pass pass

Email:

SMTP:

Code space used: 0%

Data space used: 0%

Caopyright 8 2010 Cordium Corp

i Cone

Main Page :
The default is to come to this page. When the user loads their own pages via ftp, then this can be changed to
make the main page the user generated page

The ARMweb's default node name is armweb, when you change this main page, the ARMweb will adopt that

Page 536

entry as its node name. The node name will be seen by DHCP senwers, as well as the response to node
ping .

Set Date:
If your browser supports the JavaScript system-time functions this button will access the systems date and
time and update the ARMweb registers.

DHCP :
The ARMweb node can either use a DHCP to obtain its IP address, or you can set it to a fixed IP address.
The default is to accept a DHCP generated IP address.

We routinely allow the DHCP server to assign an initial address, but will use a fixed IP address in the final
setup. One reason to assign a fixed IP, is to make sure that the IP address assigned never changes, for
instance following a power outage.

Security is OFF :
When Security is OFF the user's BASIC program will not start on reset. Also you have access to the
Controls Page, ftp server and run/stop clear buttons.

When Security is ON, the users BASIC program is run on reset. This will also lock out ftp, control, stop,
clear and code page access when the user program is running. When enabled updates can not be made
from the web as long as the user BASIC program is running. When enabled and the user program is running,
the only way to make changes is to physically hold the push-button on the ARMweb during power up, which
returns to the factory defaults (including erasing the program and any files in the ftp space). You must also
change the default passwords for this to work.

When Security is ON, debug messages to UARTO (and via USB dongle to BASICtools) are disabled. This
improves the performance of web server.

Standalone/Networked Mode :

This is part of the initial configuration. The default is Standalone mode, but it will switch to Network mode if
the ARMweb ever gets a response from a DHCP server. While in Standalone mode, the IP address will be
normally 192.168.0.50, and the ARMweb will act as a mini-DHCP server for a PC connected directly to it.
This allows a very minimal system to configure the ARMweb (see the Getting Started section)

Passwords:
The ftp senice can use a password (the default is none or user/pass and password checking turned off). If
you do set a different username and password also click the Use Password button.

Email:
The MAIL statement can send an email to the address and server set by these fields. The SMTP server for
name@somewhere.com is normally smtp.somewhere.com .

Program Statistics :
The compiler keeps track of the amount of code and variable space that has been used, and is represented
by a percentage of the whole space (64KB code, and 4KB data).

Accepting Changes:
Any changes you make will not be permanent until the next power cycle (power off and on). If you do not
want to make changes there is an Undo All Changes button, that will revert to the last saved configuration.

See also

= UDP Services
= FTP Services

Page 537

mailto:name@somewhere.com

CGl Services

Syntax

FUNCTION CGIIN AS STRING
Description

CGIIN functions like a serial channel to the webpage. When someone accesses the webpage that creates a
CGl event (like a button push, or text entry) that data will be sent to a buffer that can be read from the BASIC
program.

If no GET request has been made the string returned will also be an empty string.

When the ARMweb is accessed from a webpage, if the webpage contains a ? in the address, data following
the ? is passed to the CGIIN routine. There is only one 256 byte buffer available, and that buffer will be
available for TBD seconds or unitl it is read by a CGIIN.

This function requires version 7.36 of the firmware.

Example

dim CGlinput(255) as string

while 1
CGlinput = CGIIN 'assumes the form is http : // ... /Input?=# per the example in CGl example

if CGlinput(0) then print CGlinput ' display on the terminal window -- for debugging

select CGlinput(6)
case "0"

' do nothing
case "1"

i0(16) = 1
case "2"

io(16) =0

CGlinput="" 'erase the input line
loop

See also
= CGIl example

= Web Basic
= FTP Services

Page 538

Webpage Programming

<

Building a webpage on the ARMweb is much like any other web server. An HTML webpage is ftp'ed to the
ARMweb, and it can communicate to a BASIC program running on the ARMweb. The BASIC program can be
controlling attached devices. Control or data can be fed back through the webpage interface. All sources for
this example are at www.coridiumcorp.com/files’\WebBASIC.zip

Use standard HTML and JavaScript

Build your web page in standard HTML and JavaScript. Include text and graphics in the webpage, here the
webpage includes an image of a logo. In this example user actions on the webpage are fed back with a CGl
script using JavaScript button action. It also can display a state of the ARMweb, here an LED by running a
small BASIC program (included into the HTML).

< !DICTYPE HTAL PUBLIC ™-4/W3C/ /DT ETHL 4.01/7EH™ "heeop:/ Ao, ud ocg/ TR humld/seeice, dud™s
<hugml=<heads

meEta MCLp=eulw="Content=Type" CcOnTEnt="Lext/html! charaer=isn=S859=1":

sbitlerCoridium ARMwek Ewample</sicles

“script type="text/javascript™r
Zunction =sncdlfslus=){
docurent , logaktion, ceplace | "index, hbm? Input="+=) ;

sendifalaes | "Text “+document . getElementById (“InputText") crvalue) ;

< facripts |
< Tusacd:-

<hody=

cdivy anyle~"pogitioniabaoluce top 140; Lefc: 140™;

fimy sro="hanner .1t style="pasitioniahsolutestop: 508 left: 1507 alt="hann=r":

DIl

<bcx

<hEz-<hes

P — run BASIC program from the web page

chr-LED 13 e

fPBASIC

T HE IN(16) then print YOFFT =lme print "ONT

I - display data to weh page

LED conteala: cob=p: srbnaps sobeg

cpr =<k

celdwr

<input typs="bucton® wvalus="OFFT onzlick="sendValue (1"’ omp LED pff<brr<ber |
<input tgpe="button® wslus="0H" onzlick="=sandlslus(*2" tnbb=ps inb=p; £nb=p LED on<brs<br: J
<input twp=="button® valus="FLAZHY onclick="sendValu=('3!' E sfonb=p £ Hz oo LED £for 2 =seconds=
<br:

CAnpur tepe="bucton” valus="EiNP" onzlick="zendValue('4'];"> Lonbepsceobep) srfogp Ramp chrua PR on LED<he~<hos
LhrxTepe The me2dage into The ipguc Do¥ sod press Encer or click a Bucton belowcbr:

CANpUT TEPETTLENTT 1d=TIRpUCTEREY AlzZe="I3" maxlength="3IET onkeydown="Rd (ewent) "rchEx <hrs

tinput type="hucton'™ valus="1UDPT onzlick="sendValue ('5'] ;"> 4 =hy Lnbhap: inbsp Send UDPOOT et ODPIM<BEX<

Upload to ARMweb using FTP

No special tools to compile your page, just upload it to the ARMweb. Here the 2 files used for the webpage,
the main HTML and the banner image.

