
ORBit Beginners Documentation V1.2

Ewan Birney

Michael Lausch

Todd Lewis

Stéphane Genaud

Frank Rehberger



ORBit Beginners Documentation V1.2
by Ewan Birney, Michael Lausch, Todd Lewis, Stéphane Genaud, and Frank Rehberger

Published 2003



Table of Contents
1. Introduction .......................................................................................................................1

About this documentation ..........................................................................................1
2. Frequently Asked Questions..........................................................................................3

General Questions........................................................................................................3
What is CORBA?.................................................................................................3
What is ORBit? ....................................................................................................3
Why aren’t you using ILU/MICO/TAO?.......................................................3
Is ORBit stable? ...................................................................................................3
Does ORBit work with other ORBs? ................................................................3
What license does ORBit get distributed with and how does it affect me?3
Why doesn’t ORBit compile with my cc compiler ?......................................4
What is a language binding?.............................................................................4
What language bindings does ORBit provide? ..............................................4
Does ORBit have DII and DSI? .........................................................................4
Does ORBit provide a naming service? ...........................................................4
Can you encrypt a CORBA connection? .........................................................4

Common Coding Problems ........................................................................................4
LD_LIBRARY_PATH not defined ....................................................................4
IOR strings with newlines .................................................................................4
Activating POAManager before servants can handle requests ...................5

3. Installing ORBit ................................................................................................................7
Installing from RPMS ..................................................................................................7
Installing from Source..................................................................................................7
Getting the examples to run .......................................................................................7
Known platforms where ORBit works......................................................................8

4. CORBA concepts...............................................................................................................9
Quick tour of a working client/server ......................................................................9

Definition of the object - the IDL ......................................................................9
Identifying the Object ........................................................................................9
Calling the method.............................................................................................9
Moving the call across the network .................................................................9
Returning the answer.......................................................................................10
Continue.............................................................................................................10

5. First CORBA Programs..................................................................................................11
Examples introduction ..............................................................................................11
Files at a glance...........................................................................................................11
Echo client and server................................................................................................12

Echo client..........................................................................................................12
Echo Server ........................................................................................................15
Compiling and Running the Server and the Client .....................................20

Calculator Client Server ............................................................................................22
Calculator Client ...............................................................................................22
Calculator Server ..............................................................................................24
Compiling and Running the Server and the Client .....................................31

Account Client and Server ........................................................................................32
Account Client ..................................................................................................32
Account Server..................................................................................................34
Compiling the Server and the Client .............................................................39

6. How to do garbage collection under CORBA ...........................................................41
The question................................................................................................................41
Difference between the client and the server .........................................................41
Server-side deactivation ............................................................................................42
Why is this an issue?..................................................................................................43

iii



iv



Chapter 1. Introduction

ORBit is an efficient, free C-based ORB, compliant to CORBA version 2.2. CORBA
stands for Common Object Request Broker Architecture. CORBA in many ways is a
successor to the Remote Procedure Call (RPC) system common on UNIX and other
systems: the best oneline description of CORBA is that it is "Object Orientated RPC".

The key point about CORBA is that it provides a way for two programs to communi-
cate information. The CORBA mechanism allows these two programs to be running
on different machines and written in different programming languages while safely (and
portably) exchanging data. They also could be running in the same program, on the
same machine, in which case the process of communication is much quickeras ORBit
recognises that it does not need to open any communication channel.

ORBit has some important features which distinguish it from other CORBA imple-
mentations. Firstly it is primarily a C-based implementation (using the standard C
mapping), which many other CORBA implementations do not cater to. Secondly it is
a fast implementation, meaning that it moves information on and off the communica-
tion channel into the programs quickly. Thirdly it is efficient in terms of its memory
usage, meaning it can be run on small machines. Fourthly it works, and works in
real life problems. Finally it is free software, that is free in terms of an open license
to change the source code. This means that a number of different people (both aca-
demics and commerical people) can contribute to the source code and that bugs and
problems can be fixed quickly. ORBit unsurprisingly is therefore licensed under the
GNU Public License (GPL). More information about how the terms of this license af-
fect you can be found in the FAQ, and you’re encouraged to read the actual GPL text
that comes in the distribution

The CORBA mechanism is ideal for classic client/server applications, say a graphical
client GUI communicating to a database server, or much simpler applications, such
as one program asking for a mail service from the CORBA system. ORBit was made
principly for the latter case: that is communicating information between different
programs running in a desktop enviroment (the Gnome enviroment). ORBit is a fully
blown generic ORB and can be used in many other applications outside of the gnome
desktop - there is absolutely no requirement to be running Gnome for ORBit.

This documentation is aimed principly at getting people with C programming expe-
rience started with ORBit and some discussion about the challenges of writing ORB
aware software. If you are a looking for a more fluffy description about what CORBA
is I would start at the Resource section below. If you want to know the technical nitty-
gritty about ORBit, go to the source code, or hang out on the ORBit mailing list.

It is also hoped that this documentation will be a starting point for a more technical
orientated documentation about how ORBit is structured and the internal functions.

About this documentation
This documentation is currently maintained by Frank Rehberger
frehberg@gnome.org 1. For the definitive guide about what is going on, always go

to the source code (with any luck, it will have documentation) or the C mapping
document at the OMG. If you think there is mistake with this documentation, please
email me. If you would like to contribute an example or another chapter, please also
get in contact, or post to the orbit mailing list.

This documentation was written with major contributions from Ewan Birney,
Michael Launsch and Todd Lewis, edited by Stéphane Genaud, ORBit update by
Frank Rehberger. It is written in docbook XML. You can get :

• The documentation and examples at http://www.gnome.org/projects/ORBit2/orbit-
docs.tar.gz 2

1



Chapter 1. Introduction

• A PostScript version of this document at
http://www.gnome.org/projects/ORBit2/orbit-docs/orbit.ps

3

Notes
1. mailto:frehberg@gnome.org

2. http://www.gnome.org/projects/ORBit2/orbit-docs.tar.gz

3. http://www.gnome.org/projects/ORBit2/orbit-docs/orbit.ps

2



Chapter 2. Frequently Asked Questions

This is to answer your questions about ORBit and Corba

General Questions

What is CORBA?

CORBA stands for Common Object Request Broker Architecture, standardized by the
Object Management Group (OMG). It consists of an Interface Definition Language
(IDL), language bindings and protocols to allow interoperation between applications

• written in different programming languages

• running in different processes

• developed for different operating systems

A more detailed answer to this question is available at
http://www.omg.org/gettingstarted 1

What is ORBit?

ORBit is an implementation of CORBA, which is used (amongst other things)
in the GNOME project. Active development is done for ORBit2, being a clean
re-implementation from scratch. The old ORBit code is no longer maintained.

Why aren’t you using ILU/MICO/TAO?

Most of GNOME is written in C, both for performance reasons, and because C++
still isn’t as portable and widely available. So integration with CORBA should use
the IDL C mapping, which rules out TAO and MICO. ILU was ruled out because the
license appeared as too restrictive at the time for free software.

Is ORBit stable?

ORBit is used in pretty much any GNOME application, which gives quite some test-
ing for the features used. Other features have seen little or no testing.

Does ORBit work with other ORBs?

Yes. This is one of the primary features of CORBA, and available through the Inter-
net Inter-ORB Protocol (IIOP). There is one pitfall: ORBit has a proprietary security
mechanism to authenticate clients. If interoperability is desired then you might have
to figure out a work-around for this.

What license does ORBit get distributed with and how does it affect
me?

The idl compiler is GNU Public licensed ( GPL). The libaries are Library GPL (L-GPL)
licensed. The code generated from the idl compiler have no restriction. Bascially this
means you can use ORBit in your own applications (including proprietary applica-
tions), the only restriction being that people whom you distribute your working code

3



Chapter 2. Frequently Asked Questions

to must be able to update the ORBit libraries at will. If you wish to modify and dis-
tribute the ORBit idl compiler you have to distribute that modification under the
GPL.

Why doesn’t ORBit compile with my cc compiler ?

ORBit uses some of the extensions that gcc allows, including assignment to casts
and void * pointer arithmetic. More current versions of ORBit will remove these and
eventually it is likely the ORBit will compile with all ANSI C compilers.

You can always install gcc and use that. This will always work.

What is a language binding?

A language binding defines how to use the IDL operations in a programming lan-
guage. There is a client-side mapping which explains how to call operations, and a
server-side mapping which defines how to implement them. The client side mapping
is largely implementation-independent.

On the server side, different ’object adapters’ are provided by ORB vendors; only the
’Portable Object Adapter’ (POA) implemented by ORBit allows portability between
CORBA implementations.

What language bindings does ORBit provide?

At the moment only the C binding. Python and Perl bindings are being seriously
talked about. Bindings (in various degrees of completeness) are also available for
C++, Lisp, Pascal, Python, Ruby, and TCL; others are in-progress.

Does ORBit have DII and DSI?

Yes. Though beware that using DII and DSI in some cases requires the use of dynAny,
which is not supported yet.

Does ORBit provide a naming service?

Yes. In addition, it is possible to use a third-party naming service, e.g. using the --
ORBNamingIOR command line option. The ’Interoperable Naming’ specification is
not yet supported.

Can you encrypt a CORBA connection?

Yes, ORBit supports IIOP over SSL. the implementation is based on OpenSSL and
support client and server side authentication. Frank O’Dwyer did initial work on
this for ORBit.

Common Coding Problems

LD_LIBRARY_PATH not defined

ORBit uses dynamically loadable libraries and these need to be on the
LD_LIBRARY_PATH for things to work.

