[image: image1.wmf]

Memorandum

To:
Tony Denault
TCS3 Project Manager

CC:
Dr. Alan Tokunaga
IRTF Division Chief

From:
Jim Harwood
Consulting Software Engineer

Date:
September 14, 2003

Re:
TCS3 Conceptual Design Review

Tony -

Here are my thoughts on the excellent presentation last month (Aug. 21) of the TCS3 Conceptual Design Review.

First, the generalities. I was pleasantly surprised by the depth of preparation and organization of the project and presentation. Having the review simultaneously on both islands using audio/video internet feed was great, even in spite of the dropouts from time to time. Nothing significant was lost. However, I was somewhat disappointed at the lack of summit day crew participation. George, of course, was front and center down at the Hilo complex, and we heard once or twice from Imai, but that was it. The video of the IRTF room showed it empty most of the time. Perhaps the material had been presented to the day crew at another time, or they had more important things to do.

Now for the details.

1. Schedule, Tasks, and Budget

I strongly urge IRTF management to give priority to the TCS3 project and not pull personnel and resources away for other projects, even temporarily. With the generous funding allocated by NASA, this shouldn’t be a difficult problem for management. I point out that all the false starts at a new TCS in the past were the result of insufficient priority, but of course none of those attempts had independent funding..

Creating a working task schedule from the NASA management-oriented original schedule was an excellent idea. Creating such a schedule provides visibility of the interrelatedness of tasks and greatly facilitates task planning and scheduling.

The Conceptual Design Review document has a page for the budget (page 1-4), which shows about $250,000 for software engineering. This is most likely indicative of adequate project funding for this time-intensive job. I bring this up because the IfA has a history of seriously underestimating software development in its projects (Tip-Tilt Secondary project, for example).

2. Project labels and names

I suggest careful thought be given to creating project labels and names (TCS3, T3, “TCS3 computer T1”, RemoteGUI, Facility IO, etc.). I found some of these confusing, or at least non-intuitive. They seem to have been assigned at the moment of need without a lot of forethought. Remember, you are going to be living with these labels for a long, long time and also will have to use them in communications with scientists and engineers outside the project and with non-technical and administrative people. The labels will be embedded in all the documentation, for evermore.

For example, “Remote GUI” tells most people nothing. Naming a TCS3 control computer “T1” that will reside in something called T3 is not a good idea. I would take the time to create a consistent, intuitive naming system for use in this project that will lend itself to modifications and expansion in the future. Get together and brainstorm on this, before these names get frozen in place. We didn’t do this originally, and kept making the mistake as time went on of using the label “New” on things, which came back to haunt us as new became old. We probably wouldn’t have felt the need to use “New” if we had produced a consistent naming system in the first place. I have no problem, by the way, with TCS3 as the overall project name, but in brainstorming you may come up with something even better.

You are not always consistent in your use of “hour angle” (HA) and “right ascension” (RA), though those terms are correctly used in your documents most of the time. I summarize here the characteristics of these two very different quantities:

HOUR ANGLE:

Zero point: the meridian.

Zero rate: stopped with respect to the local platform.

Direction: Positive (increasing) to the west.

Sign: Plus west of the meridian, minus east of the meridian.

RIGHT ASCENSION:

Zero point: the vernal equinox.

Zero rate: stopped with respect to the sidereal sphere. (HA rate = 15.0411 arcs/s)

Direction: Positive (increasing) to the east.

Sign: Unsigned (positive only).

TRANSFORMATION EQUATION:

RA = ST – HA

(ST = sidereal time)

In general, you should use the term HA when referring to the mechanical telescope and the term RA only when you are referring to on-sky items. Please be rigorous about this, because interchanging RA and HA indicates a lack of care and/or experience with astronomical quantities. For example, a drive current indicator should be labeled HA, and the position indication of the telescope on the sky labeled RA. A good rule of thumb is: if the neutral or zero position of a controller or indicator produces or results from a stopped telescope, that controller (joystick, for example) is working with HA, not RA. On the other hand, if you enter a zero rate to track a star, you are entering an RA rate.