Page 539

http://www.coridiumcorp.com/files/WebBASIC.zip

CAWINDOWS\system32\cmd. exe

nuhasichar b
cted to 1 : B.6.

92.168.8 {none)):
word reguired for
poed =
uzer logged in.

PORT command swuec ul.
Opening % [data connection for simple.htm
Transfer complete.

hytes sent in B.885econds 365808.88Khytes

command succ ful.

fer complete.

command successful.
imple . htm

- 1 1 bannerl . gif
26 Transfer complet

IC = wgniubas ic e b

Interact with a BASIC program running on the ARMweb

The webpage can send data to the ARMweb using CGl that can be read in your BASIC program. It can parse
these requests and perform various actions. This allows you to control an ARMweb across the room or

anywhere on the internet.

ning BINARY mode data connection for LIST

eh Coridium Corp FIP Service (Versiom.B.H>.

ng BINARY mode data connection for bannewrl.gif

31 bytes sent in 13.415econds 5.43Kbytes-sec.

183 bytes j‘t_'l.:l_iil.ll:d in B.8A05econdsz: 1030008 .A8KDLyt

dim CHEIinput 1007 == tring
dim Message (100 o=

$include <FREQOUT.bas>
Finclude <PFULSE.baa>
T B sel input frome client
TOTinpuT =CETIN ™, -
|)
'-JT COILinput (O] mdien print CGlinput dizplay on the ter

m=lect CElinput (6)

caz= "0
' do nothinog
caas it
iojlal = 1
cHRAS IIE L
iojls] a
cge mE
FREQCUT (1 6,49000,2,01
cmas 4"

for 1=0 ta ZE&
P¥HM (L6, 255-1_201
next 1
camm= WL W
Me===mgs = "Your APMush =ay=s “tHe==z=sge
MAIL ;Husa:u:ﬂ
cHRAS IISII
'oudp hece
cade else
if CEIinpuc (0] chen

Meaaags = right (SGIinput. 1o (CGIinput) &)
print Tgon 7@ Measage
end i

end aslect

loop

Your Web application running on an ARMweb

This is what will appear on the web, served by the ARMweb.

inal

vandow

email message

s debugging

x|

Page 540

%3 Coridium ARMweb Example - Mozilla Firefox
File Edit Wiew Historv Bookmarks Tools Help

\.ﬁ“ii - / - l&,, &9 !LI} ||_| http: farmwehindes:. Bt

Your Logo Here

LED iz OFF

LED controls:

LED off
LED on

FLASH | 2 Hz on LED for 2 seconds

Ramp thru PWH on LED

Type the message mto the mput box and press Enter or click a Button below

UDP send UDPOUT Get TTDEIN

Send Email

See also
= CGl services

= Web Basic
= FTP Services

Page 541

http://www.coridiumcorp.com/ARMhelp/scr/WebBasic.html
http://www.coridiumcorp.com/ARMhelp/scr/FTPservices.html

FTP Services

ARMweb contains a small File System to store additional web pages.

= maximum size of all files combined must be less than 224KB

= there must be less than 76 files

= File names must be 23 characters or less

= File names are case sensitive

» thereis only 1 directory and sub-directories are not supported

= the main HTML file must be of the form filename.htm

= fip put, delete are slow due to the Flash writes, which can take 20 seconds or more

= any BASIC program must be stopped, otherwise ftp will not log you in, or will ignore any requests

By default password protection is not used for FTP.

If logging in from a command prompt simply press enter when asked for Username and Password.
If password protection is desired go to the Controls page of ARMweb and select Use Password.
NOTE : The default user name is "user" and password "pass".

Change these as desired and reset the node to apply changes.
Also on the Controls page, a file from the system may be chosen as the Main Page.
This then becomes the default page when browsing to http://ARMweb or to http://Nodes-IP-address .

The current implementation is aimed at using the simplest ftp interface, and it may not work with more
complex ftp programs or browsers doing ftp. We recommend using the Windows ftp from the DOS command
prompt. Here is a sample session used to copy the files for a webpage to the ARMweb (192.168.0.6 was
assigned by the DHCP, and the default username/pass were used (either enter user and pass, or just hit
enter both times).

= \WIHDDVE\:}:tEﬂ‘I]I\:md exe

&h Coridium Lurp FTF Service (Uersiomn.B.H).
168.B.6:{none>:
331 l’a:mnrd regquired for .
ssword
ser logged in.

p>
2l PORT command successful.
an1nq BINARY m data connection for simple.htm
sfe unpl-tt_
+bﬁ hytes szent in B.885econds 365008 .88Khytes sec.

T command successful.
BIHARY mode data connection for bannevrl.gif
er complete.
72731 bytes sent in 13.418econds 5.43Kbytes sec.

Opening BINARY mode data connection for LIST
Hli-16-60 11 :44AM ?h simple .htm
'lelB—EH 11 41“” i : bannerl .gif

221 Goodbye .

IC = wgniubas ic sarmwe b >

After the abowe ftp session a webpage has been setup on the ARMweb. It can be viewed at
http://192.168.0.6/simple.htm.

To make that the main page served by the ARMweb go to the controls page.

Page 542

http://ARMweb
http://Nodes-IP-address
http://192.168.0.6/simple.html
http://ARMweb
http://Nodes-IP-address
http://192.168.0.6/simple.htm

&) Coridium ARMweb - Mozilla Firefox
Ehe Edit Wew - History - Bookmarks - Took Help

for | hetpeif192.168.0.6/

CoriDiuM® ARMweb

Code | Run | Clear | Stop | Controls | Help |
ARMweb

Main Page is: armweb.htm amwebbtm]

Date: 2/28/3642 0:30 AM | Set Date |

Currently Using DHCP assigned IP address [Use Fixed IP address |

IF: 192.168.0.6

Metmask: 255.255.255.0

Currently Do Not Run BASIC Code on boot [PunBASIC Codeonboot |

Currently In Standalone Mode | Switch to Networked Made |

Currently Do Not Use Password [Use Passward |

User: user \user

Pass: pass pass

Email:

SMTP: B

Code space used: 0%

Data space used: 0%
.. Sopyight & e Congllm: Eoty.iv. o2
javaseripk:splZ)

At this point the change will not take affect until the ARMweb is reset, the easiest way is to cycle power on
and off.

From then on, when you navigate to http://192.168.0.6 the simple.html page will be displayed. If you want to
go to the ARMweb BASIC, Controls or Values page, go to http://192.168.0.6/armweb.htm.

See also

= Web Basic
= Web Services

Page 543

http://192.168.0.6
http://192.168.0.6/armweb.htm
http://192.168.0.6
http://192.168.0.6/armweb.htm

MAIL

Syntax

MAIL (string ') ' does not use authenication,

MAIL (message, recipient, user_name, pass_word) 'takes 4 strings and uses authorization

Description

In the first form MAIL will send an email to the address specified in the Controls page. This email is limited to
an address on your mail server/ISP, as it is piggybacking on the authentication of your internet connection.