4



Chapter 2. Frequently Asked Questions

IOR strings with newlines

When you get an object using a stringified IOR, make sure you trim the trailing new-
line from the string before passing it on.

Activating POAManager before servants can handle requests

You must activate the POAManager before incoming requests can be processed

PortableServer_POAManager_activate(PortableServer_POA__get_the_POAManager(poa,&ev),&ev)

Notes
1. http://www.omg.org/gettingstarted/

5



Chapter 2. Frequently Asked Questions

6



Chapter 3. Installing ORBit

Installing from RPMS
The RPMs can be found on many web sites. The whole ORBit package is broken in
two parts (as for most RPMs) : the ORBit2 package contains the libraries to use it,
and the ORBit2-devel package contains the necessary files to develop with ORBit,
i.e. the idl compiler and the headers files.

I recommend the RPM repositories like http://www.rpmfind.org to find the RPMS
that best suit your distribution. Though ORBit is probably installed if you already
have GNOME installed, you must download the ORBit-devel to develop with OR-
Bit.

Installation is quite simple : once the packages are downloaded, go:

bash $ rpm -Uvh ORBit2* ORBit2-devel*

Note that this will upgrade any previous rpm-based installation of ORBit.

Installing from Source
Installing from ORBit2 source code is very easy. You need to have glib version 2.0.0
or later series installed. To see if you have glib installed (and what version) go glib-
config --version

You can obtain the latest version of glib from http://www.gtk.org/

Now just download the latest stable tar ball of ORBit. Start by going to the gnome
web site (http://www.gnome.org/), choose download and find your closest mirror
site.

ORBit installs as a standard gnu application, so going ./configure followed by
make and then getting root permissions and make install will do everything

as expected.

What to do if you don’t have root permissions Basically you want to run all of the above
but with ./configure --prefix=<installation location> which will in-
stall under prefix/bin /libs etc.

If ORBit2 2.7 does not compile with some commercial C compilers, this is because it
uses a number of gcc extensions which are not supported elsewhere. you can always
download gcc and install that for it to work.

Getting the examples to run
Once you have successfully installed orbit, getting the examples
to run should be fine. The examples are available by http from
http//www.gnome.org/projects/ORBit2/orbit-docs.tar.gz 2. Gunzip and untar the

package, perhaps like:

bash $gunzip -c orbit-docs.tar.gz | tar -xvf -

This should build a documentation directory that contains this documentation in
both sgml (docbook) and html, and an examples directory. Move to the examples
directory, and go

bash $./configure
bash $cd echo
bash $make

7



Chapter 3. Installing ORBit

Proceed similarly for the calculator example.

To actually run the echo example, open two windows up. Run echo-server in one
and echo-client in the other (echo-server writes out the file echo.ior which echo-
client reads). If you want to have fun now, compile orbit on a different machine, make
echo-client on the different machine, move echo.ior from the first machine to the
second and run echo-client: eh voila - client/server over tcp/ip with the same code
that ran using unix sockets on a single machine.

Note: From ORBit 0.5.3, IIOP communications over IP sockets are disabled by default for
security reasons. You should create an /etc/orbitrc (for a system-wide settings), or
an ~/.orbitrc (for one user’s setting) containing something like :

ORBIIOPUSock=1
ORBIIOPIPv4=1
ORBIIOPIPv6=0

Alternatively, you can also use command line parameters.

Known platforms where ORBit works
ORBit in theory is portable to any UNIX system (using the GNU configure system to
define the system). Try it out - it will probably work. However, you may want to see
if your platform has definitely been used before

• GNU/Linux, i386 Redhat/SuSE/Debian distributions

• GNU/Linux, alpha

• GNU/Linux, sparc

• Solaris 2.6 (UltraSparc)

• Digital UNIX 4.0

• FreeBSD 2.2.7-RELEASE (Intel)

• IRIX 6.2 (you can get it from http://freeware.sgi.com)

If you manage to compile it on any other platforms, let me know.

Notes
1. http://www.rpmfind.org

2. http//www.gnome.org/projects/ORBit2/orbit-docs.tar.gz

3. http://freeware.sgi.com

8



Chapter 4. CORBA concepts

Please skip this chapter and head straight to the first examples if you are the sort of
person who understands better just by example. The examples chapter can be read
without reading this chapter.

This chapter is to help you get an understanding of all the different terms that are
bandied about ORBs and CORBA.

CORBA is a collection of standards defined by the Object Management Group (OMG
- the sole purpose of the OMG is to provide a framework for people to agree on
standards for CORBA). The OMG does not provide any working implementations of
the CORBA standards, and so can be impartial. Most people who use CORBA only
really keep one or two of these standards in their heads, but all the standards are free
to be read from the OMG web site http://www.omg.org/ 1. However it is good to
have an idea about how all these standards fit together to provide CORBA.

Quick tour of a working client/server
The basic mechanism of CORBA is to run a method (that is a function) of an object
from a separate program (in fact the program need not be separate, but don’t worry
about that yet). Going from one end of this to the other, this is what needs to be
defined.

Definition of the object - the IDL

A definition of what methods can be called on what objects need to be provided for
both the caller and callee. This is done using the Interface Definition Language or IDL
of the object. The only information which is required to make a caller able to call an
object on a remote server is the IDL of the object. Everything else is handled by the
standards defined by the OMG.

Identifying the Object

The calling program needs to identify the (possibly remote) object somehow. This is
done by something called an IOR, which can be represented as a string, and therefore
used as an argument in the program. Decoding the IOR the client can tell the CORBA
protocol and character encoding the server supports, beside much more details.

Calling the method

The calling program needs to actually call the method on the object somehow. This is
done in the programming language of the caller, and the way the IDL of the maps to
the programming language is standardised by the OMG. This is called the Language
Mapping, and all the different ORBs provide at least one mapping. ORBit provides at
the moment a C mapping.

Of course, C is a compiled language, so to write a C program which is going to make
an ORBit call, one needs to compile the IDL of the object one wants to access using
the orbit-idl compiler, and then write a C program which call functions that the orbit-
idl compiler defines, compile this user written code along with the code generated
for the client by the orbit compiler, and link it to the orbit and network libraries.

However for more dynamic languages (eg, Python), a more natural way of using
CORBA is to dynamically load in the IDL definition and use it without any separate
compile phase. The beauty of CORBA is that it supports both mechanisms

9



Chapter 4. CORBA concepts

Moving the call across the network

The function call on the client now gets handled by the Object Request Broker or ORB
and gets translated to the actual TCP/IP request to the server ORB which is handling
the object to be called. The two ORBs communicate via a protocol called the Internet
InterOrb Protocol or IIOP, which is standard. This means that the ORBs could come
from different suppliers, and never had been tested against each other, and yet still
work.

Returning the answer

On the server side, a mirror of the client process happens, translating the request
from TCP/IP packets to an actual call in the programming language used to write
the server. The servant object, written by whoever wrote the server then provides
the return values, and the results are sent back down the ORBs to the client in reply
message.

Continue

This may seem like a lot of work for a rather simple thing, but the idea about hav-
ing so many standards is that some of the standards can change and adapt without
everything in CORBA shifting. Learning about CORBA is usually much easier by
example, so I would dip into the next chapter and come back to this one later.

Notes
1. http://www.omg.org/

10



Chapter 5. First CORBA Programs

Examples introduction
Three different, working programs will be presented in this chapter. They are all very
simple and worth looking over and running (you will find the source code for them
in the examples directory that comes with orbit-docs.tar.gz)

I have tested out the first two examples, echo and calculator and they work
from the code in this document. The actual code with makefiles can be found at
http://www.gnome.org/projects/ORBit2/orbit-docs.tar.gz 1. However, it is likely

that the code is not is well written as we would like, and I am sure it could get better.
Please drop me a note if you would like to contribute something to the examples,
preferably as patches to the code in examples directory and the orbit.xml document.

Files at a glance
Before we present these examples, we should sketch what files are generated or writ-
ten by the programmer in a typical ORBit application. The load of files generated
from the IDL specification may seem very complex at a first glance, and the fol-
lowing table tries to make clearer which files are really important. The first file the
programmer must write in an ORBit application, is the IDL file. For a f.idl IDL
specification, running

bash $orbit-idl-2 --skeleton-impl f.idl

will produce most of the needed files to start writing the application (you can see it
as a framework). They are listed in the following table:

File Usage

f-stubs.c do not edit (translation of your IDL)

f-skels.c do not edit (translation of your IDL)

f-common.c do not edit (generated from IDL)

f.h do not edit

f-skelimpl.c add the code of the server methods

Files remaining to write :

f-client.c write the client code

f-server.c write the generic code for servant
creation

The first three files deal with communication implementation and are automatically
generated from your IDL file. The f-skelimpl.c file contains the framework of
the servant functions: you should find near the end of the file, function prototypes
corresponding to the one you have declared in your IDL. You have to fill in these
function with the real code. Of course, you should keep this file only on the server
side since it is of no use for the client.

The f-client.c (you can choose another name) is to be written by the program-
mer. This is where the programmer initializes the ORB and binds the client to the
server using the IOR.

11



Chapter 5. First CORBA Programs

The f-server.c (you can choose another name) must also be written but this part
is rather generic and is usually copied from an existing application and hardly ever
modified during the application developpement. It always deals with the ORB ini-
tialization and the POA creation so that servants are spawned to execute the server
code defined in f-skelimpl.c .

Echo client and server
The aim for this example is to run a client which accepts typed input and this is
printed out on the server on stdout

The echo functionality is represented in the following very short IDL.