Examples of incorrect usage in the set of presentation slides are on Slide 6, MCC Replacement – T3 Display 2, drive current labeled RA; and TO Panel, joystick labeled RA/DEC. (The joystick drives the HA axis, it isn’t meant to position the telescope to an RA coordinate.) There are other examples in the main document. I don’t bring this up just to be picky. Sloppiness in terminology, especially if it migrates to the GUI and formal documentation, makes people wonder what else in the system might be sloppy. By the way, I think the MCC panel 2 and 3 illustrations on your Slide 6 are reversed.

All HA, RA, and sidereal time readouts, displays, and inputs should be carried to two decimal places (hundredths seconds time). Declination should be displayed to tenth arcseconds. Make sure this is consistently done. (I see only tenths seconds time for HA on some of your slides.) We had problems with this “after the fact” on MCC-1 and had to go back and make changes in the software and on the thumbwheel switches. Live and learn!

Historical note: I went round and round with Eric Becklin, the IRTF division chief during the original development, on the use of “Right Ascension” instead of “Hour Angle” on the MCC-3 panel current meters and MCC-2 panel track rate thumbwheels. Eric insisted on RA, even though the quantity was obviously HA. You have to dial in 15.0411, an HA rate, to get sidereal motion. Eric insisted on this over my strenuous objections simply because of “tradition”. Traditionally, the telescopes built in the olden days used RA in their control nomenclature and setting circles, and nobody cared in those primitive days when telescope control was little more than large electric clock motors and noisy solenoid relays.

3. Computer System

Generic Intel computers are fast enough now, and the application slow enough, so that there is no need for a proprietary real-time operating system. Linux should be fine. My only concern is using the standard PCI bus. Because there is no “real” manual mode (operating without computer), computer up-time is critical, and the conditions at the summit (heat, dust, altitude) lend to failures. I wonder why you moved away from the VME bus. Perhaps you can find a PCI-compatible PC backplane that is marketed to high reliability NASA/military applications. The extra cost is well worth it.

You need to develop, or preferably buy, a formal upgrade/modification version control system to keep track of changes to the computer hardware and software. Nothing should be done to the control computer that isn’t documented in the version control system. Only designated people should have access permission to do anything to the control computer. The advantage of a purchased software version control program is that it will force the developers to obey the rules, onerous as they may seem when all hell is breaking loose. I guarantee that if version control is left to manual voluntary procedures, software development will degenerate.

The decision was made during the telephone conference call after the meeting to keep a spare assembled computer system at the summit, to provide a source of spare modules in case of failure of the on-line telescope control computer. You need to be very careful how the spare computer is upgraded and maintained. The spare computer system at the summit should be subject to the same version control system, and upgraded in parallel, with one important exception. Always keep the spare computer one or two version levels behind the on-line computer. This should be a policy enforced at the highest levels of IRTF management. Most software failures, and many hardware failures, are the result of a recent upgrade. The spare computer will be useless if it has the same upgrade that crashed the on-line computer. This comment holds also for hardware upgrades, such as upgrading a video board, etc.

4. Servo Controller

The choice of servo controller is critical. Take the time to research the capabilities of the commercially available controllers, and talk in depth with users. In 1996 I went to a 4-day hardware/software school in Northridge, California on the PMAC controller and found it sufficient for our needs, but just barely. In fact, Peter Onaka was more conservative and felt that there was a glaring insufficiency in the device as applied to telescope control. (I felt we could work around the problem.)

As Peter mentioned during the review, motion controllers are designed for high speed motion, not the extremely slow motion we need for telescope control, where we move an axis at one half the rate of the hour hand on a clock. I’ll discuss the problem with the PMAC, but first, I would like to summarize for reference how the servo drive of the IRTF telescope axes works, so that anybody reading this knows what we are talking about.

A telescope axis drive has two nested servo loops, an inner control loop that applies a rate and the outer position loop. The rate loop consists of a hardwired signal processing network, drive amplifier, torque drive motor(s), drive gear(s), and then the rate encoder(s) (also called tachometers), which feed a voltage representing the instantaneous rate of the axis back into the signal processing network along with the external rate command voltage. The signal processing network is what provides the PID servo characteristics based on the physical characteristics of the telescope axis. The rate loop tries to keep the telescope axis at the commanded rate represented by the loop’s input voltage.