So you can send an email to yourself.

To use email authentication use the second form, in this case it uses the SMTP address of the controls
page, and logs in using the user_name and pass_word. The email message will be sent to recipient .
recipient requires the full address like somebody@somewhere.com. user_name should NOT include
domain.com as that is set in the Controls page smtp server.

In all cases email is limited to 1 email sent every 10 seconds.

Setup

Go to the Controls web page of the ARMweb.

Enter your email address in the Email input box and press enter.

Enter your SMTP server's address in the SMTP input box and press enter.
Example:

jdoe@coridiumcorp.com

smtp.coridiumcorp.com

Page 544

| %3 Coridium ARMweb - Mozilla Firefox
M File Edt View Hstory Bookmarks - Tools

Baliad i

& Statistiesfo... | || Coridiu. 3

Help

f?g' l http:) farmweb/

COoRiDiUM"

[> G-

o) RebtkSeml. | | | Propeterch.r. | | KIFOAMES0) Wnthy Yool .

ARMweb

Code | Run | Clear | Stop | Controls | Help |

ARMweb

Main Page is: armweb.htm \armwehb. him
Date: 13/27/3436 4:50 PM [SetDate]
Currently Using DHCP assigned IP address [Use Fixed IP address]
IP: 192.168.0.7

Netmask: 255.255.255.0

Security is OFF [Set Security ON]
Currently In Standalone Mode | Switchto Networked Mode |
Currently Do Not Use Password [Use Password |
User: user user

Pass: pass pass

Email: lidoe@coridiumcorp.com

SMTP: Is mitp.cotidiumeorp.com

Code space used: 0%

Data space used: 0%

Copyright @ 2007 Corndium Conp.

-

Reset the node to apply the changes.
The smtp server used must senice the email address chosen.

The maximum size of the MessageList which will be contained in the email Body is 255 bytes.

Example

DIM A$(10)
AS$= "the current temperature is "+STR(temperature)
MAIL (A$)

MAIL ("operator intervention needed") ' send a short email to yourself

MAIL("wake up out there","someone@somewhere.com”,"my_user_name","my_password")

Page 545

See also

= UDP Services
= FTP Services

Page 546

Web Services

<

ARMweb may be accessed from any web browser by going to http://ARMweb or if the node's IP is known
http://192.168.xx.yy.
From here users may enter code a line at a time, download basic files or access all features of ARMweb.

Building a web page

This is not the venue to teach webpage design, but a simple example will be presented here. Various ways
can be used to build a webpage from FrontPage, DreamWeawer, Mozilla-Composer, to your favorite text
editor. This page is built with 2 files, the main page and an image file (banner1.gif). This is the sample
source built as displayed in Mozilla Composer.

File © Edit W¥iew Help
~
'ROCTYPE hemdl PUBLIC "o/ /W30//DTD HTML 4.01 Transitional/ /BNt
<html:=>
<head:>
<meta content="text/html; charset=I20-8859-1" http-equiv="content-type™>
<titlexsimple page</title>
</head:>
<body>
This iz a =simple page<br:>
<hr>

<br:>
Add more info here

</ hody>
</ html> 3

Once you've built a page, use the FTP Services to upload it. Then you will be able to view the page as the
main page for the ARMweb-

simple page - Mozilla Firefox _
File Edit Wiew = History Bookmarks Tools Help %‘?}
|@ - _/,* * @ L “’SE‘ L] htpf192.168.0.8 |"| Ei'] E*|echeckpaypal |"=\.,] :'5-’:':

This 1 a simple page

Home Page

Add more wfo here

Done

See also

Page 547

http://ARMweb
http://192.168.xx.yy.

= Web Basic
= FTP Services

Page 548

Web BASIC

B@f
ARMweb allows for basic code to be embedded in the web pages much like PHP or JavaScript
Variables may be accessed from the User program. The intention is not to place your BASIC code in this
program, but to interact with your program from a webpage. For example if you put an endless loop in the
BASIC embedded in the webpage, the webpage will hang.

Example: Add reading a User variable through the webpage.

Here is a modified version of the webpage loaded from Web Services .

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta content="text/html; charset=IS0-8859-1" http-equiv="content-type">
<title>simple page</title>
</head>
<body>
<?BASIC
print "the VALUE of y is ";y
?>

</body>
</html>

Now from Code page of ARMweb enter the following program (its can be accessed at armweb.htm)

Page 549

CORDIUM" ARMweb

Code | Run | Clear_| Stop |._Cnntmls.| Hel_p-|

Searching for DHCE ol
Flash Values Updated

Mylame ARMwebh

MyIP 192.165.0.5

MyMask Z55.255.255.0

MyDNS 216.171.192.53

rb dhep MAC 00 0D 85 &0 05 1E
b dhep TP 1592.165.0.1

Welcome to ARMbasic[6.Z23b] Copyright 2007,
Coridiwn Corp.
for the ARMexpress with PBARIC extensions

while 1

io(15)=v and 1
y=v+1

wait 1000

loop

rumn
Mriting to Flash...

OE code 0K data prograraned
Executing. ..

Copyright @ 2007 Coridium Corp.

Done

WHILE 1
I0(15) =Y AND 1 'Flash the LED
Y=Y+1
WAIT 1000

LOOP

RUN

The program is running and the value of Y is incremented every half second.
Browse to http://ARMweb/simple.htm

Refreshing the browser will show the updated values of Y.

Example: Executing a BASIC command from a webpage.

Page 550

http://ARMweb/simple.htm
http://ARMweb/simple.htm

To the above example we will add a method to set the variable y to 0, by accessing another webpage that
runs a BASIC program. This may also be accomplished with CGI, see the CGIl examples.

First add an anchor to another webpage that will be served by the ARMweb

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta content="text/html; charset=ISO-8859-1" http-equiv="content-type">
<title>simple page</title>
</head>
<body>
<?BASIC
print "the VALUE of y is ";y
7>

Zero Y

</body>

</html>

) simple page - Mozilla Firefox FBEX
Eile Edit = Miew History Bookmarks Toals © Help Q:}

< - / - @ ﬂi‘ ||_] http:/f192.168.0.8] |v| kb] ||?G]'|a3jf_-ugi¢

the VALTIE of v 1z 209

Sero ¥

[one

Next create another page zero.htm that executes a very short BASIC program to zero the variable y. This
page also returns to the original page.