Example 5-1. Echo IDL file

// MyFirstOrbit program - The Echo object
//
// All this does is pass a string from the
// client to the server.

interface Echo {
void echoString(in string input);
};

The interface definition is the key part of the definition. Each interface defines an ob-
ject which can have methods on it. In this case there is one method, which takes a
string argument and returns nothing. The in declaration before the argument indi-
cates that this arguments is only passed into the method. Generally all arguments are
in arguments, for the first case.

This idl is found in the file echo.idl. To compile the idl one does the following
step: $ orbit-idl-2 --skeleton-impl echo.idl which will produce most of
the needed files to start writing the echo application (you can see it as a framework).
They are listed in the following table:

File Usage for Client Usage for Server

echo.h readonly readonly

echo-common.c readonly readonly

echo-stubs.c readonly -

echo-skels.c - readonly

echo-skelimpl.c - template for user code

Files remaining to write are listed in following table, starting with echo-client.c in fol-
lowing chapter.

echo-client.c write the client code

echo-server.c write the generic code for servant
creation

12



Chapter 5. First CORBA Programs

Echo client

The client code is shown here

Example 5-2. echo-client.c

/*
* Echo client program.. Hacked by Ewan Birney <birney@sanger.ac.uk>
* from echo test suite, update for ORBit2 by Frank Rehberger
* <F.Rehberger@xtradyne.de>
*
* Client reads object reference (IOR) from local file ’echo.ior’ and
* forwards console input to echo-server. A dot . as single character
* in input terminates the client.
*/

#include <stdio.h>
#include <orbit/orbit.h>

/*
* This header file was generated from the idl
*/

#include "echo.h"

/**
* test for exception
*/
static
gboolean
raised_exception(CORBA_Environment *ev)
{
return ((ev)->_major != CORBA_NO_EXCEPTION);
}

/**
* in case of any exception this macro will abort the process
*/
static
void
abort_if_exception(CORBA_Environment *ev, const char* mesg)
{
if (raised_exception (ev)) {
g_error ("%s %s", mesg, CORBA_exception_id (ev));
CORBA_exception_free (ev);
abort();

}
}

/*
* main
*/
int
main (int argc, char *argv[])
{
FILE * ifp;
char * ior;
char filebuffer[1024];

CORBA_Environment ev[1];
CORBA_ORB orb; /* ORB */
Echo echo_client; /* the service */

/*
* Standard initalisation of the orb. Notice that
* ORB_init ’eats’ stuff off the command line

13



Chapter 5. First CORBA Programs

*/

CORBA_exception_init(ev);
orb = CORBA_ORB_init(&argc, argv, "orbit-local-orb", ev);
abort_if_exception(ev, "init ORB failed");

/*
* Get the IOR (object reference). It should be written out
* by the echo-server into the file echo.ior. So - if you
* are running the server in the same place as the client,
* this should be fine!
*/

ifp = fopen("echo.ior","r");
if( ifp == NULL ) {
g_error("can not open \"echo.ior\"");
abort ();

}

fgets(filebuffer,1023,ifp);
ior = g_strdup(filebuffer);

fclose(ifp);

/*
* Actually get the object. So easy!
*/

echo_client = CORBA_ORB_string_to_object(orb, ior, ev);
abort_if_exception(ev, "bind failed");

/*
* Ok. Now we use the echo object...
*/

g_print("Type messages to the server\n"
"a single dot in line will terminate input\n");

while( fgets(filebuffer,1024,stdin) ) {
if( filebuffer[0] == ’.’ && filebuffer[1] == ’\n’ )
break;

/* chop the newline off */
filebuffer[strlen(filebuffer)-1] = ’\0’;

/* using the echoString method in the Echo object
* this is defined in the echo.h header, compiled from
* echo.idl */

Echo_echoString(echo_client,filebuffer,ev);
abort_if_exception(ev, "service not reachable");

}

/* Clean up */
CORBA_Object_release(echo_client, ev);
abort_if_exception(ev, "releasing service failed");

CORBA_ORB_destroy (orb, ev);
abort_if_exception(ev, "cleanup failed");

/* successfull termination */
exit (0);
}

The client can be broken down into three distinct sections.

14



Chapter 5. First CORBA Programs

• Initialising the ORB

• Getting the Object

• Using the Object

The key part of the client is when it calls the echoString method on the server. The idl
definition

void echoString(in string input);

Ends up becoming the following definition in the echo.h header file generated from
the idl

extern void Echo_echoString(Echo obj,
CORBA_char *astring,
CORBA_Environment *ev);

This follows the accepted rules for Object based programming in C, that is

• The Object is passed in as the first argument to the function

• The method name is qualified by the object name beforehand

• Exceptions are handled by a structure that is passed in as the last argument to the
function

Of course, you don’t have to follow this in your own code, but this is how the CORBA
C mapping works, and it is not a bad solution.

Echo Server

The server is basically more complicated than the client, but has some commonality
with the client. The server has to at the end of the day go into a main loop where it
listens to connections. Before that it has to create the ORB and bind its own imple-
mentations of the objects to the ORB.

In real life servers, this gets much more complicated, but as this is an example, it is
pretty simple once you get through the ORB initialisation process.

Example 5-3. echo-server.c source code

/*
* echo-server program. Hacked from Echo test suite by
* %lt;birney@sanger.ac.uk>, ORBit2 udpate by Frank Rehberger
* <F.Rehberger@xtradyne.de>
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <orbit/orbit.h>

#include "echo.h"
#include "echo-skelimpl.c"

/**
* test for exception */
static
gboolean
raised_exception(CORBA_Environment *ev) {
return ((ev)->_major != CORBA_NO_EXCEPTION);
}

15



Chapter 5. First CORBA Programs

/**
* in case of any exception this macro will abort the process */
static
void
abort_if_exception(CORBA_Environment *ev, const char* mesg)
{
if (raised_exception (ev)) {
g_error ("%s %s", mesg, CORBA_exception_id (ev));
CORBA_exception_free (ev);
abort();

}
}

static CORBA_ORB global_orb = CORBA_OBJECT_NIL; /* global orb */

/* Is called in case of process signals. it invokes CORBA_ORB_shutdown()
* function, which will terminate the processes main loop.
*/
static
void
echo_server_shutdown (int sig)
{
CORBA_Environment local_ev[1];
CORBA_exception_init(local_ev);

if (global_orb != CORBA_OBJECT_NIL)
{

CORBA_ORB_shutdown (global_orb, FALSE, local_ev);
abort_if_exception (local_ev, "caught exception");

global_orb=CORBA_OBJECT_NIL;
}

}

/* Inits ORB @orb using @argv arguments for configuration. For each
* ORBit options consumed from vector @argv the counter of @argc_ptr
* will be decremented. Signal handler is set to call
* echo_server_shutdown function in case of SIGINT and SIGTERM
* signals. If error occures @ev points to exception object on
* return.
*/static
void
echo_server_init (int *argc_ptr,

char *argv[],
CORBA_ORB *orb,
CORBA_Environment *ev)

{
/* init signal handling */

signal(SIGINT, echo_server_shutdown);
signal(SIGTERM, echo_server_shutdown);

/* create Object Request Broker (ORB) */

(*orb) = CORBA_ORB_init(argc_ptr, argv, "orbit-local-orb", ev);
if (raised_exception(ev)) return;
}

/* Creates servant and registers in context of ORB @orb. The ORB will
* delegate incoming requests to specific servant object. @return
* object reference. If error occures @ev points to exception object
* on return.
*/
static
Echo

16



Chapter 5. First CORBA Programs

echo_server_activate_service (CORBA_ORB orb,
CORBA_Environment *ev)

{
Echo servant = CORBA_OBJECT_NIL;
PortableServer_POA poa = CORBA_OBJECT_NIL;
PortableServer_POAManager poa_manager = CORBA_OBJECT_NIL;

/* get Portable Object Adaptor (POA) */

poa =
(PortableServer_POA) CORBA_ORB_resolve_initial_references(orb,

"RootPOA",
ev);

if (raised_exception(ev)) return CORBA_OBJECT_NIL;

/* create servant in context of poa container */

servant = impl_Echo__create (poa, ev);
if (raised_exception(ev)) return CORBA_OBJECT_NIL;

/* activate POA Manager */

poa_manager = PortableServer_POA__get_the_POAManager(poa, ev);
if (raised_exception(ev)) return CORBA_OBJECT_NIL;

PortableServer_POAManager_activate(poa_manager, ev);
if (raised_exception(ev)) return CORBA_OBJECT_NIL;

return servant;
}

/* Writes stringified object reference of @servant to file
* @filename. If error occures @ev points to exception object on
* return.
*/
static
void
echo_server_export_service_to_file (CORBA_ORB orb,

Echo servant,
char *filename,
CORBA_Environment *ev)

{
CORBA_char *objref = NULL;

FILE *file = NULL;

/* write objref to file */

objref = CORBA_ORB_object_to_string (orb, servant, ev);
if (raised_exception(ev)) return;

if ((file=fopen(filename, "w"))==NULL)
g_error ("could not open %s\n", filename);

/* print ior to terminal */
fprintf (file, "%s\n", objref);
fflush (file);
fclose (file);

CORBA_free (objref);
}

/* Entering main loop @orb handles incoming request and delegates to
* servants. If error occures @ev points to exception object on
* return.
*/
static

17



Chapter 5. First CORBA Programs

void
echo_server_run (CORBA_ORB orb,

CORBA_Environment *ev)
{

/* enter main loop until SIGINT or SIGTERM */

CORBA_ORB_run(orb, ev);
if (raised_exception(ev)) return;