The position loop consists of an up-down counter loaded (run up) by the control computer with a desired displacement count, a D/A converter, the inner rate loop, the bull gear, and the incremental encoder on the bull gear which provides a pulse train that counts down the up-down counter. The position loop tries to keep the up-down counter at a zero count. It controls telescope displacement with a quantum represented by the incremental encoder pulse, or approximately 0.05 arcsecond. For today’s science applications, this is too coarse a quantum. Modern speckle interferometry and adaptive optics require for full performance a quantum of at least 0.02 arcsecond. Your design review documentation shows that you are planning for a quantum of 0.01 arcsecond, an excellent choice, and probably doable with today’s encoder technology.

Note that the telescope servo design I summarized above was provided to the IRTF by a prominent servo engineering consultant and approved by senior NASA engineers at JPL. There was a sentiment put forward by the staff at the design review that the rate encoders could be eliminated. I concur with my colleagues at the review that eliminating the rate encoders alters the entire servo system and is fraught with peril. Leave the basic servo design as is; let’s just put existing hardwired components such as the PID signal processing network and the up/down counter into the servo controller, which is designed with these elements in place and accepts inputs from analog rate encoders and digital incremental encoders.

Now for the slow speed problem with the PMAC controller (1996 version) I mentioned earlier. I am working from memory now, not having access to my PMAC documentation or notes. If I remember correctly, the problem was the way the motion controller processed very slow displacement commands. We felt that there might be a tendency once the controller was in operation controlling the telescope to move it in a jerky fashion, starting and stopping it while attempting to provide a sidereal rate. This was more a function of the limits of the software commands available, rather than inherent coarseness in the device. I thought we could work around this by using rate commands instead of (or along with) the repetitive position commands which is the correct way to control the motion (more on this below). However, Peter was skeptical. We described the problem to a support engineer at PMAC, but the issue was still unresolved when that TCS project was canceled.

I have gone into this detail to illustrate the importance of exhaustively studying the operation of the candidate motion controllers to make sure it won’t bite you after you are already down the road. The controller must be guaranteed to provide smooth motion at the rates expected on the telescope axes while being controlled using incremental position control (not just rate control).
5. Servo Simulator

Creating a laboratory resident servo simulator is an excellent idea, and should receive top priority in its development. A well thought out and designed telescope control simulator will not only markedly reduce installation and checkout time at the observatory, but can be used to debug problems for the life of the telescope. Programming of the control computer and servo controller can be exhaustively tested in the lab prior to being installed at the telescope. I suggest purchasing scaled down drive motors equipped with tachometers which drive a flywheel gear of properly scaled rotational inertia and which is geared to an incremental encoder.

I urge that an early major effort be given to development of this simulator, rather than the actual telescope control system. You can get the PID constants presently used on the hardwired servo and emulate the actual telescope using properly sized flywheels. Everything can be scaled in time and response so that the lab simulator closely emulates the responses of the telescope, except perhaps for time constants. Time spent in creating a close simulation of the real telescope in Hilo will save you a huge amount of time and effort developing and tuning the real telescope servo control on the summit.

6. T3 Electronics

Others are more qualified than I am to comment in detail on this topic. From my limited perspective, it appears that careful thought has been given to the control logic for all the moving observatory components. I suggest you take a detailed inventory of every manually actuated control, safety limit, and drive component currently in use and decide for each and every item whether it is to be integrated into the new system. There are a lot of these, so I suggest formal control such as a spreadsheet, where individuals sign off on each item as they are designed into (or eliminated from) the new system.

7. Encoders

Your plans for utilizing new absolute and incremental encoders are well thought out and are conservative. that’s a good start, and a good fall-back position if you decide to go out on a limb as we discussed during the presentation.

I am adamantly against friction coupled incremental encoders. We who were doing the engineering planning for the telescope control back in the original design days were appalled when we heard that the consultant engineer was specifying friction drive. The reason at the time was because the NASA scientific oversight group (Management Operations Working Group, or MOWG) overseeing the design and construction of the IRTF telescope was unanimously opposed to direct computer control of the telescope and insisted on full manual control. However, the telescope could not perform within specs in manual control if the incremental encoder were geared, because of anticipated gear error. The Kitt Peak 84” telescope had friction coupled incremental encoders, so the servo control consultant copied their configuration. The MOWG, by the way, tolerated the inclusion of microprocessor control in the IRTF design as long as it did not interfere with manual control. At that time the IfA already had an outstanding record of years of successful and reliable computer control of the 88” telescope integrated with computer instrument control, so we were permitted by NASA to indulge in our little folly we called “Standard Mode”, which of course became the primary operating mode. Basing computer control on a microprocessor (LSI-11), rather than a minicomputer, also lent itself to placating the MOWG. But I digress. Let’s get back to the topic of incremental encoders.