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional/EN">

<html>

<head>
<meta content="text/html; charset=1SO-8859-1" http-equiv="content-type">
<META HTTP-EQUIV=Refresh CONTENT="1; URL=http://192.168.0.8">
<title>simple page</title>

</head>

<body>

<?BASIC
y=0

?>

Y is Zero

</body>

</html>

Page 551

) simple page - Mozilla Firefox
File Edit = Miew = History Bookmarks Tools Help

@ @;] @ {& L hetpsif192.168.0.8zera | v | B | [Glr oo

T 18 Zero

Connecking o 192.168.0.6... E i

Some notes, currently errors in the BASIC embedded in HTML are not flagged, so be careful, but they will be
visible to the console of BASICtools over the USB connection.

The meta tag highlighted will return you to the original page after 1 second, though not all browsers support
this.

For a CGIl method to accomplish the same see the CGl examples .
WEB BASIC limits

The BASIC code between <?BASIC and ?> is limited to 1450 characters.
The output from a web BASIC program must not exceed 1460 characters.

If the web BASIC contains an infinite loop, the server will hang waiting for the loop to complete.

The Pre-processor is not available to WEB BASIC inside the HTML. That includes #include, #ifdef, #define...

The code between <?BASIC ... ?> and the output is also sent to the UARTO (and via USB Dongle to
BASICtools). This slows down the web server, that can be improved by increasing the baud rate of UARTO,
by executing BAUDO0(937500) in your main program. And to continue to view those debug messages reset
the baud rate in BASICtools.

See also

= Web Services
= FTP Services

Page 552

UDP Services

Syntax

FUNCTION UDPIN (PORT) AS STRING
FUNCTION LASTIP

SUB UDPOUT (IP, PORT, String)
Description

UDPIN and UDPOUT read or write a packet of data on the network using UDP protocol.

The IP address which the data is sent to or received from is designated by /Pa.IPb.IPc.IPd eg.
192.168.0.122, which is packed into a 32 bit word.

Broadcast addressing is not supported for UDPIN or UDPOUT.

The port is designated by PORT.

NODE PING - A special feature of ARMweb listens on port 49152 (0xC000) for any UDP broadcast.
The node will then reply with its Name and IP to identify it on the network.

According to iana.org, The Dynamic and/or Private Ports are those from 49152 through 65535.
User applications should use ports above 49152 to awid other conflicts.

UDPOUT automatically sets the node to listen on the given port.
This allows any reponses to be buffered and subsequently read with UDPIN.

If an application wishes to just read UDPIN it is advised to call UDPIN once to clear any buffered data first.

Each call to UDPIN will wait up to one half second to receive data or return immediately upon receipt.
If no data was read the port is left open for reading, any incoming data will be buffered and available for
subsequent calls.

The maximum size of the returned by UDPIN is 255 bytes.

This function requires version 7.36 of the firmware

Example

'send a string to UDP port 50000 of 192.168.0.122
UDPOUT ((192<<24)+(168<<16)+(0<<8)+122, 50000, "9876543210")

DIM A$(100)
'sit and listen for any incoming UDP on port 50000

A$ ="
WHILE A$(0)=0
A$ = UDPIN (50000)
x = LASTIP
LOOP
PRINT A$; " from "; x>> 24; "."; x>>16 and 255; "."; x>>8 and 255; ".";x and 255

Executing...

ABCDEFGHIJ from 192.168.15.122

See also

= Web Basic
= FTP Services

Page 553

Power On Behavior

<

Initial Power on conditions
On power up all pins are tri-stated on the ARMweb.

If P0O.14 is low during reset, the NXP ISP (in system programming) routine starts. This is how we load
firmware.

If P0.14 is high the Coridium firmware starts up. It looks for a cable plugged into the Phy. If there is none the
board will not start the user program, but drops into the BASIC firmware monitor.

If there is an ethernet cable connected, the ARMweb tries 5 times to get an IP address from a DHCP. There
is a pause of 5 seconds between each try.

If no DHCP responds, and the ARMweb has never seen a DHCP response it goes into a mini-DHCP server
mode. In this mode a PC with a cross-over cable may be directly connected to the ARMweb (or a hub and
standard cables). The ARMweb will act as DHCP sener to the PC. This mode is for diagnostic purposes
and is NOT intended for normal use.

If the DHCP responds the ARMweb accepts the IP address and the boot process continues.

The ARMweb waits 0.5 seconds for an ESC character, which if received on UARTO stops the user program
from running. If no ESC is received the process continues.

If the ARMweb security setting on the controls page has been set, the user program will start. If it is not set
it will drop into the BASIC firmware monitor.

Restoring Factory Defaults

Press and hold the button on pin P0.7 during RESET (on J8.9 in DINkit). The firmware will erase all user
programs, settings and files in the ftp area.

Regaining control with BASICtools

Hit the STOP, which disables web access and enters the monitor. Type in a small program that terminates,
which will erase the looping program. Hit RESET which will drop back into a non AUTORUN state.

BASIC Boot Loader serial commands
When the user program is not running or not at a STOP, the BASIC firmware monitor is functioning.

The ARMweb has a full compiler ready to compile BASIC programs line by line. This can be used with the
TclTerm terminal emulator or the web interface of the ARMweb. When running BASICtools programs are
compiled on the PC and downloaded to the ARMweb. The ARMweb also supports the commands used by
all the others, and these are used to load and control BASIC programs-

= :20.... Coridium hex format line, copy this data into the code buffer

= :00000001FF write the code buffer into the appropriate Flash space

. ARM responds by sending XOFF, writing the Flash, then sends XON followed by +

. ? get vectors for ARMbasic compiler running on the PC

= A launch any user program contained in the Flash space

= @HHHH dump memory starting at HHHH which is a hex value without a preceding $
@ dump memory starting from last address + 32

= "message echo message back

L reserved

= ctl-Cor ESC on reset run the BASIC bootloader rather than the User program

Page 554

Firmware Update

<

After version 7.36, firmware versions will require update via USB. Note what com port the USB is configuered
as, you will need that information below.

ARMweb allows for firmware updates in the field. The following steps should be used.

Download load21xx.exe from the Yahoo ARMexpress Forum Files section.

Also download the latest ARMweb firmware. The name will be of the form webXXXXhex. As of March 2011,
web0746.hex is the latest release.

From a command line run load21xx.exe.

It will prompt you for the proper format of the command to update, the CPU is a 2138 -- see below for an
example session.