/* user pressed SIGINT or SIGTERM and in signal handler
* CORBA_ORB_shutdown(.) has been called */

}

/* Releases @servant object and finally destroys @orb. If error
* occures @ev points to exception object on return.
*/
static
void echo_server_cleanup (CORBA_ORB orb,

Echo servant,
CORBA_Environment *ev)

{
/* releasing managed object */

CORBA_Object_release(servant, ev);
if (raised_exception(ev)) return;

/* tear down the ORB */
if (orb != CORBA_OBJECT_NIL)
{

/* going to destroy orb.. */
CORBA_ORB_destroy(orb, ev);

if (raised_exception(ev)) return;
}

}

/*
* main
*/

int
main (int argc, char *argv[])
{
Echo servant = CORBA_OBJECT_NIL;

CORBA_Environment ev[1];
CORBA_exception_init(ev);

echo_server_init (&argc, argv, &global_orb, ev);
abort_if_exception(ev, "init failed");

servant = echo_server_activate_service (global_orb, ev);
abort_if_exception(ev, "activating service failed");

echo_server_export_service_to_file (global_orb,
servant,
"echo.ior",
ev);

abort_if_exception(ev, "exporting IOR failed");

echo_server_run (global_orb, ev);
abort_if_exception(ev, "entering main loop failed");

echo_server_cleanup (global_orb, servant, ev);
abort_if_exception(ev, "cleanup failed");

exit (0);
}

18



Chapter 5. First CORBA Programs

The key part of the server is when it calls servant = impl_Echo__create (poa, ev);.
This is a function defined in file echo-skelimpl.c being included at top of echo-
server.c. For each object method of echo object interface file echo-skelimpl.c con-
tains a predefined implementation that must be extended by user (specific regions
are marked by comments); incoming requests are delegated by object manager to
specific method implementation. - For echo server application only a single line for
method echoString(..) must be inserted, this line will print the echo-string to con-
sole. Let’s have a look at echo-skelimpl.c that has been generated by orbit-idl-2
tool as template for user. Therefor only a single line has been added by user g_print
("%s\n", input); at very end of file in function body impl_Echo_echoString(..).

Note: Constructor (create) and Destructor (destroy) are defined, too. How to extend those
functions defining lifecycle of objects will be subject to next chapters.

Example 5-4. echo-skelimpl.c

#include "echo.h"

/*** App-specific servant structures ***/

typedef struct
{

POA_Echo servant;
PortableServer_POA poa;

/* ------ add private attributes here ------ */
/* ------ ---------- end ------------ ------ */

}
impl_POA_Echo;

/*** Implementation stub prototypes ***/

static void impl_Echo__destroy(impl_POA_Echo * servant,
CORBA_Environment * ev);

static void
impl_Echo_echoString(impl_POA_Echo * servant,

const CORBA_char * input, CORBA_Environment * ev);

/*** epv structures ***/

static PortableServer_ServantBase__epv impl_Echo_base_epv = {
NULL, /* _private data */
(gpointer) & impl_Echo__destroy, /* finalize routine */
NULL, /* default_POA routine */

};
static POA_Echo__epv impl_Echo_epv = {

NULL, /* _private */
(gpointer) & impl_Echo_echoString,

};

/*** vepv structures ***/

static POA_Echo__vepv impl_Echo_vepv = {
&impl_Echo_base_epv,
&impl_Echo_epv,

};

/*** Stub implementations ***/

static Echo
impl_Echo__create(PortableServer_POA poa, CORBA_Environment * ev)

19



Chapter 5. First CORBA Programs

{
Echo retval;
impl_POA_Echo *newservant;
PortableServer_ObjectId *objid;

newservant = g_new0(impl_POA_Echo, 1);
newservant->servant.vepv = &impl_Echo_vepv;
newservant->poa =

(PortableServer_POA) CORBA_Object_duplicate((CORBA_Object) poa, ev);
POA_Echo__init((PortableServer_Servant) newservant, ev);
/* Before servant is going to be activated all
* private attributes must be initialized. */

/* ------ init private attributes here ------ */
/* ------ ---------- end ------------- ------ */

objid = PortableServer_POA_activate_object(poa, newservant, ev);
CORBA_free(objid);
retval = PortableServer_POA_servant_to_reference(poa, newservant, ev);

return retval;
}

static void
impl_Echo__destroy(impl_POA_Echo * servant, CORBA_Environment * ev)
{

CORBA_Object_release((CORBA_Object) servant->poa, ev);

/* No further remote method calls are delegated to
* servant and you may free your private attributes. */

/* ------ free private attributes here ------ */
/* ------ ---------- end ------------- ------ */

POA_Echo__fini((PortableServer_Servant) servant, ev);
}

static void
impl_Echo_echoString(impl_POA_Echo * servant,

const CORBA_char * input, CORBA_Environment * ev)
{

/* ------ insert method code here ------ */
g_print ("%s\n", input);
/* ------ ---------- end ------------ ------ */

}

Compiling and Running the Server and the Client

The following makefile can be used to compile both, the client and the server. Be
aware of the location of ORBit : on my system it has been installed under /usr but
it could be /usr/local if you have built it from the sources, and hence the path for
ORBIT variables below may vary. If using ORBit binary packages shipped with your
Linux or BSD/Unix distribution the makefile below will do.

Example 5-5. Makefile

PREFIX=/usr/local
CC = gcc
TARGETS=echo-client echo-server
ORBIT_IDL=orbit-idl-2
CFLAGS=-DORBIT2=1 -D_REENTRANT -I$(PREFIX)/include/orbit-2.0 \

-I$(PREFIX)/include/linc-1.0 -I$(PREFIX)/include/glib-2.0 \
-I$(PREFIX)/lib/glib-2.0/include

LDFLAGS= -Wl,--export-dynamic -L$(PREFIX)/lib -lORBit-2 -llinc -lgmodule-2.0 \

20



Chapter 5. First CORBA Programs

-ldl -lgobject-2.0 -lgthread-2.0 -lpthread -lglib-2.0 -lm
IDLOUT=echo-common.c echo-stubs.c echo-skels.c echo.h

all: $(IDLOUT) echo-client echo-server

echo-client : echo-client.o echo-common.o echo-stubs.o
echo-server : echo-server.o echo-common.o echo-skels.o

$(IDLOUT): echo.idl
$(ORBIT_IDL) echo.idl

clean:
rm -rf *.o *~ $(IDLOUT)

distclean: clean
rm -rf echo-client echo-server

Example 5-6. Invoking make

[frehberg@papaya echo]$ make
orbit-idl-2 echo.idl
orbit-idl-2 2.4.1 compiling
small mode, show preprocessor errors, passes: stubs skels common headers
skel_impl imodule

gcc -DORBIT2=1 -D_REENTRANT -I/usr/include/orbit-2.0 -I/usr/include/linc-1.0
-I/usr/include/glib-2.0 -I/usr/lib/glib-2.0/include -c -o echo-client.o
echo-client.c
gcc -DORBIT2=1 -D_REENTRANT -I/usr/include/orbit-2.0 -I/usr/include/linc-1.0
-I/usr/include/glib-2.0 -I/usr/lib/glib-2.0/include -c -o echo-common.o
echo-common.c
gcc -DORBIT2=1 -D_REENTRANT -I/usr/include/orbit-2.0 -I/usr/include/linc-1.0
-I/usr/include/glib-2.0 -I/usr/lib/glib-2.0/include -c -o echo-stubs.o
echo-stubs.c
gcc -Wl,--export-dynamic -lORBit-2 -llinc -lgmodule-2.0 -ldl -lgobject-2.0
-lgthread-2.0 -lpthread -lglib-2.0 -lm echo-client.o echo-common.o
echo-stubs.o -o echo-client
gcc -DORBIT2=1 -D_REENTRANT -I/usr/include/orbit-2.0 -I/usr/include/linc-1.0
-I/usr/include/glib-2.0 -I/usr/lib/glib-2.0/include -c -o echo-server.o
echo-server.c
gcc -DORBIT2=1 -D_REENTRANT -I/usr/include/orbit-2.0 -I/usr/include/linc-1.0
-I/usr/include/glib-2.0 -I/usr/lib/glib-2.0/include -c -o echo-skels.o
echo-skels.c
gcc -Wl,--export-dynamic -lORBit-2 -llinc -lgmodule-2.0 -ldl -lgobject-2.0
-lgthread-2.0 -lpthread -lglib-2.0 -lm echo-server.o echo-common.o
echo-skels.o -o echo-server

After calling make in terminal window all sources have been compiled and you
should open a second terminal window. In the first window we will start the server
with the command: ./echo-server. The server should print a very long string into the
file echo.ior, starting with the 4 character sequence IOR: In the second window
we will print content of echo.ior to console and start the client with the command
./echo-client. You should not try to type the IOR string, instead use the cut and paste
functionality of your terminal.