I was developing the telescope control software algorithm jointly with the electronics engineer who was providing control registers, indicators, and interrupts which optimized the software logic. I developed a position-based tracking algorithm expanding on an AAT control algorithm by Pat Wallace, rather than a rate-based approach which was standard at other observatories for telescope control at the time, because for blind infrared pointing and tracking you really have to know at a particular instant exactly where the telescope is, not where it should be or is expected to be (which is what you get with rate information). Note that raw position encoder information is useless in directly telling the position of the optic axis. There are a lot of position perturbations between the encoder and the optic axis, all of which are known to the computer.

The key to the positional accuracy of the telescope is the incremental encoder, which is the fundamental quantum of position indication on the sky. A geared encoder is always reproducible, as long as backlash prevention is maintained. A friction-driven encoder is plagued by surface microcreep slippage as well as the slow reduction in roller size by wear, changing its counts per arcsecond constant. Also, a roller encoder has an irrational number of counts per arcsecond, complicating the ongoing calculations by the computer of those days. I needed to do all computations in fixed point arithmetic. Also, floating point has its own precision problems involving round-off or truncation when converting or doing arithmetic operations, and I didn’t need that complication.

Microcreep slippage causes a noticeable accumulating shift in the coordinate reference over relatively short displacements (a few degrees), largely unpredictable and uncorrectable by the computer. This is why the operators have to do a “Pushbutton 5” after each star. The PB-5 operation assigns the entered star position to be the current position reference, resetting the telescope’s raw encoder position to correct for accumulated microcreep. With a geared incremental encoder, the PB-5 operation would need to be done only once per night and we would never deviate from the original position reference. Of course, the computer could handily correct for encoder gear error, but the MOWG didn’t believe it.

Take my advice: Do not use friction coupled incremental encoders.

There are a number of technologies available now for the incremental encoder function that don’t use the traditional rotating disc shaft encoder technology, such as placing a type of encoder tape around the bull gear along the existing encoder surface, or “inductosyn” technology. Tim is familiar with these and other modern technologies. I suggest Tim and Fred make a priority effort to select an incremental encoder technology more suitable to telescope control than the present one.

Note that absolute position encoders are now available with a resolution approaching what is needed for the incremental encoder function. You may be able to combine absolute and incremental encoders in the same device.

The primary specifications for the incremental encoder should be a resolution of 0.01 arcsecond (as you specify in the documentation), no significant hysteresis (backlash), no significant slippage, a bandwidth comfortably wide enough to accommodate the maximum expected slew speed for the fastest axis (declination), and reliable operation at zero degrees centigrade.

8. MCC Replacement

Give careful thought to what we really need to display to the telescope operator and what the telescope operator needs to control, what we need to display and control for the day crew, and for remote observers. I would make this selection of functionality a formal task with assigned responsibilities, perhaps overseen by a support astronomer. The old MCC is a starting point, but surely, after all these years, its functionality can be analyzed and improved with the depth of experience we now have.

Migrating the necessary functionality to screen displays and the keyboard/mouse as illustrated in Slide 6 (“MCC Replacement) is an excellent approach. Place the development effort in keeping it intuitive, simple, and directed to the type of expected user (TO, day crew, observer, etc.). Use analog representations whenever possible such as voltmeter pictures, as you show on the slide, instead of, or at least along with, numerical digits. Show a graphical pictorial representation of the dome slot position relative to the telescope front end in azimuth and elevation. Nobody needs to know that the dome is -14.6 degrees from the telescope. They need to see that the dome needs to be moved to the right about the width of the telescope, and expect to see the alignment change in real time on the graphical representation as they adjust the controls (or turn on automatic dome control).