Restoring Factory Defaults

Press and hold the button on pin P0.7 during RESET (on J8.9 in DINkit). The firmware will erase all user
programs, settings and files in the ftp area.

firmware update session --

Page 555

http://tech.groups.yahoo.com/group/ARMexpress/files/

i = - =
i B C\Windowsisystem32cmd.exe = | = |£‘__h_I
C:“releas £ ¥) 2
Copyright 288 ridium Corp.. may be used for loading Coridium Hardware, or 1

icensees

I@The ARMmite may be updated with this program, but to update either

an ARMexpre: ~ an HRMexpress LITE reguires the Coridium ARMexpress eval board

Syntax: load21lxx 2168312186 12136:2138 file comport

ARMe xpress Example: load2ixx 2106 expB62B8 . hex comb

ARMmite Example: loadZixx 2183 miteB628.hex comb

ARMe xpress Lite Ex: load2ixx 2183 x1tB628.hex comb

Czwreleaserload2ixx 2138 webB746 . hex comdd

Copyright 2087, Coridium Corp.. may be used for loading Coridium Hardware. or 1

icensees

h Hap = 2138

we hA'746 . hex 4 bytes loaded

S ync hiro

Download done

C:srelease) daidl
>,

Page 556

Tables

Tables
ASCII Character Codes
Bitwise Operators
Operator Precedence
Variable Types

Page 557

http://www.coridiumcorp.com

ASCII Character Codes

ARMbasic uses the standard "ASCII extended" character set. The compiler uses the character set values
32 to 126 which corresponds to SPACE through TILDA.

Characters outside this range may have a special meaning and are interpreted by the terminal emulation
program that is controlling the ARMexpress. Those would include BACKSPACE, TAB, CR and LF. These
characters cause changes in the stream of characters going to or from the ARMexpress module. These
characters may be interpreted differently on a PC vs. a Mac.

Two codes XON and XOFF are used for flow control. When a large ARMbasic program file is sent to the
ARMexpress module, the module may require a delay when writing code into Flash memory. During these
writes of code to Flash, an XOFF character will be sent to the PC that indicates that the PC should pause
sending data. After the block is written (about 0.4 second) an XON will be sent to resume communication.

However when using SERIN or SEROUT, there is no special interpretation of characters, so all codes 0 to

255 may be sent without any change.

The ARMmite requires BASICtools to know whether the user ARMbasic code is running. So now when a
program starts a SOH (001) character is sent and when the program finishes an EOT (004) character is
sent. User code should awoid using these character codes if BASICtools is being used for communication

with the module or board.

Dec Hex Meaning Dec Hex Meaning
000 000 NUL (Nullchar.) 064 040 @ (AT symbol)
001 001 SOH (Startof Header) 065 041 A

002 002 STX (Startof Text) 066 042 B

003 003 ETX (End of Text) 067 043 C

004 004 EOT (End of Transmission) 068 044 D

005 005 ENQ (Enquiry) 069 045 E

006 006 ACK (Acknowledgment) 070 046 F

007 007 BEL (Bell) 071 047 G

008 008 BS (Backspace) 072 048 H

009 009 HT (Horizontal Tab) 073 049 |

010 O00A LF (Line Feed) 074 04A J

011 00B VT (Vertical Tab) 075 04B K

012 00C FF (Form Feed) 076 04C L

013 00D CR (Carriage Return) 077 04D M

014 O00E SO (Shift Out) 078 O04E N

015 O00F Sl (Shiftin) 079 04F O

016 010 DLE (Data Link Escape) 080 050 P

017 011 DC1 (XON) 081 051 Q

018 012 DC2 (Device Control 2) 082 052 R

019 013 DC3 (XOFF) 083 053 S

020 014 DC4 (Device Control 4) 084 054 T

021 015 NAK (Negative Ack) 085 055 U

022 016 SYN (Synchronous Idle) 086 056 V

023 017 ETB (End of Trans. Block) 087 057 W

024 018 CAN (Cancel) 088 058 X

025 019 EM (End of Medium) 089 059 Y

026 01A SUB (Substitute) 090 O05A Z

027 01B ESC (Escape) 091 05B [(left bracket)
028 01C FS (File Separator) 092 05C \ (back slash)
029 01D GS (Group Separator) 093 05D] (rightbracket)
030 O01E RS (Requestto Send) 094 O05E ~ (caret)

031 O01F US (Unit Separator) 095 O05F (underscore)
032 020 SP (Space) 096 060

Page 558

033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063

021

022
023
024
025
026

027
028

029

02A
02B
02C
02D
02E
02F
030
031

032
033
034
035
036
037
038
039
03A
03B
03C
03D
03E
03F

©Co~NoOOOaRhWN-O -

.\)V " A~<-..

(exclamation mark)
(double quote)
(number sign)
(dollar sign)
(percent)
(ampersand)
(single quote)
(left parenthesis)
(right parenthesis)
(asterisk)
(plus)
(comma)
(minus or dash)
(dot)
(forward slash)

(colon)
(semi-colon)
(less than)
(equal sign)
(greater than)
(question mark)

097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

061
062
063
064
065
066
067
068
069
06A
06B
06C
06D
06E
06F
070
071
072
073
074
075
076
077
078
079
07A
07B
07C
07D
07E
07F DEL

| " — " N<XE<E~"T0TOTVOSg3—x—"TQ@ "0Q0OT®

(left brace)
(vertical bar)
(right brace)
(tilde)
(delete)

Page 559

Bitwise Operators

"

Y=AANDB Y=AXORB

A IE LY | |A IE LY |
0 o o o o o |
0 I 0 | [o I I |
K 0 0 | |1 0 I |
K I I | |1 I 0 |
Y=AORB Y=NOTA

A E v I ¥ |
o o o o o |
0 E 1 | [0 |
1 0 I |

1 I I |

Page 560

Operator Precedence

<

Description

When seeral operations occur in a single expression, each operation is evaluated and resolved in a
predetermined order. This called the order of operation or operator precedence. There are three main
categories of operators; arithmetic, comparison, and logical. If an expression contains operators from more
than one category, arithmetic operators are evaluated first, comparison operators next, and finally logical
operators are evaluated last. If operators have equal precedence, they then are evaluated in the order in which
they appear in the expression from left to right. Comparison operators all have equal precedence.

The following table gives the operator precedence for each operator in each category. Operators lower on
the list have a lower operator precedence. Operators on the right have lower precedence than ALL operators
in the column to the left. Arithmetic operators are evaluated before comparison operations, and logical
operators are last.

Parentheses can be used to override operator precedence. Operations within parentheses are performed
before other operation. However, within the parentheses operator precedence is used.

|Arithmetic ||Comparison ||Logica| |
- (Negation) |= < < > <= >= |AND |
*, I (Multiplication and division) || ||OR |
'MOD (Modulus Operator) I [XOR |
|+, - (Addition and subtraction) || ||NOT |

|

<<, >> (Shift Bit Left and Shift Bit Right) I |

See also

= Operator List

Page 561

Variable Types

INAME |BITS ||FORMAT [MIN VAL [MAX VAL |
INTEGER |32 ||signed integer |-2147483648 |+2147483647 |
|ARRAY |[fixed length ||signed integer |-2147483648 |+2147483647 |
STRING variable/max zero terminated 0 +255

length 256 bytes
STRING used as byte array 0 +255

no max length

Page 562

Support

Support
How to contact the developers

How to report a bug
Contributors
Notices

Page 563

http://www.coridiumcorp.com

Updating ARMbasic Firmware

The ARMbasic compiler can be freely downloaded. There is no
charge to run BASIC or C on Coridium Products.