Example 5-7. Terminal 1 - Starting Echo Server

[frehberg@papaya echo]$ ./echo-server

Example 5-8. Terminal 2 - Starting Echo Client

[frehberg@papaya echo]$ cat echo.ior
IOR:010000000d00000049444c3a4563686f3a312e3000000000030000000054424f540000000101
020005000000554e4958000000000700000070617061796100002e0000002f746d702f6f72626974
2d66726568626572672f6c696e632d323230662d302d323532356663323537306430340000000000
0000caaedfba58000000010102002e0000002f746d702f6f726269742d66726568626572672f6c69
6e632d323230662d302d323532356663323537306430340000001c00000000000000a6361450d7ea
e8a8dc29282828282828010000008af91bdf01000000480000000100000002000000050000001c00
000000000000a6361450d7eae8a8dc29282828282828010000008af91bdf01000000140000000100
000001000105000000000901010000000000
[frehberg@papaya echo]$ ./echo-client

21



Chapter 5. First CORBA Programs

Type messages to the server
a single dot in line will terminate input:

Calculator Client Server
This example will take you further into understanding how to actually make a work-
ing server, using the support that comes from ORBit. It will demonstrate handling of
replies from server.

The system will not be doing very much. The server just provides two functions, one
to add two numbers and one to subtract two numbers. The first thing you have to do
is to write the IDL files for the server. In our example it is very simple.

Example 5-9. calculator.idl

interface Calculator
{

double add(in double number1, in double number2);
double sub(in double number1, in double number2);

};

Then you have to generate the skeleton and stub files. In addition to these two files
the ORBit IDL compiler also generates a common file and a header file. The common
file implements the memory management functions and other things, useful in the
client as well as in the server. The sequence to generate the C source files is rather
simple. $ orbit-idl-2 --skeleton-impl calculator.idl geenrates all the files
we will use in this example.

File Usage for Client Usage for Server

calculator.h readonly readonly

calculator-common.c readonly readonly

calculator-stubs.c readonly -

calculator-skels.c - readonly

calculator-skelimpl.c - template for user code

Files remaining to write are listed in following table, starting with calculator-client.c
in following chapter.

calculator-client.c write the client code

calculator-server.c write the generic code for servant
creation

Calculator Client

The next thing you have to do is to write the server and client programs. We start
with the client, because it’s easier and not very complicated.

A simple implementation of the client might look like this

22



Chapter 5. First CORBA Programs

Example 5-10. calculator-client.c

/* calculator-client.c hacked by Frank Rehberger
* <F.Rehberger@xtradyne.de>. */

#include <assert.h>
#include <stdio.h>
#include <orbit/orbit.h>

#include "calculator.h"

/**
* test for exception
*/
static
gboolean
raised_exception(CORBA_Environment *ev)
{
return ((ev)->_major != CORBA_NO_EXCEPTION);
}

/**
* in case of any exception this macro will abort the process
*/
static
void
abort_if_exception(CORBA_Environment *ev, const char* mesg)
{
if (raised_exception (ev)) {
g_error ("%s %s", mesg, CORBA_exception_id (ev));
CORBA_exception_free (ev);
abort();

}
}

/*
* main
*/
int
main(int argc, char* argv[])
{
char* ior;

CORBA_ORB orb;
CORBA_Object server;

CORBA_double result=0.0;

CORBA_Environment ev[1];
CORBA_exception_init(ev);

/* init - ORB might ’eat’ arguments from command line */
orb = CORBA_ORB_init(&argc, argv, "orbit-local-orb", ev);

abort_if_exception(ev, "init ORB failed");

/* make sure servant’s IOR is given as command argument */
if (argc<2)
g_error ("usage: %s <ior>", argv[0]);

ior=argv[1];

/* establish servant connection */
server = CORBA_ORB_string_to_object(orb, ior, ev);

abort_if_exception(ev, "bind failed");

/*
* use calculator server

23



Chapter 5. First CORBA Programs

*/
result = Calculator_add(server, 1.0, 2.0, ev);

abort_if_exception(ev, "service not reachable");

/* prints results to console */
g_print("Result: 1.0 + 2.0 = %2.0f\n", result);

/* tear down object reference and ORB */
CORBA_Object_release(server,ev);

abort_if_exception(ev, "releasing service failed");

CORBA_ORB_destroy (orb, ev);
abort_if_exception(ev, "cleanup failed");

/* successfull termination */
exit(0);
}

Rather simple, but full of unexplained stuff. Let’s take a close look to the defined
variables.

env

This varaible is used to hold information about exceptions which might have
occurred during a function call. How to use this variable to detect errors in func-
tion will be explained in a later example.

orb

This is the ORB itself.

server

This is the object reference to the server.

The example above is a full functional client. The magic in this example is the usage
of the function CORBA_ORB_string_to_object with the parameter argv[1]. The ex-
plantion is that the program is supposed to be called with the string representation of
the Calculator server as the first parameter. How to obtain this string, will be shown
in the next example, where I describe how the server.

Calculator Server

To implement the server, the IDL compiler does a great deal of work for you. It can
emit all the stuff necessary to set up the data structures and function calls for the
server implementation. All you have to write is the setup stuff in your main function
and the actual implementation of the server functions. First I’ll present the functions
and data structures the IDL compiler generates and then I’ll show what’s necessary
to set up the environment for these functions to work properly.

Calculator Implementation Skeleton

To ease the task of implementing the calculator the ORBit IDL compiler can output
an implementation skeleton of the server. This is enabled with the --skeleton-impl
switch to the IDL compiler. The output of orbit-idl-2 --skeleton-impl

24



Chapter 5. First CORBA Programs

calculator.idl looks like this (the default name for the generated source file is
calculator-skelimpl.c:

Example 5-11. calculator-skelimpl.c

#include "calculator.h"

/*** App-specific servant structures ***/

typedef struct
{

POA_Calculator servant;
PortableServer_POA poa;

/* ------ add private attributes here ------ */
/* ------ ---------- end ------------ ------ */

}
impl_POA_Calculator;

/*** Implementation stub prototypes ***/

static void impl_Calculator__destroy(impl_POA_Calculator * servant,
CORBA_Environment * ev);

static CORBA_double
impl_Calculator_add(impl_POA_Calculator * servant,

const CORBA_double number1,
const CORBA_double number2,
CORBA_Environment * ev);

static CORBA_double
impl_Calculator_sub(impl_POA_Calculator * servant,

const CORBA_double number1,
const CORBA_double number2,
CORBA_Environment * ev);

/*** epv structures ***/

static PortableServer_ServantBase__epv impl_Calculator_base_epv = {
NULL, /* _private data */
(gpointer) & impl_Calculator__destroy, /* finalize routine */
NULL, /* default_POA routine */

};
static POA_Calculator__epv impl_Calculator_epv = {

NULL, /* _private */
(gpointer) & impl_Calculator_add,

(gpointer) & impl_Calculator_sub,

};

/*** vepv structures ***/

static POA_Calculator__vepv impl_Calculator_vepv = {
&impl_Calculator_base_epv,
&impl_Calculator_epv,

};

/*** Stub implementations ***/

static Calculator
impl_Calculator__create(PortableServer_POA poa,

CORBA_Environment * ev)
{

Calculator retval;
impl_POA_Calculator *newservant;

25



Chapter 5. First CORBA Programs

PortableServer_ObjectId *objid;

newservant = g_new0(impl_POA_Calculator, 1);
newservant->servant.vepv = &impl_Calculator_vepv;
newservant->poa = poa;
POA_Calculator__init((PortableServer_Servant) newservant, ev);
/* Before servant is going to be activated all
* private attributes must be initialized. */

/* ------ init private attributes here ------ */
/* ------ ---------- end ------------- ------ */

objid = PortableServer_POA_activate_object(poa, newservant, ev);
CORBA_free(objid);
retval = PortableServer_POA_servant_to_reference(poa, newservant, ev);

return retval;
}

static void
impl_Calculator__destroy(impl_POA_Calculator * servant,

CORBA_Environment * ev)
{

CORBA_Object_release((CORBA_Object) servant->poa, ev);

/* No further remote method calls are delegated to
* servant and you may free your private attributes. */

/* ------ free private attributes here ------ */
/* ------ ---------- end ------------- ------ */

POA_Calculator__fini((PortableServer_Servant) servant, ev);
}

static CORBA_double
impl_Calculator_add(impl_POA_Calculator * servant,

const CORBA_double number1,
const CORBA_double number2,
CORBA_Environment * ev)

{
CORBA_double retval;

/* ------ insert method code here ------ */
retval = number1 + number2;
/* ------ ---------- end ------------ ------ */

return retval;
}

static CORBA_double
impl_Calculator_sub(impl_POA_Calculator * servant,

const CORBA_double number1,
const CORBA_double number2,

CORBA_Environment * ev)
{

CORBA_double retval;

/* ------ insert method code here ------ */
retval = number1 - number2;
/* ------ ---------- end ------------ ------ */

return retval;
}

26



Chapter 5. First CORBA Programs

This source file provides you with most of the magic of a server. Note that we gen-
erate this file (with the --skeleton-impl switch) only once, and then the makefile
invokes orbit-idl-2 with no switch. If you call orbit-idl-2 --skeleton-impl from the
makefile, the previous file will be overwritten and your implementation code lost.
Once the implementation code is written, just include the source file at the beginning
of the calculator-server.c file.

For this first example, I won’t explain all the bits and pieces of the generated source
file. This will be done later. We’ll just concentrate on getting the server running.

As you see there are two functions:

CORBA_double impl_Calculator_add(impl_POA_Calculator* servant,
CORBA_double number1, CORBA_double number2, CORBA_Environment* ev);

and

CORBA_double impl_Calculator_sub(impl_POA_Calculator* servant,
CORBA_double number1, CORBA_double number2, CORBA_Environment* ev);

These two functions are implementing the function defined in the IDL file. Be-
cause the IDL compiler doesn’t provide you with a real implementation (it doesn’t
know what the function should do), you have to extend this skeleton yourself where
marked.