Programming displays for intuitive recognition of quantities in easily absorbed graphical analog form can be quite time consuming and involved, even with the GTK+ graphic software package, in comparison to throwing digital numbers on the screen with printf statements. I understand that your examples of display presentations on the slide were done primarily as examples for the presentation, and are not meant to represent the finished display design. Therefore I’m not commenting on their contents, except to say that you folks are certainly going in the right direction in organizing the functionality of the displays.

The displays of course should be standard flat panel computer displays, which I believe is what you have in mind.

9. Facility I/O

I would call this “auxiliary observatory functions”, but there is probably an even better name out there.

I am somewhat concerned about the decision to use a proprietary bus and interconnection for this function, the Opto22 SNAP system. It may find itself orphaned in a few years with no support or products (spares). Here again, VME comes to mind as an open alternative. Having to switch the Facility I/O technology to a different proprietary source would be expensive and time consuming, if it would happen at all. (The history at IfA is to keep proprietary systems limping along as long as possible, way after the demise of the vendor.)

Perhaps you have already investigated open technology for this application, and found it unsatisfactory. In any case, you should have on file documentation showing the open alternatives you checked out, and the reasons for their rejection, in case you get challenged on this point.

Apart from being proprietary, the Opto22 SNAP system seems like an excellent choice for this application.

10. Software Documentation

Software documentation, or the lack of it, is usually the weak point of software development projects and is the source of much grief and misery after deployment. I must say that I never did see anything but barely adequate (if that) locally written technical documentation at the IfA. In great measure, the success or lack of success of TCS3 will depend on how well the development and deployment documentation is prepared.

Frankly, I don’t think there is a lot of technical writing talent at the IRTF (or in most small technical project groups). I don’t say this as a criticism of any individuals. My own impression is that there is simply a lack of documentation “culture” present at the IfA. Such a culture continually emphasizes by the highest levels of management the importance of fully documenting projects. When the impetus for documenting lies only with the technical staff it will get short shrift, for the practical reasons that documentation is boring and represents dead time with respect to visible technical progress.

 Project documentation is important enough that either a professional technical writer should be hired or the IRTF should send its key programmers and engineers to take a commercial training course, preferably associated with a proprietary documentation package purchased for the project. Commercial documentation packages can provide for program development to be done exclusively within them. The package automatically provides minimal but adequate technical documentation of the various modules and executables making up the software project. The reports it generates are always up to date and can be used as the basis for higher level technical and user documentation.

Detailed software design documentation should be prepared in advance, not after the fact, as is commonly done. In fact, the software design for the whole project should be documented down to minute details before the first code is written. Programming and system design errors are far more frequent when coding precedes full and complete design.

11. TCS3 Software Design

I see that TCS3 is emphasizing the use of pre-programmed software systems and packages wherever possible, an excellent approach. Pat Wallace, the software engineer formerly with the Anglo-Australian Telescope, originated many of the packages you are planning to utilize, such as SLALIB and TPOINT. Pat originated the concept of a position-based (rather than rate-based) table-driven tracking algorithm. I expanded upon his concept when providing the tracking control for the old TCS. His other software packages relating to astronomical applications are equally useful.

The surface-fitting orthogonal polynomial telescope pointing correction I developed, based on a Master’s thesis at the AAT (not by Pat Wallace), is probably not appropriate for the TCS3 application in that it is a one man band (me). While very successful, and in fact originally providing pointing correction within NASA specifications which were the tightest at the time for any telescope (2 arcsec RMS pointing error over a zenith angle of 60 degrees), there should be no reason why TPOINT won’t produce similar accuracy and in fact also give you information on the individual sources of pointing error that are unavailable with the surface fitting system. In any case, if at some time in the future you want to also utilize the surface fitting system, the existing documentation on the software should be sufficient to get it implemented.

The main source of inaccuracy that might limit the performance of TPOINT is the way the telescope flexure is mathematically modeled. This modeling is difficult to get right everywhere in the sky. I would pay particular attention to this, and include Tim’s services in the analysis. If TPOINT performance is unacceptably poor in certain areas of the sky, you could use an abbreviated version of the surface fitting polynomial system to provide a residual correction on top of TPOINT.

In coming up with a tracking control algorithm, you may be using as a reference a description of an alt-azimuth mounted telescope tracking control algorithm published by Pat Wallace about 10 years ago, and I believe it was used in a previous TCS rebuild attempt. Make sure that the telescope tracking control algorithm you are developing is customized correctly for our equatorial telescope. A support astronomer can help you with this.