We do offer for sale a BASIC firmware that can be installed on OTHER vendors hardware. There is a demo
version that allows you to try it before you buy it. That demo version limits the code and data space.

This utility is protected. You will need to obtain this program from Coridium which is part of the order
process. For now this will be emailed to you manually from Coridium, until this process is fully automated

Upgrading Firmware on Coridium boards Installing Firmware on other vendors boards
Install Software Install Software
Unlock Firmware installer Install Demo Firmware

Installing purchased full feature Firmware

Page 564

http://www.coridiumcorp.com

Step 1: Install Software

The ARMbasic compiler runs on the PC, in combination with a BASIC support library that is installed on the
ARM. This support library (firmware) will be updated from time to time to support new features. To upgrade

that firmware you will need to purchase the upgrade.

Purchase page from Coridium Web store

This installer is meant for 32 bit Windows either NT, XP or XPx64 and Vista.

The software is downloaded from the web, and run as an installer SETUP program.

iis: FirmUp Setup: Installation Options

| Check the companents you want ko install and uncheck the companents
wou don't want toinstall. Click Mext ko continue.

Select components to install:
Start Menu Shortcuts

Space required: 3.4MB

Cancel | Mullsoft Trskall Systeny w237

Click Next to get started.

i BASICtools Setup: Installation Folder

fFolder, click Browse and select another Folder, Click Install ko skart the
inskallation,

i Destination Folder

Browse, .. 1

Space reguired: 12,0MB
Space available: 414.6G8

Cancel | ullsors Install Svstemiva 57 < Back i Install p

Accept the defaults and Install. You may chose a different target directory.

Page 565

http://www.coridiumcorp.com/catalog/product_info.php?products_id=69

5 FirmUp Setup: Installation Options

4] Completed

b
V) NENENEENENERNNENEERRENER

Show details I

Filisott Tnstall Svstem vz a7 = Hatk i | Close i

The installation will now run, and when it finishes hit Close .

And its as easy as that.

On to Step 2

Page 566

Step 2: Writing the Firmware.

The ARMbasic compiler is freely downloaded, but the utility to install BASIC support libraries is locked. To
unlock that you need to receive a special version of this program from Coridium after purchase. There is a
demo version available for the stand-alone ARMbasic compiler.

The software installed in the previous step would either be FirmUp for firmware upgrades, or NewFirm for the
standalone ARMbasic compiler.

i) Brather HL-52500N

T Coridium 9

) andinu:

| 2 BasICtonls
| & uninstallBasic
. T Firmlp

To run FirmUp/NewFirm you must have network access, as information is downloaded from the Coridium
website.

Step 2: Establish communication

Before you can run ARMbasic you must be able to communicate with the board that contains the NXP
LPCxxxx ARM, and then load ARMbasic firmware onto that board. These 2 steps are accomplished with the
NewFirm/FirmUp program. The installation of Step 1 has installed a Start Menu shortcut.

FirmUp allows you to choose the serial port on the PC from a list of known ports. Ports in that list that are
capitalized were determined to be using FTDI USB serial devices. You must also set the control type, which
for most will be Normal mode. Legacy mode is for those users who hawe inverted the control signals, for
instance to run Hyperterm or Linux, details here . For wireless boards, Manual mode should be chosen.

LOAD DEMO code will erase any other programs on the board, do NOT do this unless you know the
BASIC firmware was already erased.

Page 567

® Coridium Firmware Installer
File Baud SgEH

Feqister
About

"

Select Board type or TEST connection

~

Ry

¥

AR Mrnite

AR MerprezzLI TE
AR Mespress
wirelezzd B mite

Select control
Marmal DTR RTS
Legacy IDTR IRTS

td anial

Select COM port

=

3 F Y Ty Yy YTy

TEST

com]
comz2
com3
comd
comb
comb
comy
comg

comd

LOAD DEMO I

So select your comport and choose the control method. To test that push the soft button TEST on the
FirmUp program. It will prompt you for any action required (like pushing buttons on the target board), and
then test the communication with the PC. If this does not pass, then you cannot go on to the next step.

Loading this DEMO code will erase any other programs on the board, do NOT do this unless you
know the BASIC firmware was already erased.

Page 568

connecting...

Copyright 2008, Caridium Corp.
Synchronizing

.Setting ozcillator

Ok

OF.

Step 3: Install Firmware on ARM

This part of the install needs to be run once to place a base set of libraries on the ARM processor. This
firmware includes the initialization code, communication routines, and a set of subroutines called from the

user ARMbasic program.

C progress

cohneching...

Copyright 2008, Condium Corp.

Synchronizing

SSetting ozcillator

ok

downloading 2103...

Copyright 2003, Caridium Corp.. Single Uzer Firmware update

lmading AR Mmite

AFkmite 127184 bytez loaded
COM-Part 55 ACOME opened. ..
Synchronizing

Setting ozcillator

TR S Eehor LR e
wériting Sector 1 [4096] ...
TR S Eohar 2 [R] e
Download done

Firmware has been succssfully loaded, you can open a terminal window here to verify that.

Page 569

& Coridium Firmware Installe

File | Help

Terminal

Quit Ctrl+

Select Board type or TEST connection

.

i
‘
r
A

o

bl

Sk

i

AR Mrnite
ARMespressLITE
FRO
ARMerpress
SuperPRO

Select contral
Mommal DTR RTS

Legacy IDTR IRTS

k anwal

TesT|

S :

e et
P e e ke s
N R

ﬂl @l A

Select COM port
& COMIBS

e

ridium Corp.

for the SuperPro

Welcome to ADMbasic Fernel [B_05]

Copyright 2010,

Co

Enter; I

Page 570

How to contact the developers

You should contact the ARMbasic developers through Coridium Corp.

= www.coridiumcorp.com
Tech Support monitors the following groups.

= groups.yahoo.com/group/ARMexpress
= groups.yahoo.com/group/gnuarm

Coridium has done custom ports of ARMbasic to other platforms.

» techsupport@coridiumcorp.com

See also

= Reporting a bug

Page 571

http://www.coridiumcorp.com
http://tech.groups.yahoo.com/group/ARMexpress/
http://sourceforge.net/forum/?group_id=122342
mailto:techsupport@coridiumcorp.com

How to report a bug

<

Before reporting a bug, try to make sure it's a bug in ARMbasic and not a bug in your own code. Try to
write a small test that reproduces the problem you are encountering. Read any relevant documentation. If you
show people that you hawe tried to solve your own problem, rather than immediately running for help, you will
be more likely to find people willing to help you.