The impl_Calculator_add() should add it’s two parameters and return the result
so this function should be changed into:

Example 5-12. calculator-skelimpl.c fragment

static CORBA_double
impl_Calculator_add(impl_POA_Calculator * servant,

const CORBA_double number1,
const CORBA_double number2,

CORBA_Environment * ev)
{

CORBA_double retval;

/* ------ insert method code here ------ */
retval = number1 + number2;
/* ------ ---------- end ------------ ------ */

return retval;
}

Calculator Server Implementation

The things you need in your minimal main function to make things work can be
implemented in the following way, note analogy to echo-server.c of previous ex-
ample.

Example 5-13. calculator-server.c

/*
* calculator-server program. Hacked from Frank Rehberger
* <F.Rehberger@xtradyne.de>.
*/

#include <stdio.h>
#include <stdlib.h>

27



Chapter 5. First CORBA Programs

#include <string.h>
#include <signal.h>
#include <orbit/orbit.h>

#include "calculator.h"
#include "calculator-skelimpl.c"

/**
* test for exception */
static
gboolean
raised_exception(CORBA_Environment *ev) {
return ((ev)->_major != CORBA_NO_EXCEPTION);
}

/**
* in case of any exception this macro will abort the process */
static
void
abort_if_exception(CORBA_Environment *ev, const char* mesg)
{
if (raised_exception (ev)) {
g_error ("%s %s", mesg, CORBA_exception_id (ev));
CORBA_exception_free (ev);
abort();

}
}

static CORBA_ORB global_orb = CORBA_OBJECT_NIL; /* global orb */

/* Is called in case of process signals. it invokes CORBA_ORB_shutdown()
* function, which will terminate the processes main loop.
*/
static
void
calculator_server_shutdown (int sig)
{
CORBA_Environment local_ev[1];
CORBA_exception_init(local_ev);

if (global_orb != CORBA_OBJECT_NIL)
{

CORBA_ORB_shutdown (global_orb, FALSE, local_ev);
abort_if_exception (local_ev, "ORB shutdown failed");

global_orb=CORBA_OBJECT_NIL;
}

}

/* Inits ORB @orb using @argv arguments for configuration. For each
* consumed option from vector @argv the counter of @argc_ptr
* will be decremented. Signal handler is set to call
* calculator_server_shutdown function in case of SIGINT and SIGTERM
* signals. If error occures @ev points to exception object on
* return.
*/static
void
calculator_server_init (int *argc_ptr,

char *argv[],
CORBA_ORB *orb,
CORBA_Environment *ev)

{
/* init signal handling */

signal(SIGINT, calculator_server_shutdown);
signal(SIGTERM, calculator_server_shutdown);

28



Chapter 5. First CORBA Programs

/* create Object Request Broker (ORB) */

(*orb) = CORBA_ORB_init(argc_ptr, argv, "orbit-local-orb", ev);
if (raised_exception(ev)) return;
}

/* Creates servant and registers in context of ORB @orb. The ORB will
* delegate incoming requests to specific servant object. @return
* object reference. If error occures @ev points to exception object
* on return.
*/
static
Calculator
calculator_server_activate_service (CORBA_ORB orb,

CORBA_Environment *ev)
{
Calculator servant = CORBA_OBJECT_NIL;
PortableServer_POA poa = CORBA_OBJECT_NIL;
PortableServer_POAManager poa_manager = CORBA_OBJECT_NIL;

/* get Portable Object Adaptor (POA) */

poa =
(PortableServer_POA) CORBA_ORB_resolve_initial_references(orb,

"RootPOA",
ev);

if (raised_exception(ev)) return CORBA_OBJECT_NIL;

/* create servant in context of poa container */

servant = impl_Calculator__create (poa, ev);
if (raised_exception(ev)) return CORBA_OBJECT_NIL;

/* activate POA Manager */

poa_manager = PortableServer_POA__get_the_POAManager(poa, ev);
if (raised_exception(ev)) return CORBA_OBJECT_NIL;

PortableServer_POAManager_activate(poa_manager, ev);
if (raised_exception(ev)) return CORBA_OBJECT_NIL;

return servant;
}

/* Writes stringified object reference of @servant to file-stream
* @stream. If error occures @ev points to exception object on
* return.
*/
static
void
calculator_server_export_service_to_stream (CORBA_ORB orb,

Calculator servant,
FILE *stream,
CORBA_Environment *ev)

{
CORBA_char *objref = NULL;

/* write objref to file */

objref = CORBA_ORB_object_to_string (orb, servant, ev);
if (raised_exception(ev)) return;

/* print ior to terminal */
fprintf (stream, "%s\n", objref);
fflush (stream);

29



Chapter 5. First CORBA Programs

CORBA_free (objref);
}

/* Entering main loop @orb handles incoming request and delegates to
* servants. If error occures @ev points to exception object on
* return.
*/
static
void
calculator_server_run (CORBA_ORB orb,

CORBA_Environment *ev)
{

/* enter main loop until SIGINT or SIGTERM */

CORBA_ORB_run(orb, ev);
if (raised_exception(ev)) return;

/* user pressed SIGINT or SIGTERM and in signal handler
* CORBA_ORB_shutdown(.) has been called */

}

/* Releases @servant object and finally destroys @orb. If error
* occures @ev points to exception object on return.
*/
static
void calculator_server_cleanup (CORBA_ORB orb,

Calculator servant,
CORBA_Environment *ev)

{
/* releasing managed object */

CORBA_Object_release(servant, ev);
if (raised_exception(ev)) return;

/* tear down the ORB */
if (orb != CORBA_OBJECT_NIL)
{

/* going to destroy orb.. */
CORBA_ORB_destroy(orb, ev);

if (raised_exception(ev)) return;
}

}

/*
* main
*/

int
main (int argc, char *argv[])
{
Calculator servant = CORBA_OBJECT_NIL;

CORBA_Environment ev[1];
CORBA_exception_init(ev);

calculator_server_init (&argc, argv, &global_orb, ev);
abort_if_exception(ev, "init failed");

servant = calculator_server_activate_service (global_orb, ev);
abort_if_exception(ev, "activating service failed");

calculator_server_export_service_to_stream (global_orb, /* ORB */
servant, /* object */
stdout, /* stream */
ev);

abort_if_exception(ev, "exporting IOR failed");

30



Chapter 5. First CORBA Programs

calculator_server_run (global_orb, ev);
abort_if_exception(ev, "entering main loop failed");

calculator_server_cleanup (global_orb, servant, ev);
abort_if_exception(ev, "cleanup failed");

exit (0);
}

I’m not going to explain every line of this example yet, because we want the server
up and make our first calls to it. Though one line deserves some explanation and this
is the fprintf(stream, "%s\n",objref) call. The purpose of this call is to print
the string representation of the the object reference. This string, which always starts
with the magic sequence "IOR:", is the argument to the client program. It identifies
a specific object, the server process which hosts it, the location of the server, and the
identity of the object in this specific server, because it’s possible that one server hosts
many objects. How to get such strings or object references without cutting the output
of one program (the server) and pasting it into the commandline of another program
(the client) will be explained later.

Compiling and Running the Server and the Client

The following makefile can be used to compile both, the client and the server. Be
aware of the location of ORBit : on my system it has been installed under /usr but
it could be /usr/local if you have built it from the sources, and hence the path for
ORBIT variables below may vary. If using ORBit binary packages shipped with Linux
or BSD/Unix the simple makefile below will do.

Example 5-14. makefile

PREFIX=/usr/local
CC = gcc
TARGETS=calculator-client calculator-server
ORBIT_IDL=orbit-idl-2
CFLAGS=-DORBIT2=1 -D_REENTRANT -I$(PREFIX)/include/orbit-2.0 \

-I$(PREFIX)/include/linc-1.0 -I$(PREFIX)/include/glib-2.0 \
-I$(PREFIX)/lib/glib-2.0/include

LDFLAGS= -Wl,--export-dynamic -L$(PREFIX)/lib -lORBit-2 -llinc -lgmodule-2.0 \
-ldl -lgobject-2.0 -lgthread-2.0 -lpthread -lglib-2.0 -lm

IDLOUT=calculator-common.c calculator-stubs.c calculator-skels.c calculator.h

all: $(IDLOUT) calculator-client calculator-server

calculator-client : calculator-client.o calculator-common.o calculator-stubs.o
calculator-server : calculator-server.o calculator-common.o calculator-skels.o

$(IDLOUT): calculator.idl
$(ORBIT_IDL) calculator.idl

clean:
rm -rf *.o *~ $(IDLOUT)

distclean: clean
rm -rf calculator-client calculator-server

After calling make in terminal window all sources have been compiled and you
should open a second terminal window. In the first window we will start the server

31



Chapter 5. First CORBA Programs

with the command: calculator-server > calculator.ior. The server should print a very
long string into the file calculator.ior, starting with the 4 character sequence IOR:
In the second window we start the client with the command calculator-client ‘cat
calculator.ior‘ IOR-string. You should not try to type the IOR string, instead use the
cut and paste functionality of your xterm or whatever you are using.

If everything works, you should get the following output: Result: 1.0 + 2.0 = 3.

Account Client and Server
In this third simple example, we will see how we can set up a client that can modify
the value of a variable stored on the server. It is basically the way an account manager
works. The stored variable here is balance. The idl definition (account.idl) for our
account is :

Example 5-15. account.idl

interface Account {
void deposit (in unsigned long amount);
void withdraw (in unsigned long amount);
readonly attribute long balance;

};

Then you have to generate the skeleton and stub files. In addition to these two files
the ORBit IDL compiler also generates a common file and a header file. The common
file implements the memory management functions and other things, useful in the
client as well as in the server. The sequence to generate the C source files is rather
simple. $ orbit-idl-2 --skeleton-impl calculator.idl geenrates all the files
we will use in this example.