For a position-based tracking algorithm, it is necessary to issue position increment updates periodically. The old telescope tracking software had an update rate of exactly ½ the incremental encoder ratio, or approximately 10 Hz. (Making the update rate the same as or 1/2 the encoder ratio allowed fixed point arithmetic to be used in place of irrational floating point numbers.) 10 or even 20 Hz is probably too coarse a position update rate for modern observing. I suggest designing the control hardware and software to incorporate at least 50 Hz as the basic tracking update frequency. Use an exact multiple or fraction of the incremental encoder ratio to simplify calculations.

There is no reason not to use floating point arithmetic in the basic tracking control algorithm, considering today’s processor speeds. However, pay close attention to the possibility of numerical error creeping in from floating point underflow/overflow or bit representation round-off/truncation considerations. Underflow/overflow will generate processor errors, which should not be suppressed. Such errors usually indicate a programming mistake, or input values way out of range. Also, I recommend keeping in mind the possibility of round-off and truncation becoming significant in chains of calculations of very precise quantities. Programmers doing the telescope control software should be alert to this especially in subtractions of close numbers, and scale appropriately if there is any possibility of such inaccuracies being generated. They are extremely difficult to debug, because they are data dependent. In any case, don’t fall into the trap of assuming floating point numbers are exact. Always be suspicious of what is going on with the floating point bit representation. Learn the details of the floating point representation you will be using for the telescope control computer. Run sample calculations if there is any possibility of propagating loss of accuracy due to rounding or truncating floating point mantissas.

12. Remote GUI

I would call this item a “portable telescope controller”, but there is probably an even better name out there.

Having a networked portable telescope controller, essentially a specially programmed laptop, is a great leap forward. Imagine, doing away with the hand paddle, used for over 100 years at telescopes! You can customize the GUI presentation for a particular user. A day crew member would need a somewhat different presentation from a summit observer or a software engineer.

This is a very powerful advance in telescope operations. If a problem is reported at night and a call is made to a day crew member or staff engineer, the support person can plug in from his/her location and take over the telescope, or monitor the details of the local operation as the problem is demonstrated. What a luxury! An audio link with the control room would be highly useful, obviating the need for long distance telephony. A small window containing a motion picture from a video camera looking at the observing floor might be useful, depending on the degree of loading of the network bandwidth.

Important safety decisions will have to be made on the degree of control granted to each class of user of a Remote GUI. The slew function should probably only be allowed to take place from Remote GUIs located within sight of the telescope, or by particular support personnel at remote locations with an observatory person holding down a button and monitoring the slew visually.

It goes without saying that a very strong network firewall at the local router accepting traffic from the remote GUIs is needed for this application. The usefulness of having this functionality on the Internet is much greater in my opinion than the risk of unauthorized access. See below in the next section for comments suggesting engaging a network safety consultant.

Note that before I retired, I created a networked set of programs to permit display of the TCS “TV Monitor Display” updated in real time on any Internet-connected computer that has login access to the summit. It consists of a server daemon running on a summit workstation and any number of client executables downloadable from the summit workstation to local computers. I was able to view the IRTF TCS TV Monitor Display in real time on my home PC, connected to my office workstation over PPP. Software components of that system might prove useful in developing the Remote GUI. The internals of the system are fully documented at the TCS software website I was maintaining. The source and documentation files are in the directory tree that was assigned to me at the time.

13. Safety

The reviewers with long experience with the existing TCS, including Ev Irwin and Peter Onaka, stressed the necessity of keeping safety uppermost in all planning and technical decisions relating to this project. Of course, there was complete concurrence with this on the part of the project engineers during the Review. The “old guard” reviewers had some safety-related issues with some of the concepts presented, such as what might happen if the velocity tachometers were eliminated from the design as tentatively proposed, and whether staff engineers had thought through various failure modes, unlikely though they might be. I pointed out that an individual failure might well cause cascading failures with unpredictable consequences. Therefore, you should give emphasis to designing for multiple levels of emergency response and fallback protection rather than just trying to anticipate and design for every conceivable failure scenario.