Be as specific as you can - "The FREQOUT runtime library function fails when it is called with a value of
1234" is much better than "It crashes".

The first place to go in the case you believe you've encountered a bug is
groups.yahoo.com/group/ARMexpress

If you hawe isolated a compiler bug completely, and you have steps to reproduce it and a small piece of
sample code, you can also file a bug report with tech support at support @coridiumcorp.com.

DO NOT file general "it doesn't work!" bug reports in the groups.yahoo.com/group/ARMexpress system.

Only isolated, reproducible bugs should be posted there.

Page 572

http://www.yahoo-groups.ARMexpress.com
http://sourceforge.net/tracker/?group_id=122342&atid=693196
http://www.yahoo-groups.ARMexpress.com

Contributors

<

Mike and Bruce began this project in 2003. The original target was a Cygnal 8051 using the Keil Compiler.
As part of the development, the BASIC was compiled on a PC in both Visual C and GCC. This allowed
quicker development of the language parser. Then a need arose for a hardware debugger on an ARM based
cell phone that used the CodeWarrior compiler. To check out hardware such as new displays and camera
subsystems a new approach was required. At the time it took 3-5 hours to make a change in the main
software on the platform. The BASIC made it possible to verify interfaces in minutes. Then Zilog introduced
the websurfer and the BASIC was ported to that platform with a web interface replacing the serial port. Later
it moved to the Rabbit 3100 modules and was productized on the 3710. This product is the BASIC-8. For
performance the interpreter was replaced with code compiler that performed a two pass compile-link step.
The speed of code increased by at least an order of magnitude. Now Coridium has moved this compiler back
to the ARM using GCC. This time it includes a single pass BASIC compiler that incrementally builds
programs in Flash. Code tables are maintained even after the program is "run" which allows the user the look
and feel of an interpreter. Its easy to check the value of variables when the program has stopped, or to even
change them. Also during this time the BASIC-8 product's web interface was translated to Japanese and is
available as the NAPI-BASIC sener.

The ARMbasic compiler itself is property of the Coridium Corp. and all rights are reserved.

As you can see the compiler has been around the block, and now the world too. Its quite portable as having
lived on 6 different C-platforms. As it has been used extensiwely, its also quite stable. Coridium will continue
to add features as needed and offer customizations for OEM customers.

A number of utilities have been used to produce the ARMexpress system.
Freewrap is used to generate BASICtools from a Tcl/Tk script.

The MinGW cpp is used for pre-processing the BASIC.

The Tcl'ers Wiki Oscilloscope was the source for the basis of the LogicScope code.
ARMbasic was compiled with Winarm GCC.

The ARMbasic documentation has been based on the documents of the GPL WikiPedia and FreeBASIC
project. This document is also covered under the GFDL license.

A PBASIC translator (in development) will use GNU sed v3.02.80 and MinGW cpp.

Page 573

Notices

NO WARRANTY

1. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. CORIDIUM PROVIDES THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

2. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL CORIDIUM BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO
USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The ARMbasic© compiler is distributed as part of hardware sold by Coridium Corp. such as the ARMexpress
module. All rights to the compiler are reserved under copyright to Coridium Corp. It may not be copied or
reverse engineered..

Windows® is a registered trademark of Microsoft Corporation.
VisualBASIC® is a registered trademark of Microsoft Corporation.
BASIC Stamp® is a registered trademark of Parallax, Inc.
PBASIC™ is a trademark of Parallax, Inc.

’C®is a registered trademark of Philips Corporation.

1-Wire® is a registered trademark of Maxim/Dallas Semiconductor.
e SPI™ s a trademark of Motorola

This documentation is released under the GFDL license.

Page 574

Index

>

(9]

ABS

AD

ADDRESSOF

AND

ARM hardware access
ARMweb Ethernet Services
Arrays

[ASC]

ASCII table

AS

BAUD
BAUDO
BAUD1
BYREF
BYTEBUS

BYVAL

CALL
CASE
CHR
CLEAR
CONST
Constants
cos
COUNT

CPU details

o

m

M

DATA

Data Abort
Data Types
DAY
DEBUGIN
DIM

DIR
DO...LOOP
DOWNTO

DXF files

ELSE

ELSEIF

END
ENDFUNCTION
ENDIF
ENDSELECT
ENDSUB

Error Reporting

EXIT

FAQs
Firmware Version 7
FOR..NEXT

FREAD

Page 575

m

I®

(= o

FREQOUT

FUNCTION

Getting Started_
GOSUB._

GOTO

Hardware Access
HEX_

HIGH_

HOUR

HWPWM

Hyperterm

12CIN

12COUT

IF..THEN

IN

INPUT

Installation
INTEGER
Interfacing with TTL
INTERRUPT

10

=

Z

(o)

LEFT_

Legacy Serial Programs_
LEN_

LIST_

LOOP_

LOW

MAIL

MAIN

Matlab

Mechanical Drawings
MIDSTR

MINUTE

Memory Map

MOD

MONTH

NEXT

NOT

ON

Operator List
Operator Precedence
OR

ouT

OUTPUT

OWIN

owouT

Page 576

o

[

Pin diagram -- ARMexpress

Pin diagram -- ARMexpressLITE
Pin diagram -- ARMmite

Pin diagram -- ARMmite wireless
Pin diagram -- ARMweb
Pointers

Power

Power On behavior

Prefetch Abort

Pre-Processor

PRINT

PULSIN

PULSOUT

PWM

PO P1 P2 P3 P4

RCTIME

READ

Register Access
RESTORE

RETURN

REV

RIGHT

RND

RS232 Connections
RUN

Run Away Programs

I

Schematics
SECOND
SELECT CASE
SERIN
SEROUT
SHIFTIN
SHIFTOUT
SIN

SLEEP
Spec Sheets -- CPU
SPIBI

SPIIN
SPIOUT
STEP

STOP

STR
STRCHR
STRCOMP
STRING
Strings
STRSTR

SUB

Page 577

USB Connections

RXDO
RXD1
T v

THEN = VAL

Time Functions = Variables

TIMER w

Timing = WAIT

TO = WEEKDAY

TOLOWER = WHILE

TOUPPER = WRITE

Trouble Shooting X

TTL interface = XOR.