File Usage for Client Usage for Server

account.h readonly readonly

account-common.c readonly readonly

account-stubs.c readonly -

account-skels.c - readonly

account-skelimpl.c - template for user code

Files remaining to write are listed in following table, starting with account-client.c in
following chapter.

account-client.c write the client code

account-server.c write the generic code for servant
creation

Account Client

There is no difficulty in setting the client (at least no more than in the previous ex-
amples). Only one thing has been added : we test for the availabilty of the server (if
(!acc_client) ...) before invoking calls to the server.

32



Chapter 5. First CORBA Programs

Example 5-16. account-client.c

/* account-client.c hacked by Frank Rehberger
* <F.Rehberger@xtradyne.de>. */

#include <assert.h>
#include <stdio.h>
#include <orbit/orbit.h>

#include "account.h"

/**
* test for exception
*/
static
gboolean
raised_exception(CORBA_Environment *ev)
{
return ((ev)->_major != CORBA_NO_EXCEPTION);
}

/**
* in case of any exception this macro will abort the process
*/
static
void
abort_if_exception(CORBA_Environment *ev, const char* mesg)
{
if (raised_exception (ev)) {
g_error ("%s %s", mesg, CORBA_exception_id (ev));
CORBA_exception_free (ev);
abort();

}
}

/*
* main
*/
int
main(int argc, char* argv[])
{
char* ior=NULL;
CORBA_long val=0;

CORBA_long balance=0;

CORBA_ORB orb;
Account server;

CORBA_Environment ev[1];
CORBA_exception_init(ev);

/* init - ORB might ’eat’ arguments from command line */
orb = CORBA_ORB_init(&argc, argv, "orbit-local-orb", ev);

abort_if_exception(ev, "init failed");

/* make sure command lines contains two arguments; IOR and
* integer value */

if (argc<3)
g_error ("usage: %s <ior> <int>", argv[0]);

ior = argv[1];
val = atoi(argv[2]);

/* establish servant connection */
server = (Account) CORBA_ORB_string_to_object(orb, ior, ev);

abort_if_exception(ev, "bind failed");

33



Chapter 5. First CORBA Programs

/*
* use calculator server
*/

balance = Account__get_balance (server, ev);
abort_if_exception(ev, "service not reachable");

g_print ("balance %5d, ", balance);

if (val > 0)
{
Account_deposit (server, val, ev);
abort_if_exception(ev, "service not reachable");

}
else
{
Account_withdraw (server, abs(val), ev);
abort_if_exception(ev, "service not reachable");

}

balance = Account__get_balance (server, ev);
abort_if_exception(ev, "service not reachable");

g_print ("new balance %5d\n", balance);

/* tear down object reference and ORB */
CORBA_Object_release(server,ev);

abort_if_exception(ev, "releasing service failed");

CORBA_ORB_destroy (orb, ev);
abort_if_exception(ev, "cleanup failed");

/* successfull termination */
exit(0);
}

Account Server

Account Server Skeleton Implementation

For the server, like in the previous example, we first generate the source file
account-skelimpl.c that will receive the implementation code for the methods.
This is done once again with orbit-idl-2 --skeleton-impl account.idl.

Now, let us edit account-skelimpl.c. We search for the the balance attribute that
was declared in the IDL file. At the beginning of the file, we can spot the way it has
been translated into C by the idl compiler:

Example 5-17. account-skelimpl.c fragment - object declaration

typedef struct
{

POA_Account servant;
PortableServer_POA poa;

CORBA_long attr_balance;

/* ------ add private attributes here ------ */
CORBA_long attr_balance;
/* ------ ---------- end ------------ ------ */

}

34



Chapter 5. First CORBA Programs

impl_POA_Account;

So, the server methods (withdraw and deposit) will have to manage the balance of
the account through the servant->attr_balance (the servant variable is passed as
parameter to each method).

Now, let us get to the end of the file and find the methods stubs. We find the
impl_Account_* functions, to which we add the implementation code. This could
be:

Example 5-18. account-skelimpl.c fragment - method definition

static void
impl_Account_deposit(impl_POA_Account * servant,

const CORBA_unsigned_long amount, CORBA_Environment * ev)
{

/* ------ insert method code here ------ */
servant->attr_balance += amount;
/* ------ ---------- end ------------ ------ */

}

static void
impl_Account_withdraw(impl_POA_Account * servant,

const CORBA_unsigned_long amount,
CORBA_Environment * ev)

{
/* ------ insert method code here ------ */
servant->attr_balance -= amount;
/* ------ ---------- end ------------ ------ */

}

static CORBA_long
impl_Account__get_balance(impl_POA_Account * servant, CORBA_Environment * ev)
{

CORBA_long retval;

/* ------ insert method code here ------ */
retval = servant->attr_balance;
/* ------ ---------- end ------------ ------ */

return retval;
}

The missing key stone is the constructor that establishs initial, consistent state for
object on creation.

Example 5-19. account-skelimpl.c fragment - constructor

...
static Account
impl_Account__create(PortableServer_POA poa, CORBA_Environment * ev)
{

Account retval;
impl_POA_Account *newservant;
PortableServer_ObjectId *objid;

newservant = g_new0(impl_POA_Account, 1);
newservant->servant.vepv = &impl_Account_vepv;
newservant->poa =

(PortableServer_POA) CORBA_Object_duplicate((CORBA_Object) poa, ev);
POA_Account__init((PortableServer_Servant) newservant, ev);
/* Before servant is going to be activated all
* private attributes must be initialized. */

35



Chapter 5. First CORBA Programs

/* ------ init private attributes here ------ */
newservant->attr_balance = 0;
/* ------ ---------- end ------------- ------ */

objid = PortableServer_POA_activate_object(poa, newservant, ev);
CORBA_free(objid);
retval = PortableServer_POA_servant_to_reference(poa, newservant, ev);

return retval;
}
..

Account Server Implementation

Lastly, we have to write a rather generic code to set up the server. We call it
account-server.c. It is roughly the same code as in the calculator and echo
examples. The code just initializes the ORB and publishes an IOR for the server
object.

Example 5-20. account-server.c

/*
* account-server program. Hacked from Frank Rehberger
* <F.Rehberger@xtradyne.de>.
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <orbit/orbit.h>

#include "account.h"
#include "account-skelimpl.c"

/**
* test for exception */
static
gboolean
raised_exception(CORBA_Environment *ev) {
return ((ev)->_major != CORBA_NO_EXCEPTION);
}

/**
* in case of any exception this macro will abort the process */
static
void
abort_if_exception(CORBA_Environment *ev, const char* mesg)
{
if (raised_exception (ev)) {
g_error ("%s %s", mesg, CORBA_exception_id (ev));
CORBA_exception_free (ev);
abort();

}
}

static CORBA_ORB global_orb = CORBA_OBJECT_NIL; /* global orb */

/* Is called in case of process signals. it invokes CORBA_ORB_shutdown()
* function, which will terminate the processes main loop.
*/
static
void

36



Chapter 5. First CORBA Programs

account_server_shutdown (int sig)
{
CORBA_Environment local_ev[1];
CORBA_exception_init(local_ev);

if (global_orb != CORBA_OBJECT_NIL)
{

CORBA_ORB_shutdown (global_orb, FALSE, local_ev);
abort_if_exception (local_ev, "ORB shutdown failed");

global_orb=CORBA_OBJECT_NIL;
}

}

/* Inits ORB @orb using @argv arguments for configuration. For each
* consumed option from vector @argv the counter of @argc_ptr
* will be decremented. Signal handler is set to call
* account_server_shutdown function in case of SIGINT and SIGTERM
* signals. If error occures @ev points to exception object on
* return.
*/static
void
account_server_init (int *argc_ptr,

char *argv[],
CORBA_ORB *orb,
CORBA_Environment *ev)

{
/* init signal handling */

signal(SIGINT, account_server_shutdown);
signal(SIGTERM, account_server_shutdown);

/* create Object Request Broker (ORB) */

(*orb) = CORBA_ORB_init(argc_ptr, argv, "orbit-local-orb", ev);
if (raised_exception(ev)) return;
}

/* Creates servant and registers in context of ORB @orb. The ORB will
* delegate incoming requests to specific servant object. @return
* object reference. If error occures @ev points to exception object
* on return.
*/
static
Account
account_server_activate_service (CORBA_ORB orb,

CORBA_Environment *ev)
{
Account servant = CORBA_OBJECT_NIL;
PortableServer_POA poa = CORBA_OBJECT_NIL;
PortableServer_POAManager poa_manager = CORBA_OBJECT_NIL;

/* get Portable Object Adaptor (POA) */

poa =
(PortableServer_POA) CORBA_ORB_resolve_initial_references(orb,

"RootPOA",
ev);

if (raised_exception(ev)) return CORBA_OBJECT_NIL;

/* create servant in context of poa container */

servant = impl_Account__create (poa, ev);
if (raised_exception(ev)) return CORBA_OBJECT_NIL;

/* activate POA Manager */

37



Chapter 5. First CORBA Programs

poa_manager = PortableServer_POA__get_the_POAManager(poa, ev);
if (raised_exception(ev)) return CORBA_OBJECT_NIL;

PortableServer_POAManager_activate(poa_manager, ev);
if (raised_exception(ev)) return CORBA_OBJECT_NIL;

return servant;
}

/* Writes stringified object reference of @servant to file-stream
* @stream. If error occures @ev points to exception object on
* return.
*/
static
void
account_server_export_service_to_stream (CORBA_ORB orb,