With the proliferation of the use of Internet networking at the observatory including TCS3, protection against unauthorized network access to the equipment and resources at the observatory and its links, such as the lab at Hilo, is vital. It may be prudent, in spite of the admittedly deep technical knowledge and experience of the IfA and IRTF computer staff, to employ the services of a prominent network safety consultant to advise on implementing the various protection levels needed. Employing such a consultant, besides giving you additional peace of mind, would provide legal defense of your design if challenged by a lawsuit or NASA criticism stemming from damage and loss due to unauthorized access via the Internet.

Everybody agreed on the wisdom of analyzing all the details of the proposed TCS design with safety for equipment and personnel in mind, and having a future formal review dedicated to safety.

14. Summary of suggestions for IRTF management (Section numbers in parentheses)

IRTF management should give top priority to TCS3 and not reassign project personnel to other projects that might seem to have immediacy at the time. This has been the kiss of death in the past. (1)

See to it that the project team uses a formal version control system, preferably a commercial product, to keep control of modifications and upgrades to project software. Send one or two software engineers to school on the system if at all possible. Otherwise, allow sufficient “dead” time for software personnel to practice with the version control system and be completely comfortable with it before development starts. (3)

IRTF management should be aware at all times of the modification version levels on the TCS operating computer and its spare twin at the summit, and the status of the hardware/software that the version levels represent. See to it that the twin spare is kept one or two version levels behind the control computer, for both hardware and software. (3)

Make sure that the TCS3 team is entirely comfortable with their choice of motion controller. Provide for a trip by IRTF staff software/hardware engineers to the manufacturer’s headquarters, preferably to attend a class on the device, or at least to consult with the manufacturer’s engineers at their labs concerning various approaches to implementing the TCS3 application with their device. (4)

See to it that the TCS3 project, especially the software development, is documented fully and professionally. Documentation at IfA has been weak, and leads to project slippage and unreliable systems. Purchase a commercial development documentation system as recommended by the engineers, send an engineer to school on it, and make sure everybody uses it exclusively and is allowed sufficient time to employ it on a day to day basis. I can’t overemphasize the importance of this task for ultimate success. (10)

One of the powerful features of the Remote GUI concept is the ability to access the telescope’s operation remotely from the network. This feature, though, represents a danger of unauthorized access, with the possibility of producing catastrophic damage and injury. I strongly recommend to IRTF management that a network security consultant be hired to set up network security for Remote GUI logins, at least. Doing so produces an huge gain in legal protection for the IfA and its personnel, UH, and other parties, as well as peace of mind. IfA technical people have excellent qualifications for network security, but are not in the same league as one of the nationally prominent industry consultants. (12)

See to it that a formal project review is scheduled to be entirely involved with the subject of safety, as permeating throughout all elements of the TCS3 project. Safety-related milestones and goals should be set for execution and completion of safety analyses, procedures, and methodology. IRTF management should sign off on all significant safety-related issues that are identified in the project review. (13)

15. Summary of suggestions for the TCS3 project team (Section numbers in parentheses)

Have a formal project session involving the whole TCS3 staff to devise a consistent and intuitive system for creating project names and labels, to be used throughout the project. (2)

You have already settled on the PCI bus, but I recommend reconsidering the VME bus for enhanced reliability. If the PCI bus decision is firm, try to find a source for a high reliability PCI motherboard. (3)

Use a formal version control system to keep track of software modifications and use it exclusively in software development and upgrades. Do the same with hardware upgrades. (3)

The summit telescope control computer will have a hot spare computer at the summit. Keep the hardware and software versions in the spare computer system one or two upgrade levels behind the on-line computer. (3)

Exhaustively research the capabilities of competing motion controllers and verify that they can perform at the slow speeds used for telescopes before selecting one. Consult with users, and if possible, visit the manufacturer’s facility for a course on the instrument, or at least for discussions with their engineers on our application. (4)

Give early priority to developing the servo simulator, rather than the actual telescope servo control system. Set it up to emulate the PID characteristics of the actual telescope insofar as you can and use the servo simulator as a test bed for developing most of the telescope control software and hardware. (5)