TXD Y

TXDO - YEAR
Misc

TXD1 » &H $ constants_

u

UDPIN

UDPOUT

UNTIL

Page 578

	Table of Contents
	Getting Started
	ARMmite, PRO family, ARMexpress
	Install Software
	Connect USB
	Connect USB to ARMmite PRO
	Writing your first program
	Programming the IO
	More complex programs
	BASICtools Features
	Trouble Shooting

	ARMweb, DINkit(ethernet)
	Install Software
	Connect Ethernet
	USB connection for BASICtools
	Writing a simple Program via the web
	Writing a program with BASICtools
	ARMweb C support

	Wireless ARMmite
	Install Software
	Wire up USB
	Wire up Zigbee
	Wire up Bluetooth
	Wire up Bluetooth Module
	Custom Serial
	BASICtools Features
	Win98 Setup

	ARMbasic for non-Coridium Hardware
	Install Software
	Installiing Demo Firmware
	Writing your first program
	Programming the IO
	More complex programs
	BASICtools Features
	Writing firmware onto the board
	Trouble Shooting

	The Compiler
	About
	Main Features
	Requirements
	Installing
	Running
	ARMbasic and other BASICs
	Differences from PBASIC
	PreProcessor
	Frequently Asked Questions
	Revision History
	Notices

	The Language
	PreProcessor
	#define
	#else
	#ifdef
	#if
	#include
	#undef
	#warning

	Simple Statements
	Assignment
	CALL
	Comments
	END
	EXIT
	GOSUB
	GOTO
	DEBUGIN
	PRINT
	READ
	RETURN

	Compound Statements
	DO...LOOP
	FOR...NEXT
	IF...THEN
	SELECT CASE
	WHILE...LOOP

	Other Statements
	CONST
	DATA
	DIM
	label:
	MAIN
	ON
	RESTORE
	STOP

	Debugging
	@ (dump memory)
	! (set memory)
	CLEAR
	DEBUGIN
	LIST
	RUN

	Functions
	FUNCTION
	SUB
	ENDFUNCTION
	ENDSUB

	Operators List
	& (String concatenation)
	* (Multiplication)
	+ (Addition)
	+ (String concatenation)
	- (Negation)
	- (Subtraction)
	/ (Division)
	< (Less than)
	<= (Less than or equal)
	<> (Inequality)
	= (Equality)
	> (Greater than)
	>= (Greater than or equal)
	AND (Conjunction)
	NOT (Bit-wise complement)
	OR (Disjunction: Inclusive Or)
	<< (Shift-left)
	>> (Shift-right)
	REV
	XOR (Exclusive Or)

	Operator Precedence
	Data Types
	Constants
	Variables
	Arrays
	Strings
	ARM Hardware Access
	AddressOf operation
	Converting Data Types
	[ASC]
	CHR
	HEX
	STR
	VAL

	Alphabetical Keyword List
	* peripheral
	ABS
	AD
	ADDRESSOF
	AND
	AS
	[ASC]
	BYREF
	BYTEBUS
	BYVAL
	CALL
	CASE
	CHR
	CLEAR
	CONST
	DATA
	DEBUGIN
	DIM
	DIR
	DO...LOOP
	DOWNTO
	ELSE
	ELSEIF
	END
	ENDFUNCTION
	ENDIF
	ENDSELECT
	ENDSUB
	EXIT
	FOR
	FREAD
	FUNCTION
	GOSUB
	GOTO
	HEX
	HIGH
	IF...THEN
	IN
	INPUT
	INTEGER
	INTERRUPT
	IO
	LEFT
	LEN
	LIST
	LOOP
	LOW
	MAIN
	MOD
	NEXT
	NOT
	ON
	OR
	OUT
	OUTPUT
	PRINT
	READ
	RESTORE
	RETURN
	REV
	RIGHT
	RND
	RUN
	SELECT CASE
	STEP
	STOP
	STR
	STRCOMP
	STRING
	SUB
	THEN
	TIMER
	TO
	UNTIL
	VAL
	WAIT
	WHILE
	WRITE
	XOR

	Additional Reserved Words

	Runtime Library
	Mathematical Functions
	ABS
	MOD
	RND
	SIN, COS

	String Functions
	String Comparisons
	[ASC]
	CHR
	HEX
	INSTR
	LCASE
	LEFT
	LEN
	MID
	MIDSTR
	RIGHT
	MID
	Single byte access
	STR
	STRCHR
	STRCOMP
	STRSTR
	TOLOWER
	TOUPPER
	UCASE
	VAL

	Hardware Library
	* (ARM periph access)
	Date and Time Functions
	DAY
	HOUR
	MINUTE
	MONTH
	SECOND
	SLEEP
	TIMER
	WAIT
	WEEKDAY
	YEAR

	Flash Access
	FREAD
	WRITE

	Function List
	FREQOUT
	COS
	FREQOUT
	SIN

	HWPWM
	HWPWM

	I2C
	I2CIN
	I2COUT

	OneWire
	OWIN
	OWOUT

	PULSE
	COUNT
	PULSIN
	PULSOUT
	PWM
	RCTIME

	Serial - BitBanged
	BAUD
	RXD
	SERIN
	SEROUT
	TXD

	Serial - Hardware
	BAUD0
	BAUD1
	RXD0
	RXD1
	TXD0
	TXD1

	SHIFTIN, SHIFTOUT
	SHIFTIN
	SHIFTOUT

	SPI
	SPIBI
	SPIIN
	SPIOUT

	Interrupts
	ADDRESSOF
	INTERRUPT
	INTERRUPT SUB
	ON

	Logic Scope
	Timed Samples
	User Sampling
	StandAlone Scope

	Pin Controls
	AD
	BYTEBUS -- ARMweb only
	DAC
	DIR
	HIGH
	IN
	INPUT
	IO
	LOW
	OUT
	OUTPUT
	Port P0..P4

	Miscellaneous
	Aborts

	Hardware Specs
	ARMmite Pin Diagrams
	ARMmite PRO Pin Diagrams
	Wireless ARMmite Pin Diagrams
	ARMexpress LITE Pin Diagram
	ARMexpress Pin Diagram
	ARMweb Pin Diagrams
	DINrail Pin Diagrams
	SuperPRO/ PROplus Pin Diagrams
	Schematics
	Memory Map
	Power On Behavior
	CPU details
	Serial Configuration
	USB use
	USB use with Linux, Hyperterm, TeraTerm
	USB use with MatLab
	RS232 or USB connection
	TTL and other interfacing
	Power
	Timing
	SPI,Microwire
	Using the I2C Bus
	ARM Peripheral Use

	ARMweb Ethernet Services
	Getting started with ARMweb
	USB connection for BASICtools
	armweb.htm PAGE
	Controls Page
	CGI Services
	CGI example
	FTP Services
	Mail Services
	Web Services
	Web BASIC
	UDP Services
	Power On Behavior
	Firmware Update

	Tables
	ASCII Character Codes
	Bitwise Operators
	Operator Precedence
	Variable Types

	Support
	Upgrading Firmware
	Install Firm Up
	Writing Firmware

	How to contact the developers
	How to report a bug
	Contributors
	Notices

	Index