Account servant,
FILE *stream,
CORBA_Environment *ev)

{
CORBA_char *objref = NULL;

/* write objref to file */

objref = CORBA_ORB_object_to_string (orb, servant, ev);
if (raised_exception(ev)) return;

/* print ior to terminal */
fprintf (stream, "%s\n", objref);
fflush (stream);

CORBA_free (objref);
}

/* Entering main loop @orb handles incoming request and delegates to
* servants. If error occures @ev points to exception object on
* return.
*/
static
void
account_server_run (CORBA_ORB orb,

CORBA_Environment *ev)
{

/* enter main loop until SIGINT or SIGTERM */

CORBA_ORB_run(orb, ev);
if (raised_exception(ev)) return;

/* user pressed SIGINT or SIGTERM and in signal handler
* CORBA_ORB_shutdown(.) has been called */

}

/* Releases @servant object and finally destroys @orb. If error
* occures @ev points to exception object on return.
*/
static
void account_server_cleanup (CORBA_ORB orb,

Account servant,
CORBA_Environment *ev)

{
/* releasing managed object */

CORBA_Object_release(servant, ev);
if (raised_exception(ev)) return;

/* tear down the ORB */

38



Chapter 5. First CORBA Programs

if (orb != CORBA_OBJECT_NIL)
{

/* going to destroy orb.. */
CORBA_ORB_destroy(orb, ev);

if (raised_exception(ev)) return;
}

}

/*
* main
*/

int
main (int argc, char *argv[])
{
Account servant = CORBA_OBJECT_NIL;

CORBA_Environment ev[1];
CORBA_exception_init(ev);

account_server_init (&argc, argv, &global_orb, ev);
abort_if_exception(ev, "init failed");

servant = account_server_activate_service (global_orb, ev);
abort_if_exception(ev, "activating service failed");

account_server_export_service_to_stream (global_orb, /* ORB */
servant, /* object */
stdout, /* stream */
ev);

abort_if_exception(ev, "exporting IOR failed");

account_server_run (global_orb, ev);
abort_if_exception(ev, "entering main loop failed");

account_server_cleanup (global_orb, servant, ev);
abort_if_exception(ev, "cleanup failed");

exit (0);
}

Compiling the Server and the Client

The Makefile is the roughly the same as the one in the Calculator example. By now the
schema should be clear and you should be able to reuse this Makefile for numerous
small projects.

Example 5-21. Makefile for the Account example

PREFIX=/usr/local
CC = gcc
TARGETS=account-client account-server
ORBIT_IDL=orbit-idl-2
CFLAGS=-DORBIT2=1 -D_REENTRANT -I$(PREFIX)/include/orbit-2.0 \

-I$(PREFIX)/include/linc-1.0 -I$(PREFIX)/include/glib-2.0 \
-I$(PREFIX)/lib/glib-2.0/include

LDFLAGS= -Wl,--export-dynamic -L$(PREFIX)/lib -lORBit-2 -llinc -lgmodule-2.0 \
-ldl -lgobject-2.0 -lgthread-2.0 -lpthread -lglib-2.0 -lm

IDLOUT=account-common.c account-stubs.c account-skels.c account.h

all: $(IDLOUT) account-client account-server

39



Chapter 5. First CORBA Programs

account-client : account-client.o account-common.o account-stubs.o
account-server : account-server.o account-common.o account-skels.o

$(IDLOUT): account.idl
$(ORBIT_IDL) account.idl

clean:
rm -rf *.o *~ $(IDLOUT)

distclean: clean
rm -rf account-client account-server

Notes
1. http://www.gnome.org/projects/ORBit2/orbit-docs.tar.gz

40



Chapter 6. How to do garbage collection under CORBA

I wanted to do garbage collection under CORBA, and so I asked some questions on
the ORBit list. Here is a distillation of the answers which I received, mostly verbatim
and not necessarily in order.

Editor’s note - this chapter came from Todd Lewis

The question
I asked the following question on the ORBit list:

“As a client, when I no longer need an object, how do I properly release it? I see a
couple of different candidate functions, but I’m not sure which one is proper. If there’s
a piece of example code which I’ve overlooked, then a simple pointer thereto would
suffice. My copy of the Henning & Vinoski book is on the way, and so hopefully I
won’t be so clueless here soon... ”

Difference between the client and the server
Elliot Lee, ever the prescient one, asked:

“Object or object reference? ”

And then observed:

“I think Todd is confused as to what the difference between object references and
objects is. Think of an object reference and an object as being analogous to a pointer
and pointed-to memory, respectively. You can stop using a pointer, but until you get
the server side to actually free() the memory (object) being pointed to (referenced), it
is still there. ”

Indeed I was confused. There are actually two processes which occur within CORBA:

• the client drops all references to an object, after which the ORB local to the client
then can clean up all of its data structures related to that object, and

• the server can decide that the object needs to be destroyed, and it then does the
job of deactivating the object (so that the POA can know not to answer any more
queries to that object) and freeing associated resources, etc.

Since object references can be generated in one program, passed to a second program,
the first program can forget about it, and the second can continue, these are separate
processes. It was understanding this fact which was the biggest impediment to my
figuring this matter out.

Sascha Brawer <brawer@coli.uni-sb.de> described these two potential interpreta-
tions of what I wanted to do, reflecting a nuance which I did not appreciate when
I asked the question:

• You want the client to forget about the object reference, but the server-side ob-
ject should continue its life: Call CORBA_free on the client side. The purpose of
CORBA_free is to release the memory in the client. Therefore, the server will not
get any notification about this. If other clients had references to the same object,
they will continue to work.

• You want to destroy the object on the server: define a method in the object’s inter-
face, e.g. "destroy" (though any name is fine). First, call that method on the client
side. The server will receive the call, and your server implementation will destroy

41



Chapter 6. How to do garbage collection under CORBA

the object. Second, call CORBA_free on the client side, to free the client-side mem-
ory for the object reference which has now become stale. If other clients had refer-
ences to the same object, they will receive an exception as soon they call a method
on that object. However, they won’t be notified in advance, because the server does
not keep track on issued references.

Which Elliot Lee then corrected with:

CORBA_Object_release() on object references, CORBA_free() on data structures.

Dick Porter added:

It is _only_ the client side. These pseudo-object methods do not cause requests to be
made to the server.

Server-side deactivation
Ok, so CORBA_Object_release takes care of the client side. This isn’t enough, be-
cause, as Elliot Lee pointed out, to state the point slightly differently:

On Tue, 20 Apr 1999, Svanberg Liss wrote:
> Btw, what does CORBA_Object_duplicate & CORBA_Object_release do
> server?

Nothing..

So, what do you do on the server side? Elliot answered this, too:

> and... hmm, what kind of call does destroy the object in the server
when
> release doesn’t?

You PortableServer_POA_deactivate_object(poa, objid) to tell the POA not
to take any more requests for the specified objid.

Let’s take a look at what this means in terms of actual code. If you run orbit-idl
--skeleton_impl foo.idl on your idl file, you will get a file foo-impl.c. Inside
of that file, you will see functions like the following:

/* You shouldn’t call this routine directly without first deactivating
the servant... */

static void

impl_CosTransactions_Control__destroy(

impl_POA_CosTransactions_Control * servant,

CORBA_Environment * ev)

{

POA_CosTransactions_Control__fini((PortableServer_Servant) servant,
ev);

g_free(servant);

}

Where it says "You shouldn’t call this routine directly without first deactivating the
servant...", it means that you should call PortableServer_POA_deactivate_object() on
the servant first.

42



Chapter 6. How to do garbage collection under CORBA

FIXME: I don’t understand what POA_CosTransactions_Control__fini does here;
how is it different from PortableServer_POA_deactivate_object? Anyway, this is
the final step you take after your object is deactivated; you can then free the POA
servant struct which you created in your factory (or wherever.)

Why is this an issue?

Sascha Brawer suggests:

Maybe the confusion arises because there do exist distributed object systems that
perform this sort of reference counting, allowing the server to know when no client
has a reference left. DCOM has such a mechanism, and ILU has something similar,
AFAIK.

Why doesn’t CORBA follow these other systems? My personal impression is that
this is another case of CORBA doing the right thing instead of the easy thing. Sascha
continues:

However, I’ve read somewhere (don’t remeber the exact location, sorry...) that the
problem with distributed reference counting would be that first, it consumes network
bandwith, and second, it does not work well with unreliable network connections.
It was told in that article that these drawbacks would have been the rationale for
designing CORBA without refcounting.

This is a problem. If your client disappears, then you’ve got unneeded objects lying
around. All it takes for clients to disappear is for them to be coded by bad program-
mers, and we all know how unlikely that is, right? So how does one deal with this?
There are several ways. The easiest is to have a timeout. This is the approach that
I am using in the GNU Transaction Server; when the timeout expires, I deactivate
all of my servant objects and free up their resources. Fortunately, the CosTransac-
tions spec supports timeouts on transactions. Unfortunately, I don’t really see how to
do timeouts with the normal CORBA event model, so I’m going to have to use the
ORBit-specific hack of having a glib event loop which supports both CORBA events
and timeouts. Another way, I am told, is something called an Evictor pattern. I should
understand this soon once I get my fancy CORBA book in the mail. The final way is
just to leak memory like a sieve leaks goldfish; this is the easiest thing to do.

43



Chapter 6. How to do garbage collection under CORBA

44