Make a detailed inventory of all the existing telescope controls, limits, indicators, and drive components using a spreadsheet. Analyze each item as to its usefulness in the new version and, if needed, formally assign it a place and method for implementation. Also, assign the items to be the responsibility of individual engineers. Finally, a project manager should sign off on the design of each item and its final implementation. This spreadsheet can be the central hardware design inventory document for the telescope control. (6)

Do not, repeat, do not use friction coupled incremental encoders. Just don’t. Period. Investigate other encoder technologies that don’t depend on friction and choose one and go with it. (7)

Make a formal task with assigned responsibilities for determining exactly what observatory functionality is needed for telescope operators, day crew members, and astronomers with respect to soft displays of observatory status and controls. (8)

Minimize the number of numerical digit displays and maximize the number of analog pictorial displays for the MCC replacement. (8)

Rethink the risks of using a single manufacturer’s proprietary bus for the Facility I/O rather than an open bus (VME?). If you keep the proprietary bus, have a strong case on paper for choosing it rather than an open bus, to protect you from possible criticism in the future. (9)

Purchase a commercial software development documentation system, have somebody go to school on it, and have the staff use it for all programming and design. Document the software design to the maximum detail before starting coding. (10)

Emphasize the necessity for producing professional, complete, and appropriate documentation on all phases of the project, during development, not after. If you are in charge of a project group, I suggest that you don’t accept completion milestones unless the relevant documentation passes your review. (10)

Pay particular attention to the pointing model for telescope mount flexure. This is the most likely source of pointing imprecision you may encounter from TPOINT. (11)

Use a 50-hz or faster tracking update frequency. The current frequency is approx. 10 hz,, insufficient for today’s observing. Use an exact round number from the rubidium standard divide chain. If you pick a frequency that is an exact multiple or fraction of the incremental encoder ratio, the calculations for that period’s displacement are simplified. (11)

When coding critical numerical parts of the tracking control algorithm, pay close attention to the possible accumulation of inaccuracies due to floating point truncation and round-off, and protect against overflow/underflow situations. (11)

Carefully determine the degree of control of observatory and telescope functions to be granted to Remote GUI users, for safety reasons. (12)

One of the powerful features of the Remote GUI concept is the ability to access the telescope’s operation remotely from the network. This feature, though, represents a danger of unauthorized access. I strongly recommend hiring a network security consultant to set up network security for Remote GUI logins, for legal protection and peace of mind. I make this suggestion with full acknowledgement of the strong networking talents and abilities of IfA computer personnel. (12)

If they prove useful, I suggest using program components I implemented for the remote “TV Monitor Display” system when doing the Remote GUI. No sense reinventing the wheel! (12)

A formal project review concerned with safety should be convened. Safety-related issues in the system design should be identified and dealt with before too many of the design elements get frozen. (13)

16. Conclusions

For a number of years, the IRTF telescope control system has been uncomfortably close to a catastrophic failure, possibly causing the telescope to be down for weeks if not months. For some reason, this was downplayed or not recognized by past management. The telescope control technology is about 30 years old. The manufacturer of the computer equipment, Digital Equipment Corp., was acquired by Compaq which was acquired by Hewlett-Packard Corp. Any archival technical documentation on that old equipment would be difficult or impossible to locate. Fortunately, numerous spare parts and a couple of spare floppy disk drives have been available, and the day crew has had great longevity and experience in diagnostics and repair.

If a catastrophic failure occurred in that old equipment that was not repairable by swapping components, IRTF and the IfA would have been in serious trouble with NASA and other federal and state agencies. IRTF management has been, in my opinion, lax up to now in not putting a higher priority on the TCS replacement. Fortunately, Alan Tokunaga and Rolf Kudritzki recognized the seriousness of the situation and have worked diligently to get major funding for the TCS replacement. Now, we must cross our fingers and hope that over the next 2 ½ years the old TCS will continue to respond to parts swapping while the new system is developed..

The conceptual approach to replacing the TCS as laid out by Tony Denault and his crew in the recent design review is through, credible, and has an excellent basis for success. The approach is conservative, specifying proven software and hardware technology on doable time scales. With IRTF management’s full support, I would expect TCS3 to provide reliable IRTF observatory control for many years in the future.

Jim Harwood

Legacy Systems Services			G.E.T. 10039106

1928 McKinley St.�Honolulu, HI 96822�(808) 941-0435�harwood@hgea.org

1
0
11

